10-301/601: Introduction to Machine Learning Lecture 26: Q-learning and Deep RL

Henry Chai

7/26/23

Front Matter

- Announcements
 - PA6 released 7/20, due 7/27 (tomorrow!) at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)
 - PA7 released 7/27 (tomorrow!), due 8/3 at 11:59 PM
 - This is the last programming assignment!
 - Final on 8/11, two weeks from Friday
 - Practice problems for the Final will be posted to the course website on Friday, under <u>Recitations</u>
 - Wellness day on 7/31 (next Monday): no lecture or OH
- Recommended Readings
 - Mitchell, Chapter 13

Two big Q's

 What can we do if the reward and/or transition functions/distributions are unknown?

 How can we handle infinite (or just very large) state/action spaces? Recall: Value Iteration

- Inputs: R(s, a), p(s' | s, a), γ
 Initialize V⁽⁰⁾(s) = 0 ∀ s ∈ S (or randomly) and set t = 0
- While not converged, do:
 - For $s \in S$

• Return π^*

• For $a \in \mathcal{A}$

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s, a)V(s')$$

• $V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s,a)$
• For $s \in S$
 $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a)V(s')$

Q*(s, a) w/ deterministic rewards

• $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}]$

$$= R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V^*(s')$$

$$V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s',a')$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) \left[\max_{a' \in \mathcal{A}} Q^*(s',a')\right]$$

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s,a)$$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Q*(s, a) w/ deterministic rewards and transitions • $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal]}$

 $= R(s,a) + \gamma V^*(\delta(s,a))$

• $V^*(\delta(s,a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$ $Q^*(s,a) = R(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$

 $\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: Online learning (table form) • Inputs: discount factor γ , an initial state s

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - Take a random action *a*

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update *Q*(*s*, *a*):

 $Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update Q(s, a):

 $Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$

value

• Update Q(s, a):

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$$

Current Update w/

deterministic transitions

9

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

• Receive reward r = R(s, a)

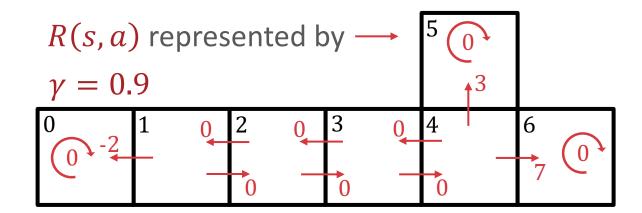
value

Update the state: s ← s' where s' ~ p(s' | s, a) Temporal
Update Q(s, a): difference

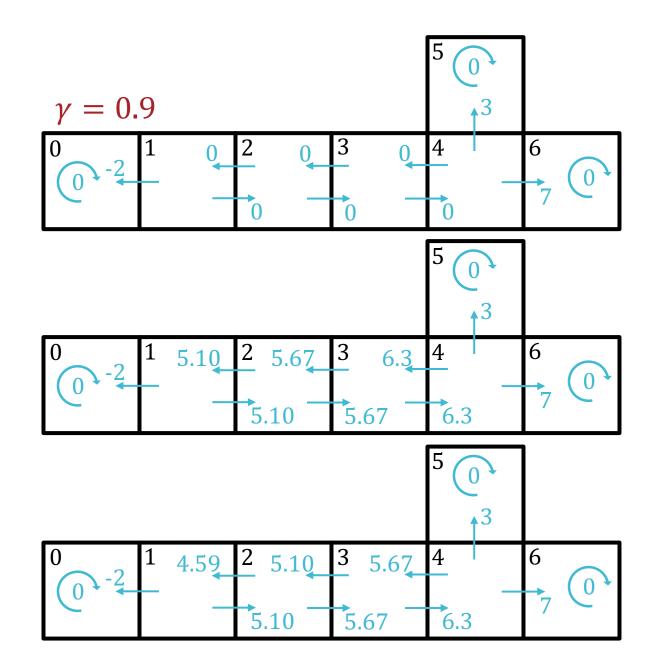
$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Current Temporal difference

