10-301/601: Introduction to Machine Learning Lecture 30: Course Recap & Large Language Models

Henry Chai

8/9/23

Front Matter

- Announcements
	- Final on 8/11, this Friday!
		- Today's lecture is out-of-scope for the Final
		- OH in lieu of recitation on 8/10 (tomorrow)
	- Please complete your course evals!
- Recommended Supplementary Material
	- Papers linked throughout the lecture slides

Recall: What is **Machine** Learning 10 -301/601?

- **· Supervised Models**
	- Decision Trees
	- \cdot KNN
	- Naïve Bayes
	- Perceptron
	- Logistic Regression
	- **· Linear Regression**
	- Neural Networks
- Deep Learning
- Unsupervised Models
	- K-means
	- \cdot PCA
- Graphical Models
	- **· Bayesian Networks**
	- HMMs
- Learning Theory
- **Reinforcement Learning**
- Ensemble Methods
- Important Concepts
	- **Feature Engineering**
	- Regularization and Overfitting
	- Experimental Design

It was all a ruse!

- Linear Regression
- Neural Networks
- Deep Learning
- Unsupervised Models
	- K-means
	- PCA

Graphical Models

- **· Bayesian Networks**
- HMMs

Learning Theory

Reinforcement Learning

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
	- Try to find the smallest tree that achieves a **training error rate of 0** with high mutual information features at the top
- Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

Overfitting in Decision Trees

Nearest Neighbor: Example

Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- may overfit
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data
	- may underfit
- \cdot k controls the complexity of the hypothesis set \Longrightarrow k affects how well the learned hypothesis will generalize

Setting k for kNN with Validation Sets

k NN train and validation errors on Fisher Iris data

Recipe for Linear Regression Define a model and model parameters

- Assume $y = w^T x$
- Parameters: $w = [w_0, w_1, ..., w_D]$
- Write down an objective function Minimize the squared error $\ell_{\mathcal{D}}(w) = \sum_{\mathcal{D}}$ $\overline{n=1}$ \overline{N} $\ell^{(n)}(w) = \sum$ $\overline{n=1}$ \overline{N} $w^T x^{(n)} - y^{(n)}$ ²
- Optimize the objective w.r.t. the model parameters
	- Solve in *closed form*: take partial derivatives, set to 0 and solve

Minimizing the Squared Error

$$
\ell_{\mathcal{D}}(w) = \sum_{n=1}^{N} (w^{T} x^{(n)} - y^{(n)})^{2} = \sum_{n=1}^{N} (x^{(n)^{T}} w - y^{(n)})^{2}
$$

$$
= ||Xw - y||_{2}^{2} \text{ where } ||z||_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{z^{T} z}
$$

$$
= (Xw - y)^{T} (Xw - y)
$$

$$
= (w^{T} X^{T} X w - 2w^{T} X^{T} y + y^{T} y)
$$

$$
\nabla_{w} \ell_{\mathcal{D}}(\widehat{w}) = (2X^{T} X \widehat{w} - 2X^{T} y) = 0
$$

$$
\rightarrow X^{T} X \widehat{w} = X^{T} y
$$

$$
\rightarrow \widehat{w} = (X^{T} X)^{-1} X^{T} y
$$

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Convexity

Nonlinear Models

Nonlinear Models?

Soft **Constraints** minimize $\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \mathbf{y})^T (\mathbf{X}\boldsymbol{\omega} - \mathbf{y})$

subject to $\boldsymbol{\omega}^T \boldsymbol{\omega} \leq C$

 $\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) \leq \widehat{\boldsymbol{\omega}}_{MAP}$ $\nabla_{\omega} \ell_{\mathcal{D}}(\widehat{\omega}_{MAP}) \propto -2\widehat{\omega}_{MAP}$ $\nabla_{\bm{\omega}} \ell_\mathcal{D}(\widehat{\bm{\omega}}_{MAP}) = -2\lambda_\mathcal{C} \widehat{\bm{\omega}}_{MAP}$

