10-301/601: Introduction to Machine Learning Lecture 26: Q-learning and Deep RL

Henry Chai

7/26/23

Front Matter

- Announcements
	- · PA6 released 7/20, due 7,
		- Please be mindful of y

(see the course syllab

- · PA7 released 7/27 (tomor
	- · This is the last progral
- · Final on 8/11, two weeks
	- Practice problems for
		- course website on Frid
- Wellness day on 7/31 (ne
- **· Recommended Readings**
- Henry Chai 7/26/22 **22 22**

Two big Q's

1. What can we do if the reward and/or transition functions/distributions are unknown?

2. How can we handle infinite (or just very large) state/action spaces?

Recall: Value Iteration

- Inputs: $R(s, a)$, $p(s' | s, a)$, γ
- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set $t = 0$
- While not converged, do:
	- \cdot For $s \in \mathcal{S}$

• Return π^*

 \cdot For $a \in \mathcal{A}$

 $Q(s, a) = R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s'\mid s, a)V(s')$ $\cdot V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

 \cdot For $s \in \mathcal{S}$ $\pi^*(s) \leftarrow \argmax$ $a \in \mathcal{A}$ $R(s, a) + \gamma$ $s' \in \mathcal{S}$ $p(s' \mid s, a) V(s')$

$Q^*(s, a)$ w/ deterministic rewards

• $Q^*(s, a) =$ E[total discounted reward of taking action a in state s, assuming all future actions are optimal]

$$
= R(s, a) + \gamma \sum_{S' \in S} p(s' \mid s, a) V^*(s')
$$

\n
$$
V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s', a')
$$

\n
$$
Q^*(s, a) \neq R(s, a) + \gamma \sum_{S' \in S} p(s' \mid s, a) \Big[\max_{a' \in \mathcal{A}} Q^*(s', a') \Big]
$$

\n
$$
\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)
$$

 \cdot Insight: if we know Q^* , we can compute an optimal policy $\pi^*!$

 $Q^*(s, a)$ w/ deterministic rewards and transitions

• $Q^*(s, a) =$ E [total discounted reward of taking action a in state s , assuming all future actions are optimal]

 $= R(s, a) + \gamma V^* (\delta(s, a))$

 $\cdot V^*\big(\delta(s, a)\big) = \max_{a' \in \mathcal{A}} Q^*(\delta(s, a), a')$

 $Q^*(s, a) = R(s, a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s, a), a')$

 $\pi^*(s) = \arg\!\max_{\pi} \, Q^*(s,a)$ $a \in A$

• Insight: if we know Q^* , we can compute an optimal policy $\pi^*!$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: **Online learning** (table form)

 \cdot Inputs: discount factor γ , an initial state s

 \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |A|$ array)

 \cdot While TRUE, do \leftarrow \star Take a random action $a \leftarrow$

> • Receive reward $\hat{r} = R(s, a)$ • Update the state: $s \leftarrow s'$ where $(s') = \delta(s, a)$ • Update $Q(s, a)$: $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ -greedy online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$

 \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |A|$ array)

• While TRUE, do

 \cdot With probability ϵ , take the greedy action

 $a = \argmax_{s} Q(s, a')$ $a' \in A$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update $Q(s, a)$:

 $Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a')$

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$,

learning rate $\alpha \in [0, 1]$ ("trust parameter")

 \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |A|$ array)

- While TRUE, do
	- With probability ϵ , take the greedy action

 $a = \argmax_{a} Q(s, a')$ $a^{\prime} \in A$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward $r = R(s, a)$
- \cdot Update the state: $s \leftarrow s'$ where $s' \sim p(s' | s, a)$

• Update $Q(s, a)$: $Q(s, a) \leftarrow (1 - \alpha) Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a')\right)$ Current value Update w/ deterministic transitions

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form)

 \cdot Inputs: discount factor γ , an initial state s , greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")

 \cdot Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A}$ (Q is a $|S| \times |A|$ array)

- While TRUE, do
	- With probability ϵ , take the greedy action

 $a = \argmax_{a} Q(s, a')$ $a^V \in \mathcal{A}$

Otherwise, with probability $1 - \epsilon$, take a random action a

• Receive reward $r = R(s, a)$

• Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$ Temporal \cdot Update $Q(s, a)$: difference

target

$$
Q(s, a) \leftarrow Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a') - Q(s, a') \right)
$$

Current Temporal difference

value

Learning $Q^*(s, a)$: Example

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

Which set of blue arrows (roughly) corresponds to $Q^*(s, a)$?

