
10-301/601:	Introduction	
to	Machine	Learning
Lecture	26:	Q-learning	
and	Deep	RL
Henry	Chai

7/26/23

Front	Matter

Henry	Chai	-	7/26/22 2

� Announcements

� PA6	released	7/20,	due	7/27	(tomorrow!)	at	11:59	PM	

� Please	be	mindful	of	your	grace	day	usage	
(see	the	course	syllabus	for	the	policy)

� PA7	released	7/27	(tomorrow!),	due	8/3	at	11:59	PM

� This	is	the	last	programming	assignment!

� Final	on	8/11,	two	weeks	from	Friday

� Practice	problems	for	the	Final	will	be	posted	to	the	

course	website	on	Friday,	under	Recitations

�Wellness	day	on	7/31	(next	Monday):	no	lecture	or	OH

� Recommended	Readings

�Mitchell,	Chapter	13

https://www.cs.cmu.edu/~hchai2/courses/10601/
https://www.cs.cmu.edu/~hchai2/courses/10601/

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

3Henry	Chai	-	7/26/22

� Inputs:	𝑅 𝑠, 𝑎 ,	𝑝(𝑠’ | 𝑠, 𝑎),	𝛾
� Initialize	𝑉 " 𝑠 = 0 ∀ 𝑠 ∈ 𝒮	(or	randomly)	and	set	𝑡 = 0
�While	not	converged,	do:

� For	𝑠 ∈ 𝒮	
� For 𝑎 ∈ 𝒜

 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈ 𝒮

𝑝 𝑠' | 𝑠, 𝑎 𝑉 𝑠'

� 𝑉 𝑠 ← max
(∈ 𝒜

 𝑄 𝑠, 𝑎

� For	𝑠 ∈ 𝒮	
 𝜋∗ 𝑠 ← argmax

(∈ 𝒜
 𝑅 𝑠, 𝑎 + 𝛾 6

#!∈ 𝒮

𝑝 𝑠' | 𝑠, 𝑎 𝑉 𝑠'

� Return	𝜋∗

Recall:	Value	
Iteration

4Henry	Chai	-	7/26/22

𝑄∗(𝑠, 𝑎)	w/	
deterministic	
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total	discounted	reward	of	taking	action	𝑎	in	
														state	𝑠,	assuming	all	future	actions	are	optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈ 𝒮

𝑝 𝑠' | 𝑠, 𝑎 𝑉∗ 𝑠'

𝑉∗ 𝑠' = max
(! ∈ 𝒜

 𝑄∗ 𝑠', 𝑎'

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈ 𝒮

𝑝 𝑠' | 𝑠, 𝑎 max
(! ∈ 𝒜

 𝑄∗ 𝑠', 𝑎'

𝜋∗ 𝑠 = argmax
(∈ 𝒜

 𝑄∗ 𝑠, 𝑎

� Insight:	if	we	know	𝑄∗,	we	can	compute	an	optimal	policy	𝜋∗!

5Henry	Chai	-	7/26/22

𝑄∗(𝑠, 𝑎)	w/	
deterministic	
rewards	and	
transitions

6Henry	Chai	-	7/26/22

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total	discounted	reward	of	taking	action	𝑎	in	
														state	𝑠,	assuming	all	future	actions	are	optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
(! ∈ 𝒜

 𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎'

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 max
(! ∈ 𝒜

 𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎'

𝜋∗ 𝑠 = argmax
(∈ 𝒜

 𝑄∗ 𝑠, 𝑎

� Insight:	if	we	know	𝑄∗,	we	can	compute	an	optimal	policy	𝜋∗!

Learning
𝑄∗(𝑠, 𝑎)	w/
deterministic	
rewards	and	
transitions

Algorithm	1:	
Online	learning	
(table	form)	

7

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜	(𝑄	is	a	 𝒮 × 𝒜 	array)	

�While	TRUE,	do
� Take	a	random	action	𝑎

� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠'	where	𝑠' = 𝛿 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :	

	𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾 max
(!

𝑄 𝑠', 𝑎'

Henry	Chai	-	7/26/22

Learning
𝑄∗(𝑠, 𝑎)	w/
deterministic	
rewards	and	
transitions

Algorithm	2:	
𝜖-greedy	online	
learning	(table	
form)	

8

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
	 			greediness	parameter	𝜖 ∈ 0, 1
									

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜	(𝑄	is	a	 𝒮 × 𝒜 	array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
(! ∈ 𝒜

 𝑄 𝑠, 𝑎'

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠'	where	𝑠' = 𝛿 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :	

	𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾 max
(!

