
10-301/601: Introduction
to Machine Learning
Lecture 26: Q-learning
and Deep RL
Henry Chai

7/26/23

Front Matter

Henry Chai - 7/26/22 2

� Announcements

� PA6 released 7/20, due 7/27 (tomorrow!) at 11:59 PM

� Please be mindful of your grace day usage
(see the course syllabus for the policy)

� PA7 released 7/27 (tomorrow!), due 8/3 at 11:59 PM

� This is the last programming assignment!

� Final on 8/11, two weeks from Friday

� Practice problems for the Final will be posted to the
course website on Friday, under Recitations

� Wellness day on 7/31 (next Monday): no lecture or OH

� Recommended Readings

� Mitchell, Chapter 13

https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

3Henry Chai - 7/26/22

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎), 𝛾
� Initialize 𝑉 " 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 𝑉 𝑠'

� 𝑉 𝑠 ← max
(∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮

	 𝜋∗ 𝑠 ← argmax
(∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 𝑉 𝑠'

� Return 𝜋∗

Recall: Value
Iteration

4Henry Chai - 7/26/22

𝑄∗(𝑠, 𝑎) w/
deterministic
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
 state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 𝑉∗ 𝑠'

𝑉∗ 𝑠' = max
(!	∈	𝒜

	𝑄∗ 𝑠', 𝑎'

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 	 max
(!	∈	𝒜

	𝑄∗ 𝑠', 𝑎'

𝜋∗ 𝑠 = argmax
(∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

5Henry Chai - 7/26/22

𝑄∗(𝑠, 𝑎) w/
deterministic
rewards and
transitions

6Henry Chai - 7/26/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in
 state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
(!	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎'

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 	 max
(!	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎' 	

𝜋∗ 𝑠 = argmax
(∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic
rewards and
transitions

Algorithm 1:
Online learning
(table form)

7

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 :

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎'

Henry Chai - 7/26/22

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic
rewards and
transitions

Algorithm 2:
𝜖-greedy online
learning (table
form)

8

� Inputs: discount factor 𝛾, an initial state 𝑠,
 greediness parameter 𝜖 ∈ 0, 1

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
(!	∈	𝒜

	𝑄 𝑠, 𝑎'

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 :

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎'

Henry Chai - 7/26/22

9

� Inputs: discount factor 𝛾, an initial state 𝑠,
 greediness parameter 𝜖 ∈ 0, 1 ,
 learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
(!	∈	𝒜

	𝑄 𝑠, 𝑎'

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' ∼ 𝑝 𝑠'	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎'

Current
value

Update w/
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

Henry Chai - 7/26/22

10

� Inputs: discount factor 𝛾, an initial state 𝑠,
 greediness parameter 𝜖 ∈ 0, 1 ,
 learning rate 𝛼 ∈ 0, 1 (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜 array)

� While TRUE, do
� With probability 𝜖, take the greedy action

𝑎 = argmax
(!	∈	𝒜

	𝑄 𝑠, 𝑎'

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' ∼ 𝑝 𝑠'	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 :

 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎' − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic
rewards

Algorithm 3:
𝜖-greedy online
learning (table
form)

Current
value

Temporal difference
target

Temporal
difference

Henry Chai - 7/26/22

11

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):
Example

Henry Chai - 7/26/22

12

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

Henry Chai - 7/26/22

13

Which set of
blue arrows
(roughly)
corresponds to
𝑄∗(𝑠, 𝑎)?

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 shown in green

Henry Chai - 7/26/22

14

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Henry Chai - 7/26/22

15

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 0Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Henry Chai - 7/26/22

16

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Henry Chai - 7/26/22

17

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
(!∈ →,←,↑,↻

𝑄 5, 𝑎' = 3Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Henry Chai - 7/26/22

18

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Henry Chai - 7/26/22

19

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7Learning
𝑄∗(𝑠, 𝑎):
Example

𝑅 𝑠, 𝑎 represented by
𝛾 = 0.9

Henry Chai - 7/26/22

Learning
𝑄∗(𝑠, 𝑎):
Convergence

20

� For Algorithms 1 & 2 (deterministic transitions),
𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

Henry Chai - 7/26/22

Learning
𝑄∗(𝑠, 𝑎):
Convergence

21

� For Algorithm 3 (temporal difference learning),

𝑄 converges to 𝑄∗ if

1. Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation

strategy that satisfies this property will work!