Learning $Q^*(s, a)$: Example

 Ω

Learning $Q^*(s, a)$: Example

Learning $Q^*(s, a)$: **Convergence** • For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
	- Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- 2. $0 \leq \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in \mathcal{S}, a \in \mathcal{A}$
- 4. Initial Q values are finite

Learning $Q^*(s, a)$: **Convergence** • For Algorithm 3 (temporal difference learning), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
	- Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- 2. $0 \leq \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in \mathcal{S}, a \in \mathcal{A}$
- 4. Initial Q values are finite
- 5. Learning rate α_t follows some "schedule" s.t.

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{t+1}$

Two big Q's

- 1. What can we do if the reward and/or transition functions/distributions are unknown?
	- Use online learning to gather data and learn $Q^*(s, a)$
- 2. How can we handle infinite (or just very large) state/action spaces?

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)

Playing Go

- 19-by-19 board
- · Players alternate placing black and white stones
- The goal is claim more territory than the opponent

[●] When poll is active, respond at polley.com/301601polls

Which of the following is the closest approximation to the number of legal board states in a game of Go?

The number of stars in the universe $\sim 10^{24}$

The number of atoms in the universe $\sim 10^{80}$

$$
\rm A~googol ~ = 10^{100}
$$

The number of possible $\langle em \rangle$ games $\langle /em \rangle$ of chess $\sim 10^{120}$

$$
\rm A\;googolplex\;=10^{googol}
$$

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)

Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- There are $^{\sim}10^{170}$ legal Go board states!

Two big Q's

- 1. What can we do if the reward and/or transition functions/distributions are unknown?
	- Use online learning to gather data and learn $Q^*(s, a)$
- 2. How can we handle infinite (or just very large) state/action spaces?
	- Throw a neural network at it!

Deep Q-learning

- Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s,a)$
	- Learn the parameters using SGD
	- Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a neural network

Deep Q-learning: Loss Function • "True" loss $\ell(\Theta) = \sum_{\alpha}$ $s \in \mathcal{S}$ $\sum_{i=1}^{n}$ $a \in \mathcal{A}$ $Q^*(s, a) - Q(s, a; \Theta)\big)^2$ 2. Don't know Q^*

- 1. S too big to compute this sum
- 1. Use stochastic gradient descent: just consider one state-action pair in each iteration
- 2. Use temporal difference learning:
	- Given current parameters $\Theta^{(t)}$ the temporal difference target is

 $Q^*(s, a) \approx r + \gamma \max_{a'} Q(s', a'; \Theta^{(t)}) := \left(y \right)$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx \gamma$

$$
\ell(\Theta^{(t)}, \Theta^{(t+1)}) = \left(y - Q(s, a; \Theta^{(t+1)})\right)^2
$$

Deep Q-learning

Algorithm 4: **Online learning** (parametric form)

• Inputs: discount factor γ , an initial state s_0 ,

learning rate α

• Initialize parameters $\Theta^{(0)}$

• For $t = 0, 1, 2, ...$

- Gather training sample (s_t, a_t, r_t, s_{t+1})
- Update $\Theta^{(t)}$ by taking a step opposite the gradient $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})$

where

$$
\nabla_{\Theta^{(t+1)}} \ell(\Theta^{(t)}, \Theta^{(t+1)})
$$
\n
$$
= 2\left(y - Q(s, a; \Theta^{(t+1)})\right) \nabla_{\Theta^{(t+1)}} Q(s, a; \Theta^{(t+1)})
$$

Deep Q-learning: **Experience** Replay

- SGD assumes i.i.d. training samples but in RL, samples are \Rightarrow *highly* correlated
	- Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, ..., e_N\}$ of the N most recent experiences $e_t = (\mathbf{s}_t, \mathbf{a}_t, r_t, \mathbf{s}_{t+1})$ (Lin, 1992)
		- Also keeps the agent from "forgetting" about recent experiences
	- Alternate between:
		- 1. Sampling some e_i uniformly at random from D and applying a Q-learning update (repeat T times)
		- 2. Adding a new experience to $\mathcal D$
	- \cdot Can also sample experiences from D according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

Key Takeaways

• We can use (deep) Q-learning when the reward/transition functions are unknown and/or when the state/action spaces are too large to be modelled directly

- Also guaranteed to converge under certain assumptions
- Experience replay can help address non-i.i.d. samples