𝑄 𝑠', 𝑎'

Henry	Chai	-	7/26/22

9

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
	 			greediness	parameter	𝜖 ∈ 0, 1 ,
									learning	rate	𝛼 ∈ 0, 1 	(“trust	parameter”)

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜	(𝑄	is	a	 𝒮 × 𝒜 	array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
(! ∈ 𝒜

 𝑄 𝑠, 𝑎'

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠'	where	𝑠' ∼ 𝑝 𝑠' 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :	

	𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
(!

𝑄 𝑠', 𝑎'

Current	
value

Update	w/	
deterministic	transitions

Learning
𝑄∗(𝑠, 𝑎)	w/
deterministic	
rewards	

Algorithm	3:	
𝜖-greedy	online	
learning	(table	
form)	

Henry	Chai	-	7/26/22

10

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠,
	 			greediness	parameter	𝜖 ∈ 0, 1 ,
									learning	rate	𝛼 ∈ 0, 1 	(“trust	parameter”)

� Initialize	𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜	(𝑄	is	a	 𝒮 × 𝒜 	array)	

�While	TRUE,	do
�With	probability	𝜖,	take	the	greedy	action	

𝑎 = argmax
(! ∈ 𝒜

 𝑄 𝑠, 𝑎'

Otherwise,	with	probability	1 − 𝜖,	take	a	random	action	𝑎
� Receive	reward	𝑟 = 𝑅 𝑠, 𝑎
� Update	the	state:	𝑠 ← 𝑠'	where	𝑠' ∼ 𝑝 𝑠' 𝑠, 𝑎
� Update	𝑄 𝑠, 𝑎 :	

	𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾 max
(!

𝑄 𝑠', 𝑎' − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎)	w/
deterministic	
rewards	

Algorithm	3:	
𝜖-greedy	online	
learning	(table	
form)	

Current	
value

Temporal	difference	
target

Temporal	
difference

Henry	Chai	-	7/26/22

11

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎):	
Example

Henry	Chai	-	7/26/22

12

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Which	set	of	
blue	arrows
(roughly)	
corresponds	to	
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9

Henry	Chai	-	7/26/22

13

Which	set	of	
blue	arrows
(roughly)		
corresponds	to	
𝑄∗(𝑠, 𝑎)?

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠 	shown	in	green

Henry	Chai	-	7/26/22

14

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Henry	Chai	-	7/26/22

15

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3, → ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 0Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Henry	Chai	-	7/26/22

16

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Henry	Chai	-	7/26/22

17

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
(!∈ →,←,↑,↻

𝑄 5, 𝑎' = 3Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Henry	Chai	-	7/26/22

18

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3, → ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Henry	Chai	-	7/26/22

19

6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3, → ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7Learning
𝑄∗(𝑠, 𝑎):	
Example

𝑅 𝑠, 𝑎 	represented	by	
𝛾 = 0.9

Henry	Chai	-	7/26/22

Learning
𝑄∗(𝑠, 𝑎):	
Convergence

20

� For	Algorithms	1	&	2	(deterministic	transitions),	 												

𝑄	converges	to	𝑄∗	if

1. 	Every	valid	state-action	pair	is	visited	infinitely	often

� Q-learning	is	exploration-insensitive:	any	visitation	

strategy	that	satisfies	this	property	will	work!

2. 	0 ≤ 𝛾 < 1	

3. 	∃ 𝛽	s.t. 𝑅 𝑠, 𝑎 < 𝛽	∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. 	Initial	𝑄	values	are	finite

Henry	Chai	-	7/26/22

Learning
𝑄∗(𝑠, 𝑎):	
Convergence

21

� For	Algorithm	3	(temporal	difference	learning),		 												

𝑄	converges	to	𝑄∗	if

1. 	Every	valid	state-action	pair	is	visited	infinitely	often	

� Q-learning	is	exploration-insensitive:	any	visitation	

strategy	that	satisfies	this	property	will	work!

2. 	0 ≤ 𝛾 < 1	

3. 	∃ 𝛽	s.t. 𝑅 𝑠, 𝑎 < 𝛽	∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4. 	Initial	𝑄	values	are	finite

5. 	Learning	rate	𝛼>	follows	some	“schedule”	s.t.				
∑>?"

@ 𝛼> = ∞	and	∑>?"
@ 𝛼>

A < ∞	e.g.,	𝛼> = ⁄B
>CB	

Henry	Chai	-	7/26/22

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

22Henry	Chai	-	7/26/22

Playing	Go

23

AlphaGo	(Black)	vs.	Lee	Sedol	(White)	
Game	2	final	position	(AlphaGo	wins)	

Source:	https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
Henry	Chai	-	7/26/22

� 19-by-19	board	

� Players	alternate	
placing	black	and	
white	stones

� The	goal	is	claim	
more	territory	
than	the	opponent

Playing	Go

25

AlphaGo	(Black)	vs.	Lee	Sedol	(White)	
Game	2	final	position	(AlphaGo	wins)	

Source:	https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
Henry	Chai	-	7/26/22

� 19-by-19	board	

� Players	alternate	
placing	black	and	
white	stones

� The	goal	is	claim	
more	territory	
than	the	opponent

� There	are	~10170		
legal	Go	board	
states!

