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Front Matter

Henry Chai - 7/24/23

* Announcements

* PAG6 released 7/20, due 7/27 at 11:59 PM

* Please be mindful of your grace day usage

(see the course syllabus for the policy)

* Quiz 8: Graphical Models on 7/21 (tomorrow!)
- Wellness day on 7/31 (next Monday): no lecture or OH

- Recommended Readings

* Mitchell, Chapter 13


https://www.cs.cmu.edu/~hchai2/courses/10601/

* Supervised learning - D = {(x(n)’y(n))}jj:l
* Regression - y™ € R

- Classification - y(”) e{1,..,C}

Learnin
2 * Unsupervised learning - D = {x(n)}11\11=1

Paradigms

* Clustering
- Dimensionality reduction

N

* Reinforcement learning - D = {S(n), a(n):r(n)}nﬂ

Henry Chai-7/24/23



Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement

Learning:
Examples

lq OM/’sgé
04 4

+*0. 9% */7 64

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Henry Chai - 7/24/23
Source: https://twitter.com/alphagomovie
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* Problem formulation

* Time discounted cumulative reward

* Markov decision processes (MDPs)

Outline * Algorithms:
* Value & policy iteration (dynamic programming)

(tomorrow)

* (Deep) Q-learning (temporal difference learning)
(Wednesday)

Henry Chai - 7/24/23



Reinforcement
Learning:

Problem
Formulation

Henry Chai - 7/24/23

- State space, &
* Action space, A

* Reward function

* Stochastic, p(r | s, a)

* Deterministic, R: S X A - R

* Transition function

* Stochastic, p(s’ | s,a)
* Deterministic, : S X A > §



Reinforcement
Learning:

Problem
Formulation

Henry Chai - 7/24/23

* Policy m:8 - A

* Specifies an action to take in every state

* Value function, V'™: § » R

* Measures the expected total payoff of starting in
some state s and executing policy m, i.e., in every

state, taking the action that m returns



Toy Example

* § = all empty squares in the grid
* A = {up, down, left, right}

* Deterministic transitions

* Rewards of +1 and -1 for entering
the labelled squares

* Terminate after receiving either
reward

Henry Chai - 7/24/23 Figure courtesy of Eric Xing



Toy Example

s this policy optimal?

enry Chai-7/24/23



[ A When survey is active, respond at pollev.com/301601polls

Lecture 24 Polls

0 done

£ 0 underwav
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




[ & When poll is active, respond at pollev.com/301601polls

Is this policy optimal?

Yes

No

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



m e : : m
Briefly justify your answer to the previous question

Join by Web

o Go to PollEv.com
€) Enter301601POLLS

9 Respond to activity

© Instructions not active. Log in to activate

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Toy Example

Optimal policy given a

reward of -2 per step

enry Chai-7/24/23



Toy Example

Optimal policy given a

reward of -0.1 per step

Figure courtesy of Eric Xing
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Markov

Decision
Process (MDP)

Henry Chai - 7/24/23

* Assume the following model for our data:

1. Startin some initial state s

2. Fortime step t:

1.

2
3.
4

Agent observes state s;
Agent takes action a; = m(s;)
Agent receives reward 1y ~ p(r | s¢, a;t)

Agent transitions to state sy, ~ p(s’ | s¢, ag)

(0.0)
3. Total reward is Z yir,

t=0

- MDPs make the Markov assumption: the reward and

next state only depend on the current state and action.
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Reinforcement
Learning:

3 Key
Challenges

Henry Chai - 7/24/23

. The algorithm has to gather its own training data

. The outcome of taking some action is often stochastic

or unknown until after the fact

Decisions can have a delayed effect on future

outcomes (exploration-exploitation tradeoff)

17



MDP Example:
Multi-armed bandit

* Single state: |S| =1
* Three actions: A = {1, 2, 3}
* Deterministic transitions

« Rewards are stochastic

Henry Chai - 7/24/23
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MDP Example:

Multi-armed
bandit

Henry Chai - 7/24/23
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Reinforcement
Learning:

Objective
Function

Henry Chai - 7/24/23

* Find a policy m* = argmax V™(s) Vs € S

T

- V™ (s) = E[discounted total reward of starting in state

s and executing policy  forever]
=Ep(s' |5 ) [R(so = s,7(sg))