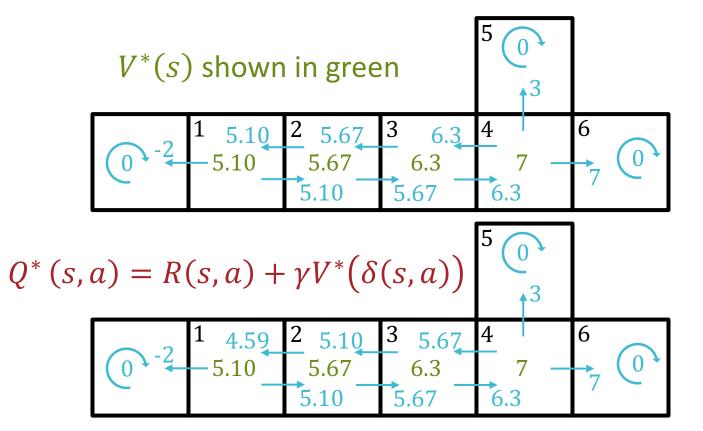
target

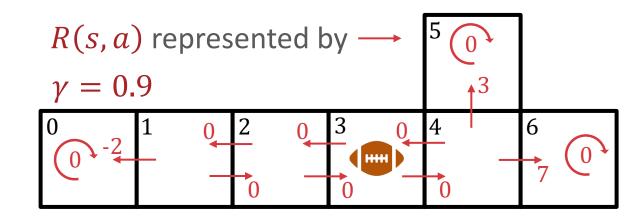


Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?

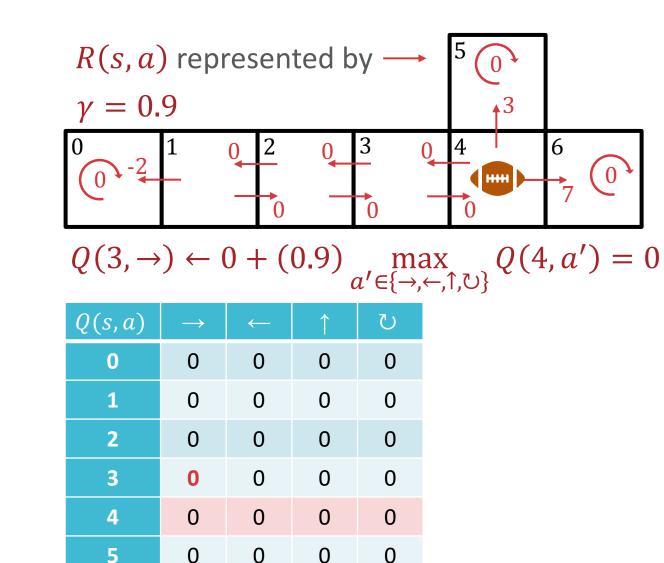


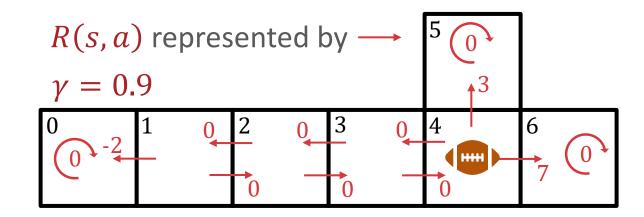
Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?



