
10-301/601:	Introduction	
to	Machine	Learning
Lecture	25:	Value	and	
Policy	Iteration
Henry	Chai

7/25/23

Front	Matter

� Announcements

� PA6	released	7/20,	due	7/27	at	11:59	PM	

� Please	be	mindful	of	your	grace	day	usage	
(see	the	course	syllabus	for	the	policy)

�Wellness	day	on	7/31	(next	Monday):	no	lecture	or	OH

� Recommended	Readings

�Mitchell,	Chapter	13

Henry	Chai	-	7/25/23 2

https://www.cs.cmu.edu/~hchai2/courses/10601/

Recall:	
Bellman
Equations

� 𝑉! 𝑠 = 𝔼[discounted	total	reward	of	starting	in	state	𝑠	and							

																									executing	policy	𝜋	forever]

� = 𝔼[𝑅 𝑠", 𝜋 𝑠" + 𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾$𝑅 𝑠$, 𝜋 𝑠$ + ⋯ 𝑠" = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠$, 𝜋 𝑠$ + … | 𝑠" = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ∑%!∈ 𝒮 𝑝 𝑠# | 𝑠, 𝜋 𝑠 2

3

𝑅 𝑠#, 𝜋 𝑠# +

 +𝛾𝔼 𝑅 𝑠$, 𝜋 𝑠$ + ⋯ 𝑠#]

𝑉! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
%!∈ 𝒮

𝑝 𝑠# | 𝑠, 𝜋 𝑠 𝑉! 𝑠#

3Bellman	equationsHenry	Chai	-	7/25/23

Optimality

� Optimal	value	function:

𝑉∗ 𝑠 = max
* ∈ 𝒜

 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉∗ 𝑠,

� System	of 𝒮 	equations	and	 𝒮 	variables

� Optimal	policy:

𝜋∗ 𝑠 = argmax
* ∈ 𝒜

 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉∗ 𝑠,

4

Immediate
reward

(Discounted)
Future reward

Henry	Chai	-	7/25/23

Fixed	
Point	
Iteration

� Iterative	method	for	solving	a	system	of	equations

� Given	some	equations	and	initial	values
𝑥# = 𝑓# 𝑥#, … , 𝑥-

⋮
𝑥- = 𝑓- 𝑥#, … , 𝑥-

𝑥#
" , … , 𝑥-

"

�While	not	converged,	do

𝑥#
./# ← 𝑓# 𝑥#

. , … , 𝑥-
.

⋮

𝑥-
./# ← 𝑓- 𝑥#

. , … , 𝑥-
.

5Henry	Chai	-	7/25/23

Fixed	Point	Iteration:
Example

𝑥# = 𝑥#𝑥$ +
1
2

𝑥$ = −
3𝑥#

2
𝑥#

" = 𝑥$
" = 0

F𝑥# =
1
3 , F𝑥$ = −

1
2

Henry	Chai	-	7/25/23 6

𝑡 𝑥!
" 𝑥#

"

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080

Value	Iteration

� Inputs:	𝑅 𝑠, 𝑎 ,	𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize	𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮	(or	randomly)	and	set	𝑡 = 0
�While	not	converged,	do:

� For	𝑠 ∈ 𝒮	

 𝑉 ./# 𝑠 ← max
* ∈ 𝒜

 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉 . 𝑠,

� 𝑡 = 𝑡 + 1

� For	𝑠 ∈ 𝒮	
 𝜋∗ 𝑠 ← argmax

* ∈ 𝒜
 𝑅 𝑠, 𝑎 + 𝛾 5

%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉 . 𝑠,

� Return	𝜋∗

7

𝑄 𝑠, 𝑎

Henry	Chai	-	7/25/23

Synchronous
Value	Iteration

10

� Inputs:	𝑅 𝑠, 𝑎 ,	𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize	𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮	(or	randomly)	and	set	𝑡 = 0
�While	not	converged,	do:

