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* Announcements:

* PAO released 5/15, due 5/18 (tomorrow!) at 11:59 PM

* You must complete all assignments using LaTeX; see

this Piazza post for details and a few LaTeX tutorials

* PA1 released 5/18 (tomorrow!)

* Recitation tomorrow will cover

Front Matter

* Programming tips to help you with PA1
* Practice problems for Quiz 1 on 5/23

° Recitations are optional but they will not be

recorded; solutions will be made available afterwards

- Recommended Readings:

Henry Chai - 5/17/23 * Daumé lll, Chapter 1: Decision Trees



https://piazza.com/class/lh7wb71rd8z7ct/post/7
http://ciml.info/dl/v0_99/ciml-v0_99-ch01.pdf

Recall:
Decision

Stumps
Questions
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1. How can we pick which feature to split on?

2. Why stop at just one feature?



From
Decision
Stump

to
Decision
Tree
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Decision

Tree Prediction:
Pseudocode
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* A binary search tree (BST) consists of nodes, where each node:
* has a value, v

* up to 2 children, a left descendant and a right descendant

Background:
Recursion

- all its left descendants have values less than v and its right
descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains iterative(node, key):
cur = node
while true:

if key < cur.value & cur.left != null:
cur = cur.left

else if cur.value < key & cur.right != null:
cur = cur.right

else:
break

Henry Chai - 5/17/23 return key == cur.value



* A binary search tree (BST) consists of nodes, where each node:
* has a value, v

* up to 2 children, a left descendant and a right descendant

Background:
Recursion

- all its left descendants have values less than v and its right
descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains recursive(node, key):
if key < node.value & node.left != null:
return contains(node.left, key)
else if node.value < key & node.right != null:
return contains(node.right, key)
else:
return key == node.value
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Decision

Tree:
Pseudocode
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def train(D):
store root = tree recurse(D)
def tree recurse(D’):
g = new node()
base case - if (SOME CONDITION):
recursion - else:
find best attribute to split on, x4
g.split = x4

for v in V(x;), all possible values of xg:
DU = {(x(n),y(n)) eED | xc(ln) — v}

g.children(v) = tree_recurse(D,)

return g



def train(D):
store root = tree recurse(D)
def tree recurse(D’):
g = new node()
- base case - if (D' is empty OR
Decision all labels in D' are the same OR

Tree:
Pseudocode

all features in D' are identical OR
some other stopping criterion):

g.label = majority vote(D')

recursion - else:

return g
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Decision

Tree:
Example —
How iIs Henry
getting to
work?
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* Label: mode of transportation
-y € Y = {Bike, Drive, Bus}
* Features: 4 categorial features
* Is it raining? x4 € {Rain, No Rain}

* When am | leaving (relative to rush hour)?

x, € {Before, During, After}

* What am | bringing?
x3 € {Backpack, Lunchbox, Both}

* Am | tired? x4, € {Tired, Not Tired}

10
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Which feature

would we split on

first using mutual

information as
the splitting

criterion?
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I(x4,Y) ~ 1.5052
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I(x1,Y) ~ 1.5052

6
—1—6(1)
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I(x,Y) ~ 1.5052

logz(
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I(x1,Y) ~ 1.5052

6
—1—6(1)

= (1.5710)
16~

~ (0.1432
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Not Tired

Rain  During  Both  NotTired Rain Before  Both  Tired Drive

Rain  After Backpack NotTired Bus Rain During  Both  Tired Drive

No Rain Before Lunchbox NotTired Bus Rain  After Backpack Tired Bus

No Rain During Backpack NotTired Bus Rain  After Lunchbox Tired Drive
No Rain After Backpack NotTired Bike No Rain Before Backpack Tired -

No Rain  After Both  NotTired Bus No Rain Before Lunchbox Tired Drive

No Rain After Lunchbox NotTired Bus No Rain During  Both  Tired Drive
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No Rain  After Both  Tired Drive

6 6 2 2 1
H(Yx4=Tired) = — 5 1Og2 5 — 6 logz 5 — 5 logz 5 ~ 1.2244
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[ A When survey is active, respond at pollev.com/301601polls

Untitled survey

0 done

£ 0 underwav
Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




H @ When poll is active, respond at pollev.com/301601polls H

True or False: if we use mutual information maximization
as the splitting criterion, we will always learn the shortest
possible decision tree with zero training error.