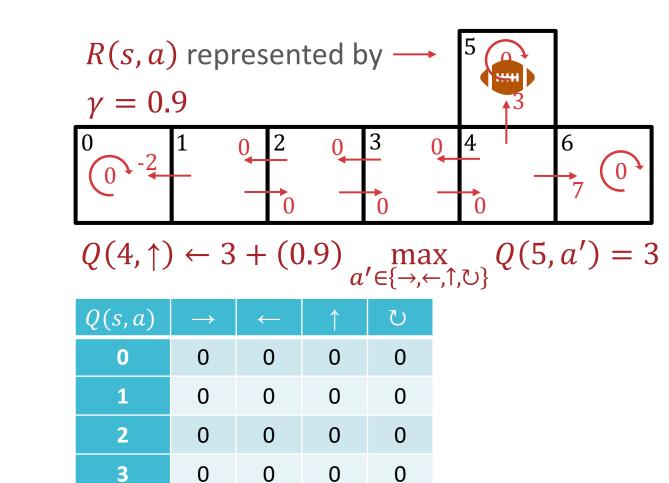


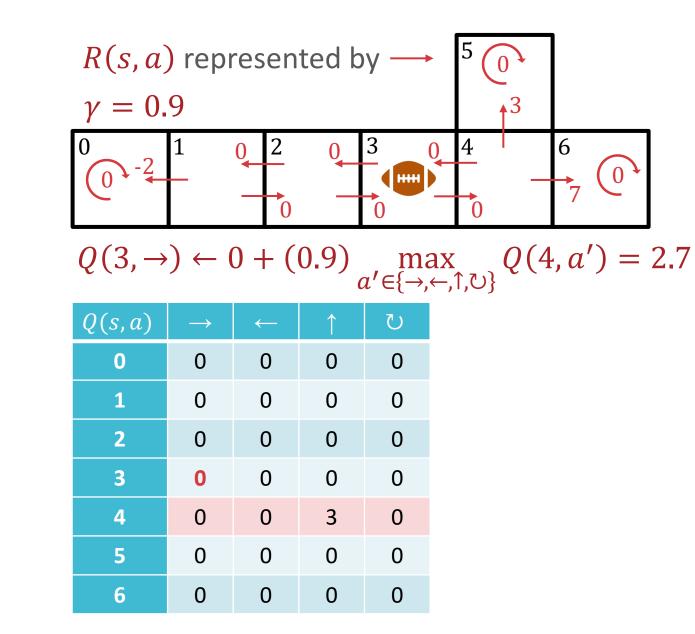
Q(s,a)	\rightarrow	\leftarrow	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0

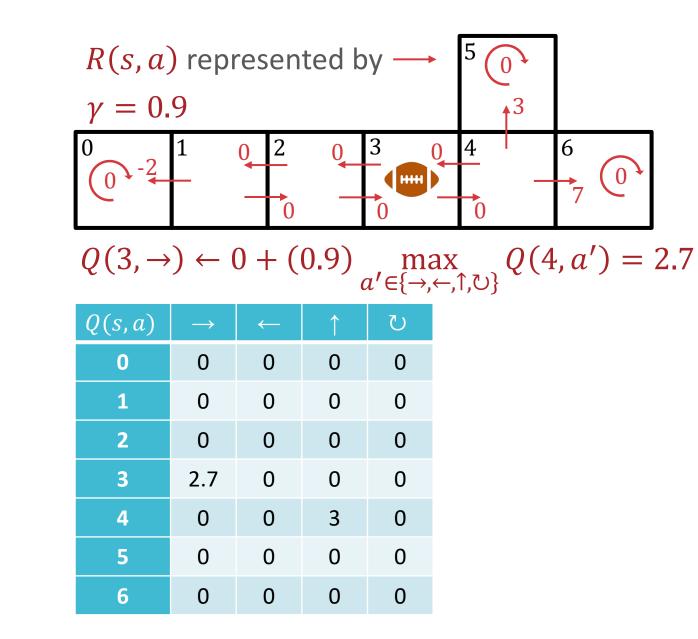




Q(s,a)	\rightarrow	\leftarrow	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0







Learning Q*(s, a): Convergence • For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- $2. \ 0 \le \gamma < 1$
- **3.** $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
- 4. Initial *Q* values are finite

Learning Q*(s, a): Convergence • For Algorithm 3 (temporal difference learning), Q converges to Q^* if

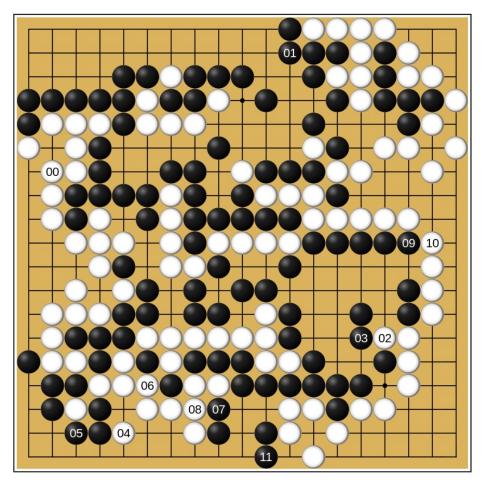
- 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- $2. \ 0 \le \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
- 4. Initial *Q* values are finite
- 5. Learning rate α_t follows some "schedule" s.t.