� For	𝑠 ∈ 𝒮	
� For 𝑎 ∈ 𝒜

 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉 . 𝑠,

� 𝑉 ./# 𝑠 ← max
* ∈ 𝒜

 𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For	𝑠 ∈ 𝒮	
 𝜋∗ 𝑠 ← argmax

* ∈ 𝒜
 𝑅 𝑠, 𝑎 + 𝛾 5

%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉 . 𝑠,

� Return	𝜋∗
Henry	Chai	-	7/25/23

Asynchronous
Value	Iteration

11

� Inputs:	𝑅 𝑠, 𝑎 ,	𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize	𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮	(or	randomly)

�While	not	converged,	do:
� For	𝑠 ∈ 𝒮	

� For 𝑎 ∈ 𝒜

 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉 𝑠,

� 𝑉 𝑠 ← max
* ∈ 𝒜

 𝑄 𝑠, 𝑎

� For	𝑠 ∈ 𝒮	
 𝜋∗ 𝑠 ← argmax

* ∈ 𝒜
 𝑅 𝑠, 𝑎 + 𝛾 5

%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉 𝑠,

� Return	𝜋∗
Henry	Chai	-	7/25/23

12

� Theorem	1:	Value	function	convergence

𝑉	will	converge	to	𝑉∗	if	each	state	is	“visited”	

infinitely	often	(Bertsekas,	1989)

� Theorem	2:	Convergence	criterion	

if	max
% ∈ 𝒮

𝑉 ./# 𝑠 − 𝑉 . 𝑠 < 𝜖,	

then	max
% ∈ 𝒮

𝑉 ./# 𝑠 − 𝑉∗ 𝑠 < $23
#43	(Williams	&	Baird,	1993)	

� Theorem	3:	Policy	convergence

The	“greedy”	policy,	𝜋 𝑠 = argmax
* ∈ 𝒜

 𝑄 𝑠, 𝑎 ,	converges	to	the	

optimal	𝜋∗	in	a	finite	number	of	iterations,	often	before	

the	value	function	has	converged!	(Bertsekas,	1987)	

Value	Iteration
Theory

Henry	Chai	-	7/25/23

� Inputs:	𝑅 𝑠, 𝑎 ,	𝑝(𝑠’ | 𝑠, 𝑎)
� Initialize	𝜋	randomly	

�While	not	converged,	do:
� Solve	the	Bellman	equations	defined	by	policy	𝜋

 V! s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝜋 𝑠 𝑉! 𝑠,

�Update	𝜋

 − 𝜋 𝑠 ← argmax
* ∈ 𝒜

 𝑅 𝑠, 𝑎 + 𝛾 5
%"∈ 𝒮

𝑝 𝑠, | 𝑠, 𝑎 𝑉! 𝑠,

� Return	𝜋

13

Policy	Iteration

Henry	Chai	-	7/25/23

� In	policy	iteration,	the	policy	improves	in	each	iteration.	

� Given	finite	state	and	action	spaces,	there	are	finitely	
many	possible	policies

� Thus,	the	number	of	iterations	needed	to	converge	is	

bounded!

� Value	iteration	takes	𝑂 𝒮 $ 𝒜 	time	/	iteration

� Policy	iteration	takes	𝑂 𝒮 $ 𝒜 + 𝒮 5 	time	/	iteration

� However,	empirically	policy	iteration	requires	fewer	

iterations	to	converge

14

Policy	Iteration
Theory

Henry	Chai	-	7/25/23

� In	policy	iteration,	the	policy	improves	in	each	iteration.	

� Given	finite	state	and	action	spaces,	there	are	finitely	
many	possible	policies

� Thus,	the	number	of	iterations	needed	to	converge	is	

bounded!

� Value	iteration	takes	𝑂 𝒮 $ 𝒜 	time	/	iteration

� Policy	iteration	takes	𝑂 𝒮 $ 𝒜 + 𝒮 5 	time	/	iteration

� However,	empirically	policy	iteration	requires	fewer	

iterations	to	converge

16

Policy	Iteration
Theory

Henry	Chai	-	7/25/23

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

17Henry	Chai	-	7/25/23

Key	Takeaways

� If	the	reward	and	transition	functions	are	known,	we	can	

solve	for	the	optimal	policy	(and	value	function)	using	
value	or	policy	iteration

� Both	algorithms	are	instances	of	fixed	point	iteration	

and	are	guaranteed	to	converge	(under	some	
assumptions)

Henry	Chai	-	7/25/23 18