2. 0 ≤ 𝛾 < 1

3. ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. Initial 𝑄 values are finite

5. Learning rate 𝛼> follows some “schedule” s.t.
∑>?"@ 𝛼> = ∞ and ∑>?"@ 𝛼>A < ∞ e.g., 𝛼> = ⁄B >CB

Henry Chai - 7/26/22

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

22Henry Chai - 7/26/22

Playing Go

23

AlphaGo (Black) vs. Lee Sedol (White)
Game 2 final position (AlphaGo wins)

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
Henry Chai - 7/26/22

� 19-by-19 board
� Players alternate

placing black and
white stones

� The goal is claim
more territory
than the opponent

� There are ~10170

legal Go board
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

• Throw a neural network at it!

25Henry Chai - 7/26/22

Deep
Q-learning

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to approximate
𝑄∗ 𝑠, 𝑎

� Learn the parameters using SGD

� Training data 𝒔>, 𝑎>, 𝑟>, 𝒔>CB gathered online by

the agent/learning algorithm

26Henry Chai - 7/26/22

� Represent states using some feature vector 𝒔> ∈ ℝD
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a neural network

Deep
Q-learning:
Model

27

𝒔>

𝑎>
Θ 𝑄 𝒔>, 𝑎>; Θ

𝒔> Θ

𝑄 𝒔>, 𝑎B; Θ
𝑄 𝒔>, 𝑎A; Θ

𝑄 𝒔>, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

Henry Chai - 7/26/22

� “True” loss

ℓ Θ = 6
#	∈	𝒮

6
(∈	𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
A

1. Use stochastic gradient descent: just consider one
state-action pair in each iteration

2. Use temporal difference learning:
� Given current parameters Θ F the temporal

difference target is
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

(!	
𝑄 𝑠', 𝑎'; Θ > ≔ 𝑦

� Set the parameters in the next iteration Θ FCB such
that 𝑄 𝑠, 𝑎; Θ FCB ≈ 𝑦

ℓ Θ F , Θ >CB = 𝑦 − 𝑄 𝑠, 𝑎; Θ FCB
A

1. 𝒮 too big to compute this sum

Deep
Q-learning:
Loss Function

28

2. Don’t know 𝑄∗

Henry Chai - 7/26/22

Deep
Q-learning

Algorithm 4:
Online learning
(parametric
form)

29

� Inputs: discount factor 𝛾, an initial state 𝑠",

 learning rate 𝛼

� Initialize parameters Θ "

� For 𝑡 = 0, 1, 2,	 …
� Gather training sample 𝒔>, 𝒂>, 𝑟>, 𝒔>CB
� Update Θ > by taking a step opposite the gradient

Θ >CB ← Θ > − 𝛼∇G "#$ ℓ Θ > , Θ >CB

where
∇G "#$ ℓ Θ > , Θ >CB

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ >CB ∇G "#$ 𝑄 𝑠, 𝑎; Θ >CB

Henry Chai - 7/26/22

Deep
Q-learning:
Experience
Replay

30

� SGD assumes i.i.d. training samples but in RL, samples are
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, …	, 𝑒𝑁} of the 𝑁
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂>, 𝑟>, 𝒔>CB (Lin, 1992)

� Also keeps the agent from “forgetting” about recent
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some
distribution that prioritizes experiences with high error
(Schaul et al., 2016)

Henry Chai - 7/26/22

Key Takeaways

� We can use (deep) Q-learning when the reward/transition
functions are unknown and/or when the state/action
spaces are too large to be modelled directly

� Also guaranteed to converge under certain assumptions

� Experience replay can help address non-i.i.d. samples

Henry Chai - 7/26/22 31

