10-301/601: Introduction to Machine Learning Lecture 25: Value and Policy Iteration

Henry Chai

7/25/23

Front Matter

- Announcements
	- · PA6 released 7/20, due 7,
		- · Please be mindful of y
			- (see the course syllab
	- Wellness day on 7/31 (ne
- · Recommended Readings
	- Mitchell, Chapter 13

Recall: Bellman Equations

•
$$
V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}
$$

executing policy π forever]

$$
= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

\nRecall:
\n
$$
= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

\nEquations
\n
$$
= R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \cdots | s_1]) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \cdots | s_1])
$$

\n
$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) V^{\pi}(s_1)
$$

\nBellman equations

Optimality

• Optimal value function:

$$
\mathcal{P} V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')
$$

\n• System of $|\mathcal{S}|$ equations and $|\mathcal{S}|$ variables

• Optimal policy:

Fixed Point Iteration

- Iterative method for solving a system of equations
- **· Given some equations and initial values**

$$
x_1 = f_1(x_1, ..., x_n)
$$

$$
\vdots
$$

\n
$$
x_n = f_n(x_1, ..., x_n)
$$

\n
$$
x_1^{(0)}, ..., x_n^{(0)}
$$

· While not converged, do

$$
x_1^{(t+1)} \leftarrow f_1\left(x_1^{(t)},\ldots,x_n^{(t)}\right)
$$

 $\ddot{\bullet}$

$$
x_n^{(t+1)} \leftarrow f_n\left(x_1^{(t)}, \ldots, x_n^{(t)}\right)
$$

Value Iteration

\n- 1nputs:
$$
R(s, a)
$$
, $p(s' | s, a)$
\n- 1nitalize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
\n- 130. While not converged, do:\n
	\n- For $s \in S$
	\n- $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V^{(t)}(s')$
	\n- For $s \in S$
	\n- \uparrow
	\n\n
\n- For $s \in S$
\n- $\pi^*(s) \leftarrow \operatorname{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' | s, a) V^{(t)}(s')$
\n- Return π^*
\n

Lecture 25 Polls

0 done

 \bigcap 0 underway

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

What is the runtime of one iteration of value iteration?

Synchronous **Value Iteration**

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$ \cdot Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
- · While not converged, do:
	- \cdot For $s \in \mathcal{S}$
		- \cdot For $a \in \mathcal{A}$

$$
\Rightarrow Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{(t)}(s')
$$

\n• $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$
\n• For $s \in S$
\n $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{(t)}(s')$
\n• Return π^*

Asynchronous **Value Iteration**

- \cdot Inputs: $R(s, a)$, $p(s' | s, a)$ \cdot Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) s_3
- While not converged, do:
	- \cdot For $s \in \mathcal{S}$

• Return π^*

 \cdot For $a \in \mathcal{A}$

$$
Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s')
$$

• $V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

 \cdot For $s \in \mathcal{S}$ $\pi^*(s) \leftarrow \argmax$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a) V(s')$

Value Iteration Theory

Theorem 1: Value function convergence

V will converge to V^* if each state is "visited"

infinitely often (Bertsekas, 1989)

Theorem 2: Convergence criterion

if $\max_{s \in S}$ $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^{(t)}(s)| \leq \epsilon,$ then $\max_{s \in S}$ $s \in \mathcal{S}$ $|V^{(t+1)}(s) - V^*(s)| < \frac{2\epsilon\gamma}{1-\gamma}$ (Williams & Baird, 1993) **Theorem 3: Policy convergence** The "greedy" policy, $\pi(s) = \argmax_{s \in \mathcal{S}} Q(s, a)$, converges to the $a \in \mathcal{A}$ optimal π^* in a finite number of iterations, often before the value function has converged! (Bertsekas, 1987)

Policy Iteration

- While not converged, do:
- \rightarrow Solve the Bellman equations defined by policy π $V^{\pi}(s) = R(s, \pi(s)) + \gamma$ $s' \in \mathcal{S}$ $p\big(s'\mid s, \pi(s)\big)V^{\pi}(s')$
	- \cdot Update π

 $\pi(s) \leftarrow \argmax$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a) V^{\pi}(s')$

• Return π

Policy Iteration Theory

- In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies

Which of the following is an upper bound on the number of possible policies?

Policy Iteration **Theory**

- In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies
- Thus, the number of iterations needed to converge is bounded!
- Value iteration takes $O(|\mathcal{S}|^2|\mathcal{A}|)$ time / iteration
- Policy iteration takes $O(|S|^2|\mathcal{A}| + |S|^3)$ time / iteration
	- However, empirically policy iteration requires fewer

iterations to converge

Two big Q's

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?

Key Takeaways

• If the reward and transition functions are known, we can solve for the optimal policy (and value function) using value or policy iteration

• Both algorithms are instances of fixed point iteration and are guaranteed to converge (under some assumptions)