+ YR(sy,m(s1)) + ¥?R(s2,m(s5)) + -]

— z yt[Ep(S’ |S’ a) [R(St, ﬂ(st))]
t=0

where 0 < ¥ < 1 is some discount factor for future rewards

20



Value Function:

Example

Henry Chai - 7/24/23

3
0 1 2 3 4 6
-2 (@ 7
(2 if entering state 0 (safety)
R(s,a) = 3 if entering state 5 (field goal)

7 if entering state 6 (touch down)
_ 0 otherwise

21



Value Function:

Example

Henry Chai - 7/24/23

S

e

e

—)

1

@

.

0

—2 if entering state 0 (safety)
3 if entering state 5 (field goal)
7 if entering state 6 (touch down)
_ 0 otherwise

—1.8

2.7
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Value Function:

Example

Henry Chai - 7/24/23

G

—)

—)

—)

—)

@

.

0

—2 if entering state 0 (safety)
3 if entering state 5 (field goal)
7 if entering state 6 (touch down)
_ 0 otherwise

5.67

6.3
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Value

Function

Henry Chai - 7/24/23

- V™ (s) = E[discounted total reward of starting in state s and

executing policy m forever]
= E[R(s0,(s0)) + YR(s1,m(s1)) + ¥*R(s2,7(s2)) + | 59 = 5]
= R(s,n(s)) + yIE[R(Sl,n(Sl)) + )/R(SZ,TL'(SZ)) + .| Sg = 5]

=R(s,7(s)) + ¥ Zs,esP(51 1 5,7())(R(s1,7(51))
+yIE[R(52,n(Sz)) + .- | Sl])

24



Value

Function
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- V™ (s) = E[discounted total reward of starting in state s and

executing policy m forever]
= E[R(s0,(s0)) + YR(s1,m(s1)) + ¥*R(s2,7(s2)) + | 59 = 5]
= R(s,n(s)) + ]/IE[R(Sl,T[(Sl)) + )/R(SZ,TL'(SZ)) + ...| Sg = 5]

= R(s,m(s)) + stlesp(sl | 5,7(s))(R(51,7(s1))
+)/IE[R(SZ,T[(S2)) + .- | Sl])
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Value

Function
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- V™ (s) = E[discounted total reward of starting in state s and

executing policy m forever]
= E[R(s0,(s0)) + YR(s1,m(s1)) + ¥*R(s2,7(s2)) + | 59 = 5]
= R(s,n(s)) + yIE[R(Sl,n(Sl)) + yR(sz,n(sz)) + .| s = 5]

= R(s,n(s)) + VZslesp(S1 | S,n(s))(R(sl,n(sl))
+]/IE[R(SZ,T[(SZ)) + .- | 31])
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Value

Function
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- V™ (s) = E[discounted total reward of starting in state s and

executing policy m forever]
= E[R(s0,(s0)) + YR(s1,m(s1)) + ¥*R(s2,7(s2)) + | 59 = 5]
= R(s,n(s)) + )/IE[R(Sl,T[(Sl)) + )/R(SZ,TL'(SZ)) + .| s = 5]

= R(s,n(s)) -+ VZslesp(S1 | S,n(s))GR(sl,n(sl))
+yIE[R(52,7T(Sz)) + .- | sl])
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Value

Function
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- V™ (s) = E[discounted total reward of starting in state s and

executing policy m forever]
= E[R(s0,(s0)) + YR(s1,m(s1)) + ¥*R(s2,7(s2)) + | 59 = 5]
= R(s,n(s)) + yIE[R(Sl,n(Sl)) + )/R(SZ,TL'(SZ)) + .| Sg = 5]

=R(s,7(s)) + ¥ Zs,esP(51 1 5,7())(R(s1,7(51))
+yIE[R(52,n(Sz)) + .- | 51])

Vi) = R(s,m() +7 ) p(s1]5m()V ()

S1€ES

\_ /
e

Bellman equations

28



* In reinforcement learning, we assume our data comes

from a Markov decision process

* The goal is to compute an optimal policy or function that

\CAELCEENR

maps states to actions

* Value function can be defined in terms of values of all

other states; this is called the Bellman equations

Henry Chai - 7/24/23 29