 $\nabla_{\omega} \ell_{\mathcal{D}}(\widehat{\omega}_{MAP}) + 2\lambda_{\mathcal{C}}\widehat{\omega}_{MAP} = 0$

 $\nabla_{\boldsymbol{\omega}}(\ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) + \lambda_{C}(\widehat{\boldsymbol{\omega}}_{MAP})^{T} \widehat{\boldsymbol{\omega}}_{MAP}) = 0$

0,0

 $\boldsymbol{\omega}^T \boldsymbol{\omega} = C$

 $\ell_{\mathcal{D}}(\boldsymbol{\omega})$

 $\widehat{\boldsymbol{\omega}}$

Maximum Likelihood Estimation (MLE)

- · Insight: every valid probability amount of probability mass a
- · Idea: set the parameter(s) so samples is maximized
- · Intuition: assign as much of the to the observed data *at the ex*
- Example: the exponential distribution

Building a **Probabilistic** Classifier

Define a decision rule

- \cdot Given a test data point x' , predict its label \hat{y} using the *posterior distribution* $P(Y = y | X = x')$
- Common choice: $\hat{y} = \argmax P(Y = y | X = x')$ \hat{y}
- Model the posterior distribution
	- Option 1 Model $P(Y|X)$ directly as some function of X (today!)
	- Option 2 Use Bayes' rule (later):

 $P(Y|X) =$ $P(X|Y) P(Y)$ $P(X)$ $\propto P(X|Y) P(Y)$

Logistic Function

Stochastic Gradient Descent vs. Gradient Descent

Gradient Descent Stochastic Gradient Descent

Linear Decision Boundaries: Example

Goal: learn classifiers of the form $h(x) =$ $sign(w^T x + b)$ (assuming $y \in \{-1, +1\}$

Key question: how do we learn the *parameters*, w ?

Combining Perceptrons

Building a

 $\text{sign}(-\text{sign}(\bm{w}_{1}^{T}\bm{x}) + \text{sign}(\bm{w}_{2}^{T}\bm{x}) - 1.5) + 1.5)$ $h(x) = sign(sign(sign(w_1^T x) - sign(w_2^T x) - 1.5) +$

(Fully-Connected) Feed Forward Neural Network

Backpropagation

- Input: $W^{(1)}, ..., W^{(L)}$ and $\mathcal{D} = \{(\pmb{x}^{(n)}, y^{(n)})\}$ $n=1$ \overline{N} \cdot Initialize: $\ell_{\mathcal{D}} = 0$ and $G^{(l)} = 0 \odot W^{(l)}$ \forall $l = 1, ..., L$ \cdot For $n=1,\dots,N$
	- Run forward propagation with $\pmb{x}^{(n)}$ to get $\pmb{o}^{(1)}$, ..., $\pmb{o}^{(L)}$
	- (Optional) Increment $\ell_{\mathcal{D}}$: $\ell_{\mathcal{D}} = \ell_{\mathcal{D}} + (o^{(L)} y^{(n)})^2$
	- Initialize: $\boldsymbol{\delta}^{(L)} = 2 \left(o_1^{(L)} y^{(n)} \right) \left(1 \left(o_1^{(L)} \right)^2 \right)$ L) λ^2
	- For $l = L 1, ..., 1$
		- Compute $\boldsymbol{\delta}^{(l)} = W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \odot (1 \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)})$
		- Increment $G^{(l)}$: $G^{(l)} = G^{(l)} + \delta^{(l)} \mathbf{n}^{(l-1)}$

• Output: $G^{(1)}$, ..., $G^{(L)}$, the gradients of $\ell_{\mathcal{D}}$ w.r.t $W^{(1)}$, ..., $W^{(L)}$