True

False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



& When poll is active, respond at pollev.com/301601polls

True or False: if we use training error minimization as the
splitting criterion, we will always learn the shortest
possible decision tree with zero training error.

True

False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Given this
dataset, if you
used training
error rate as

the splitting
criterion, you
would learn
this tree...
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" hemoce oo™
mconmoo

oo~ o~ oY

+|||+|++H
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... but there
actually exists a
shorter

decision tree
with zero
training error!
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" hemoce oo™
mconmoo
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Decision

Trees:
Inductive Bias
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* The inductive bias of a machine learning algorithm is

the principal by which it generalizes to unseen examples

- What is the inductive bias of the ID3 algorithm i.e.,
decision tree learning with mutual information
maximization as the splitting criterion?

* Try to find the smallest tree that achieves a training

error rate of 0 with high mutual information

features at the top

* Occam’s razor: try to find the “simplest” (e.g., smallest

decision tree) classifier that explains the training dataset
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Decision

Trees:
Pros & Cons
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* Pros

* Interpretable
* Efficient (computational cost and storage)
* Can be used for classification and regression tasks

* Compatible with categorical and real-valued features

- Cons

* Learned greedily: each split only considers the

immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Liable to overfit!
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Real-Valued
Features:

Example -
Outside
Temperature (°F)
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Real-Valued
Features:

Example -
Outside
Temperature (°F)
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Real-Valued
Features:

Example -
Outside
Temperature (°F)

Henry Chai - 5/17/23

B

Drive
Metro
Bike
Drive
Drive
Drive
Metro
Metro
Drive

Metro

B

Drive
Metro
Metro
Metro
Metro
Bike
Drive
Drive
Drive

Drive
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Real-Valued
Features:

Example -
Outside
Temperature (°F)

Henry Chai - 5/17/23

B

Drive
Metro
Bike
Drive
Drive
Drive
Metro
Metro
Drive

Metro

B

Drive
Metro
Metro
Metro
Metro
Bike

Drive

Drive

43



Decision

Trees:
Pros & Cons

Henry Chai - 5/17/23

* Pros

* Interpretable
* Efficient (computational cost and storage)
* Can be used for classification and regression tasks

* Compatible with categorical and real-valued features

- Cons

* Learned greedily: each split only considers the

immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Liable to overfit!
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Overfitting
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* Overfitting occurs when the classifier (or model)...

* is too complex

* fits noise or “outliers” in the training dataset as

opposed to the actual pattern of interest

- doesn’t have enough inductive bias pushing it to

generalize

- Underfitting occurs when the classifier (or model)...

* is too simple

° can’t capture the actual pattern of interest in the

training dataset

* has too much inductive bias
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Different Kinds

of Error
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* Training error rate = err(h, Dergin)
- Test error rate = err(h, Dsest)

* True error rate = err(h)

= the error rate of h on all possible examples

* In machine learning, this is the quantity that we care

about but, in most cases, it is unknowable.

- Overfitting occurs when err(h) > err(h, D¢rgin)

* err(h) — err(h, D¢yrqin) can be thought of as a

measure of overfitting
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Not Tired

This tree only misclassifies one training data point!

Both, Lunchbox
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Combatting

Overfitting in
Decision Trees

Henry Chai - 5/17/23

* Heuristics:

* Do not split leaves past a fixed depth, 6
* Do not split leaves with fewer than ¢ data points

* Do not split leaves where the maximal information

gain is lessthan t

- Take a majority vote in impure leaves
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Combatting

Overfitting in
Decision Trees

Henry Chai - 5/17/23

* Pruning:

1. First, learn a decision tree

2. Then, evaluate each split using a “validation”
dataset by comparing the validation error rate

with and without that split

3. Greedily remove the split that most decreases the

validation error rate

* Break ties in favor of smaller trees

4. Stop if no split is removed
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err(h — s1,Dyq;)
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Both, Lunchbox
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Not Tired

Both, Lunchbox
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* Decision tree prediction algorithm

* Decision tree learning algorithm via recursion
* Inductive bias of decision trees

* Overfitting vs. Underfitting

* How to combat overfitting in decision trees
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