Source:	https://en.wikipedia.org/wiki/Go_and_mathematics

Two	big	Q’s
1. What	can	we	do	if	the	reward	and/or	transition	

functions/distributions	are	unknown?	

• Use	online	learning	to	gather	data	and	learn	𝑄∗ 𝑠, 𝑎

2. How	can	we	handle	infinite	(or	just	very	large)	

state/action	spaces?

• Throw	a	neural	network	at	it!	

26Henry	Chai	-	7/26/22

Deep	
Q-learning

� Use	a	parametric	function,	𝑄 𝑠, 𝑎; Θ ,	to	approximate	

𝑄∗ 𝑠, 𝑎
� Learn	the	parameters	using	SGD

� Training	data	 𝒔>, 𝑎>, 𝑟>, 𝒔>CB 	gathered	online	by	

the	agent/learning	algorithm	

27Henry	Chai	-	7/26/22

� Represent	states	using	some	feature	vector	𝒔> ∈ ℝD	
e.g.	for	Go,	𝒔> = 1, 0, −1, … , 1 E

� Define	a	neural	network

Deep	
Q-learning:
Model

28

𝒔>

𝑎>

Θ 𝑄 𝒔>, 𝑎>; Θ

𝒔> Θ

𝑄 𝒔>, 𝑎B; Θ
𝑄 𝒔>, 𝑎A; Θ

𝑄 𝒔>, 𝑎 𝒜 ; Θ
⋮

Model	1:

Model	2:

Henry	Chai	-	7/26/22

� “True”	loss

ℓ Θ = 6
∈ 𝒮

6
(∈ 𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ A

1. Use	stochastic	gradient	descent:	just	consider	one	
state-action	pair	in	each	iteration

2. Use	temporal	difference	learning:	
� Given	current	parameters	Θ F 	the	temporal	
difference	target	is	
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾 max

(!
𝑄 𝑠', 𝑎'; Θ > ≔ 𝑦

� Set	the	parameters	in	the	next	iteration	Θ FCB 	such	
that	𝑄 𝑠, 𝑎; Θ FCB ≈ 𝑦

ℓ Θ F , Θ >CB = 𝑦 − 𝑄 𝑠, 𝑎; Θ FCB A

1.	𝒮	too	big	to	compute	this	sum

Deep	
Q-learning:
Loss	Function

29

2.	Don’t	know	𝑄∗	

Henry	Chai	-	7/26/22

Deep	
Q-learning

Algorithm	4:	
Online	learning	
(parametric	
form)

30

� Inputs:	discount	factor	𝛾,	an	initial	state	𝑠",

	 			learning	rate	𝛼

� Initialize	parameters	Θ " 	

� For	𝑡 = 0, 1, 2, …
� Gather	training	sample	 𝒔>, 𝒂>, 𝑟>, 𝒔>CB

� Update	Θ > 	by	taking	a	step	opposite	the	gradient
Θ >CB ← Θ > − 𝛼∇G "#$ ℓ Θ > , Θ >CB

where
∇G "#$ ℓ Θ > , Θ >CB

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ >CB ∇G "#$ 𝑄 𝑠, 𝑎; Θ >CB

Henry	Chai	-	7/26/22

Deep	
Q-learning:
Experience
Replay

31

� SGD	assumes	i.i.d.	training	samples	but	in	RL,	samples	are	
highly	correlated

� Idea:	keep	a	“replay	memory”	𝒟 = {𝑒1, 𝑒2, … , 𝑒𝑁}	of	the	𝑁	
most	recent	experiences	𝑒𝑡 = 𝒔𝑡, 𝒂>, 𝑟>, 𝒔>CB 	(Lin,	1992)

� Also	keeps	the	agent	from	“forgetting”	about	recent	
experiences

� Alternate	between:
1. Sampling	some	𝑒𝑖	uniformly	at	random	from	𝒟	and	

applying	a	Q-learning	update	(repeat	𝛵	times)

2. Adding	a	new	experience	to	𝒟

� Can	also	sample	experiences	from	𝒟	according	to	some	
distribution	that	prioritizes	experiences	with	high	error	
(Schaul	et	al.,	2016)

Henry	Chai	-	7/26/22

Key	Takeaways

�We	can	use	(deep)	Q-learning	when	the	reward/transition	

functions	are	unknown	and/or	when	the	state/action	
spaces	are	too	large	to	be	modelled	directly

� Also	guaranteed	to	converge	under	certain	assumptions

� Experience	replay	can	help	address	non-i.i.d.	samples

Henry	Chai	-	7/26/22 32