Three Approaches to **Differentiation**

- Given $f: \mathbb{R}^D \to \mathbb{R}$, compute $\nabla_{\mathbf{x}} f(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$
- 1. Finite difference method
	- Requires the ability to call $f(x)$
	- Great for checking accuracy of implementations of more complex differentiation methods
	- Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
	- Requires systematic knowledge of derivatives
	- Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)
	- Requires systematic knowledge of derivatives *and* an algorithm for computing $f(x)$
- Henry Chai 8/9/23 **27** • Computational cost of computing $\frac{\partial f(x)}{\partial x}$ is proportional to the cost of computing $f(\boldsymbol{x})$

Mini -batch Stochastic **Gradient** Descent with Momentum for Neural **Networks**

Mini-batch **Stochastic** Gradient Descent with Adaptive Gradients for **Neural Networks**

• Input: $\mathcal{D} = \{(\pmb{x}^{(n)}, y^{(n)})\}$ $n=1$ \overline{N} , $\eta_{MB}^{\left(0\right)},$ B , ϵ

- 1. Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set $t=0$, $S_{-1}^{(l)}=0$ \bigodot $W^{(l)}$ \forall $l=1,...,L$
- 2. While TERMINATION CRITERION is not satisfied
	- a. Randomly sample B data points from D, $\{(\mathbf{x}^{(b)}, y^{(b)})\}$ $b=1$ \overline{B}
	- b. Compute the gradient w.r.t. the sampled *batch*,

$$
G_t^{(l)} = \frac{1}{B} \sum_{b=1}^{B} \nabla_{W^{(l)}} e(o^{(L)}, y^{(b)}) \ \forall \ l
$$

- c. Update $S^{(l)}$: $S_t^{(l)} = S_{t-1}^{(l)} + G_t^{(l)} \odot G_t^{(l)}$ \forall l
- d. Update $W^{(l)}$: $W_{t+1}^{(l)} \leftarrow W_t^{(l)} \frac{\eta_{MB}^{(0)}}{\sqrt{N}}$ $S_t^{(l)} + \epsilon$ $\bigcirc G_t^{(l)}$ \forall l
- e. Increment $t: t \leftarrow t + 1$
- Henry Chai 8/9/23 **Culput:** $W_t^{(1)}$, ... , $W_t^{(L)}$ and $W_t^{(L)}$, ... , we also described the contract of $W_t^{(L)}$ and $W_t^{(L$

What is **Machine** Learning 10 -301/601? Supervised Models

• Decision Trees

• Rayesian Networks

• KNN

• Naïve Bayes

• Learning Theory

• Learning Theory

• Learning Theory

• Learning Fracty

• Learning Fracty

• Neural Networks

• Neural Networks

• Deep Le

- -
	-
	-
	-
	-
	-
	-
-
- -
	-
- -
	-
-
-
-
- - and Kernels
	- Regularization and **Overfitting**
	- Experimental Design

Q: Why did we cover so many unrelated topics in the second half of the semester?

A: You never know where the next big thing in machine learning is going to come from! Vhy did we

Prices are the many

alated topics in

alated topics in

Naïve Bayes

Record half of

Perceptron

Learning Theory

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

Reinforcement Learning

- -
	-
	-
	-
	-
	-
	-
-
- -
	-
- -
	-
-
-
-
- - and Kernels
	- Regularization and **Overfitting**
	- Experimental Design

What is ChatGPT?

Chatbot built on GPT 3.5 (or 4)

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model

What is ChatGPT GPT a language model?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a **probability distribution** over **sequences of words** (e.g., sentences)

Recall: 3 **Inference** Questions for Hidden Markov **Models**

1. Marginal Computation: $P(Y_t = s_j | x^{(n)})$ (or $P(Y | x^{(n)})$)

$$
P(Y | x^{(n)}) = \frac{P(x^{(n)} | Y) P(Y)}{P(x^{(n)})} = \frac{\prod_{t=1}^{T} P(x_t^{(n)} | Y_t) P(Y_t | Y_{t-1})}{P(x^{(n)})}
$$

2. Decoding:
$$
\hat{Y} = \underset{Y}{\text{argmax}} P(Y | x^{(n)})
$$

3. Evaluation: $P(x^{(n)})$

$$
P(\mathbf{x}^{(n)}) = \sum_{y \in \{\text{all possible sequences}\}} P(\mathbf{x}^{(n)} | y) P(y)
$$

What is ChatGPT GPT a *large* language model?

