10-301/601: Introduction to Machine Learning Lecture 25: Value and Policy Iteration

Henry Chai

7/25/23

Front Matter

- Announcements
 - PA6 released 7/20, due 7/27 at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)
 - Wellness day on 7/31 (next Monday): no lecture or OH
- Recommended Readings
 - Mitchell, Chapter 13

Recall: Bellman Equations

 $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}]$ executing policy π forever]

$$= \mathbb{E}[R(s_{0}, \pi(s_{0})) + \gamma R(s_{1}, \pi(s_{1})) + \gamma^{2} R(s_{2}, \pi(s_{2})) + \cdots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_{1}, \pi(s_{1})) + \gamma R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \sum_{s_{1} \in \mathcal{S}} p(s_{1} | s, \pi(s)) (R(s_{1}, \pi(s_{1})) + \gamma \mathbb{E}[R(s_{2}, \pi(s_{2})) + \dots | s_{1}])$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad$$

Optimality

Optimal value function:

$$V^*(s) \neq \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

- System of $|\mathcal{S}|$ equations and $|\mathcal{S}|$ variables
- Optimal policy:

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

$$\operatorname{Immediate} \qquad \text{(Discounted)}$$

$$\operatorname{reward} \qquad \operatorname{Future\ reward}$$

Fixed Point Iteration

- Iterative method for solving a system of equations
- Given some equations and initial values

$$x_{1} = f_{1}(x_{1}, ..., x_{n})$$

$$\vdots$$

$$x_{n} = f_{n}(x_{1}, ..., x_{n})$$

$$x_{1}^{(0)}, ..., x_{n}^{(0)}$$

While not converged, do

$$x_1^{(t+1)} \leftarrow f_1\left(x_1^{(t)}, \dots, x_n^{(t)}\right)$$

$$\vdots$$
 $x_n^{(t+1)} \leftarrow f_n\left(x_1^{(t)}, \dots, x_n^{(t)}\right)$

Fixed Point Iteration: Example $\left(\frac{1}{3}\right)\left(-\frac{1}{2}\right) + \frac{1}{2} = -\frac{1}{6} + \frac{1}{2}$

$$x_{2} = -\frac{3x_{1}}{2} - \frac{3(\frac{1}{3})}{2} - \frac{1}{2}$$

$$x_{1}^{(0)} = x_{2}^{(0)} = 0$$

$$\widehat{x}_1 = \frac{1}{3}$$
, $\widehat{x}_2 = -\frac{1}{2}$

t	$x_1^{(t)}$	$x_2^{(t)}$
0	0	0

Value Iteration

- Inputs: R(s, a), p(s' | s, a)
- Initialize $V^{(0)}(s) = 0 \ \forall \ s \in \mathcal{S}$ (or randomly) and set t = Q
- While not converged, do:

• For
$$\underline{s \in S}$$

$$V^{(t+1)}(s) \leftarrow \max_{a \in A} R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V^{(t)}(s')$$

•
$$t = t + 1$$

• For $s \in \mathcal{S}$

$$\pi^*(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(t)}(s')$$

• Return π^*

Lecture 25 Polls

0 done

What is the runtime of one iteration of value iteration?

$O(\mathcal{S} \mathcal{A} ^2)$
$O(\mathcal{S} ^2 \mathcal{A} ^2)$

Synchronous Value Iteration

- Inputs: R(s, a), p(s' | s, a)
- Initialize $V^{(0)}(s) = 0 \ \forall \ s \in \mathcal{S}$ (or randomly) and set t = 0
- While not converged, do:
 - For $s \in S$
 - For $a \in \mathcal{A}$

• $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

$$\rightarrow t = t + 1$$

• For $s \in \mathcal{S}$

$$\pi^*(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(t)}(s')$$

• Return π^*

Asynchronous Value Iteration

- Inputs: R(s, a), p(s' | s, a)
- Initialize $V^{(0)}(s) = 0 \ \forall \ s \in \mathcal{S}$ (or randomly) $\mathcal{S}_{\mathcal{S}}$
- While not converged, do:
 - For $s \in S$
 - For $a \in \mathcal{A}$

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V(s')$$

•
$$V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$$

• For $s \in \mathcal{S}$

$$\pi^*(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V(s')$$

• Return π^*

Value Iteration Theory

• Theorem 1: Value function convergence

V will converge to V^* if each state is "visited" infinitely often (Bertsekas, 1989)

• Theorem 2: Convergence criterion

then
$$\max_{s \in \mathcal{S}} \left| V^{(t+1)}(s) - V^{(t)}(s) \right| < \epsilon$$
, $V^{(t+1)}(s) - V^{(t)}(s) < \frac{2\epsilon\gamma}{1-\gamma}$ (Williams & Baird, 1993)

Theorem 3: Policy convergence

The "greedy" policy, $\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q(s, a)$, converges to the optimal π^* in a finite number of iterations, often before the value function has converged! (Bertsekas, 1987)

Policy Iteration

- While not converged, do:
- \rightarrow Solve the Bellman equations defined by policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, \pi(s)) V^{\pi}(s')$$

• Update π

$$\pi(s) \leftarrow \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s')$$

• Return π

Policy Iteration Theory

- In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies

Which of the following is an upper bound on the number of possible policies?

S + A	
S A	
$ S ^{ A }$	

Policy Iteration Theory

- In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies
- Thus, the number of iterations needed to converge is bounded!
- Value iteration takes $O(|\mathcal{S}|^2|\mathcal{A}|)$ time / iteration
- Policy iteration takes $O(|\mathcal{S}|^2|\mathcal{A}| + |\mathcal{S}|^3)$ time / iteration
 - However, empirically policy iteration requires fewer iterations to converge

Two big Q's

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?

Key Takeaways

- If the reward and transition functions are known, we can solve for the optimal policy (and value function) using value or policy iteration
 - Both algorithms are instances of fixed point iteration and are guaranteed to converge (under some assumptions)