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Front Matter

� Announcements

� PA6 released 7/20, due 7/27 at 11:59 PM 

� Please be mindful of your grace day usage 
(see the course syllabus for the policy)

� Quiz 8: Graphical Models on 7/21 (tomorrow!)

� Wellness day on 7/31 (next Monday): no lecture or OH

� Recommended Readings

� Mitchell, Chapter 13

Henry Chai - 7/24/23 2

https://www.cs.cmu.edu/~hchai2/courses/10601/


Learning 
Paradigms

� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ

� Classification - 𝑦 ! ∈ 1,… , 𝐶

�  Unsupervised learning - 𝒟 = 𝒙 !
!"#
$

� Clustering 
� Dimensionality reduction

� Reinforcement learning - 𝒟 = 𝒔 ! , 𝒂 ! , 𝑟 !
!"#
$
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Reinforcement 
Learning: 
Examples

4

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
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AlphaGo
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Outline

� Problem formulation 

� Time discounted cumulative reward

� Markov decision processes (MDPs)

� Algorithms:

� Value & policy iteration (dynamic programming) 
(tomorrow)

� (Deep) Q-learning (temporal difference learning) 
(Wednesday)
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Reinforcement 
Learning: 
Problem 
Formulation

� State space, 𝒮

� Action space, 𝒜

� Reward function 

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic, 𝑅: 	𝒮	×	𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠%	 𝑠, 𝑎)

� Deterministic, 𝛿: 	𝒮	×	𝒜 → 𝒮
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Reinforcement 
Learning: 
Problem 
Formulation

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉&: 	𝒮 → ℝ

� Measures the expected total payoff of starting in 

some state 𝑠 and executing policy 𝜋, i.e., in every 
state, taking the action that 𝜋 returns 
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Toy Example

� 𝒮 =	all empty squares in the grid

�𝒜 = {up, down, left, right}

� Deterministic transitions

� Rewards of +1 and -1 for entering 
the labelled squares

� Terminate after receiving either 
reward
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Is this policy optimal?
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Toy Example

Figure courtesy of Eric Xing









Optimal policy given a 
reward of -2 per step
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Toy Example

Figure courtesy of Eric Xing



Optimal policy given a 
reward of -0.1 per step
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Toy Example

Figure courtesy of Eric Xing



Markov 
Decision 
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠'

2. For time step 𝑡:
1. Agent observes state 𝑠(
2. Agent takes action 𝑎( = 𝜋 𝑠(
3. Agent receives reward 𝑟( ∼ 𝑝 𝑟	 𝑠(, 𝑎()

4. Agent transitions to state 𝑠()# ∼ 𝑝 𝑠%	 𝑠(, 𝑎()	

3. Total reward is

� MDPs make the Markov assumption: the reward and 
next state only depend on the current state and action.

16

?
("'

*

𝛾(𝑟(	
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Reinforcement 
Learning: 
3 Key 
Challenges

1. The algorithm has to gather its own training data

2. The outcome of taking some action is often stochastic 
or unknown until after the fact

3. Decisions can have a delayed effect on future 

outcomes (exploration-exploitation tradeoff)
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MDP Example: 
Multi-armed bandit

� Single state: 𝒮 = 1

� Three actions: 𝒜 = 1, 2, 3

� Deterministic transitions

� Rewards are stochastic
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MDP Example: 
Multi-armed 
bandit

Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 2 2

0 0 1

1 2 4

1 0 0

1 2 3

1 0 3

0 0 1
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Reinforcement 
Learning: 
Objective 
Function

� Find a policy 𝜋∗ = argmax
&

	 𝑉& 𝑠 	∀	𝑠 ∈ 𝒮

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state            
           𝑠 and executing policy 𝜋 forever]

� 𝑉& 𝑠 = 𝔼, -!	 -,	0)[𝑅 𝑠' = 𝑠, 𝜋 𝑠' 	

�  −	+ 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯]

𝑉& 𝑠 =?
("'

*

𝛾(𝔼, -!	 -,	0) 𝑅 𝑠(, 𝜋 𝑠( 	

� where 0 < 𝛾 < 1 is some discount factor for future rewards
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Value Function: 
Example

21

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9
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Value Function: 
Example

22

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

−2 −1.8 2.7 3 0

0

0
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Value Function: 
Example

23

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

5.10 5.67 6.3 7 0

0

0
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Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 j

k

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#
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Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 j

k

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#

25Henry Chai - 7/24/23



Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 j

k

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#
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Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 j

k

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#
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Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 j

k

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#
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Key Takeaways

� In reinforcement learning, we assume our data comes 

from a Markov decision process

� The goal is to compute an optimal policy or function that 
maps states to actions

� Value function can be defined in terms of values of all 
other states; this is called the Bellman equations
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