Henry Chai - 8/9/23 Source: https://en.wikipedia.org/wiki/Large_language_model

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative pre-trained transformer

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for *generative* pre-trained transformer
			- Generative means the model can create new sequences by **sampling** from the distribution

Sampling for Bayesian **Networks**

- easy!
	- 1. Sample all free variables
(H and W)
	- 2. Sample any variable whose parents have already been sampled
	- 3. Stop once all variables have been sampled

 $P(S=1) \approx$ # of samples w/ $S = 1$ # of samples

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative *pre-trained* transformer
			- Pre-training is the process of initializing some or all model parameters using a dataset or objective function other than the actual task
			- Pre-trained parameters are then *fine-tuned* to the actual task

Pre-training (Bengio et al.,

Deep net, auto-associator pre-train Deep net, supervised pre-training Deep net, no pre-training Shallow net, no pre-training

- 2006) The Contract Extraction of the Error rates on MNIST
	- Primary finding: pre-training i benefits of deep learning!
	- Auto-associator is another wo

Deep Autoencoders

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative *pre-trained* transformer
			- GPT parameters are fine-tuned in part using

reinforcement learning with human feedback

Reinforcement Learning with **Human** Feedback (RLHF)

• Insight: for many machine learning tasks, there is no universal ground truth, e.g., there are lots of possible ways to respond to a question or prompt.

- Idea: solve the problem using reinforcement learning and use human feedback as the reward function by having people determine how good or bad some action is.
- Issue: if the state/action space is huge, in order to train a good model, we would need tons and tons of feedback and human annotation is expensive…
- Idea: use a small number of annotations to learn a reward function!

Step1

Collect demonstration data and train a supervised policy.

⇔

Explain reinforcement

learning to a 6 year old.

Ô

自自自

Reinforcement Learning with Human Feedback (RLHF)

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

Collect comparison da train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- · GPT 3.5 is a large languag
		- · A language model is ju over sequences of wo
		- GPT is short for gener
			- **A** transformer is a that uses just atte
				- sequences ("atten

Bidirectional Recurrent Neural **Networks**

$$
\boldsymbol{o}_{t}^{(1)} = \left[1, \theta\left(W^{(1)} \boldsymbol{x}_{t}^{(i)} + W^{(f)} \boldsymbol{o}_{t-1}^{(1)}\right)\right]^T \text{ and } \boldsymbol{o}_{t}^{(2)} = \left[1, \theta\left(W^{(2)} \boldsymbol{o}_{t}^{(1)} + W^{(b)} \boldsymbol{o}_{t+1}^{(2)}\right)\right]^T
$$

Scaled Dot-Product Attention

MatMul SoftMax Mask (opt.) Scale MatMul $\frac{1}{\Omega}$ $\frac{1}{K}$ V

Multi-headed Attention

AlexNet (Krizhevsky et

Figure 1: The Transformer

Transformers

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- · GPT 3.5 is a large languag
		- · A language model is ju
			- over sequences of wo
		- GPT is short for gener
			- · Lots of other relev
				- \cdot Optimizer: Ada
					- **RMSprop** (vari
				- · Regularization
					- **(variant of L2 i**
				- Hyperparamet

Key Takeaways

- You are ready (at least in theory) to go out and learn about the latest machine learning models/concepts
	- You're also equipped to succeed in subsequent machine learning courses you might take
- You all have been a great class, thanks for an amazing summer!