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{t+1}$

Two big Q's

- What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- How can we handle infinite (or just very large) state/action spaces?

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- There are ~10¹⁷⁰ legal Go board states!

Henry Chai - 7/26/22

When poll is active, respond at **pollev.com/301601polls**

Which of the following is the closest approximation to the number of legal board states in a game of Go?

The number of stars in the universe $\, \sim 10^{24}$

The number of atoms in the universe $\, \sim 10^{80}$

A googol
$$= 10^{100}$$

The number of possible ${<\!em\!>}{\rm games}{<\!/em\!>}{\rm of \,chess}~\sim 10^{120}$

A googolplex
$$= 10^{\text{googol}}$$

Two big Q's

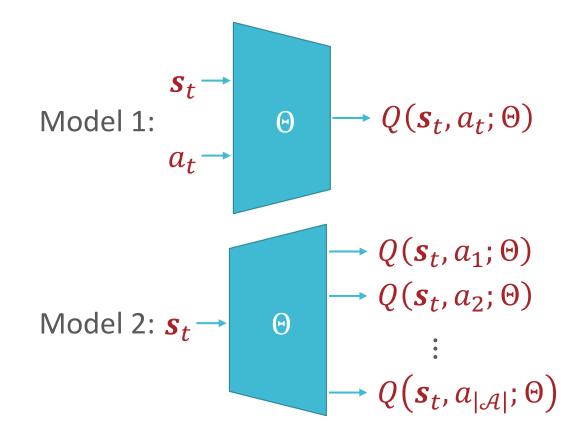
- What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- How can we handle infinite (or just very large) state/action spaces?
 - Throw a neural network at it!

Deep Q-learning

- Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s, a)$
 - Learn the parameters using SGD
 - Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a neural network



Deep Q-learning: Loss Function

• "True" loss $\ell(\Theta) = \sum_{s \in S} \sum_{a \in A} \left(Q^*(s, a) - Q(s, a; \Theta) \right)^2$

- 1. S too big to compute this sum
- 1. Use stochastic gradient descent: just consider one state-action pair in each iteration
- 2. Use temporal difference learning:
 - Given current parameters Θ^(t) the temporal difference target is

 $Q^*(s,a) \approx r + \gamma \max_{a'} Q\left(s',a';\Theta^{(t)}\right) \coloneqq y$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx y$

$$\ell(\Theta^{(t)},\Theta^{(t+1)}) = \left(y - Q(s,a;\Theta^{(t+1)})\right)^2$$

Deep Q-learning

Algorithm 4: Online learning (parametric form) • Inputs: discount factor γ , an initial state s_0 ,

learning rate α

• Initialize parameters $\Theta^{(0)}$

• For t = 0, 1, 2, ...

- Gather training sample (s_t, a_t, r_t, s_{t+1})
- Update $\Theta^{(t)}$ by taking a step opposite the gradient $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})$

where

 $\begin{aligned} \nabla_{\Theta^{(t+1)}} \ell \big(\Theta^{(t)}, \Theta^{(t+1)} \big) \\ &= 2 \left(y - Q \big(s, a; \Theta^{(t+1)} \big) \right) \nabla_{\Theta^{(t+1)}} Q \big(s, a; \Theta^{(t+1)} \big) \end{aligned}$

Deep Q-learning: Experience Replay • SGD assumes i.i.d. training samples but in RL, samples are highly correlated

• Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, \dots, e_N\}$ of the N most recent experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ (Lin, 1992)

 Also keeps the agent from "forgetting" about recent experiences

- Alternate between:
 - 1. Sampling some e_i uniformly at random from \mathcal{D} and applying a Q-learning update (repeat T times)
 - 2. Adding a new experience to \mathcal{D}
- Can also sample experiences from D according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

Key Takeaways

- We can use (deep) Q-learning when the reward/transition functions are unknown and/or when the state/action spaces are too large to be modelled directly
 - Also guaranteed to converge under certain assumptions
 - Experience replay can help address non-i.i.d. samples