10-301/601: Introduction to Machine Learning Lecture 30: Course Recap & Large Language Models

Henry Chai

8/9/23

Front Matter

- Announcements
 - Final on 8/11, this Friday!
 - Today's lecture is out-of-scope for the Final
 - OH in lieu of recitation on 8/10 (tomorrow)
 - Please complete your course evals!
- Recommended Supplementary Material
 - Papers linked throughout the lecture slides

Recall: What is Machine Learning 10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
- Deep Learning
- Unsupervised Models
 - K-means
 - PCA

- Graphical Models
 - Bayesian Networks
 - HMMs
- Learning Theory
- Reinforcement Learning
- Ensemble Methods
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design

It was all a ruse!

- Linear Regression
- Neural Networks
- Deep Learning
- Unsupervised Models
 - K-means
 - PCA

Graphical Models

- Bayesian Networks
- HMMs

earning Theory

Reinforcement Learning

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
 - Try to find the smallest tree that achieves a training error rate of 0 with high mutual information features at the top
- Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

Overfitting in Decision Trees

Nearest Neighbor: Example

Setting k

- When k = 1:
 - many, complicated decision boundaries
 - may overfit
- When k = N:
 - no decision boundaries; always predicts the most common label in the training data
 - may underfit
- k controls the complexity of the hypothesis set $\implies k$ affects how well the learned hypothesis will generalize

Setting *k* for *k*NN with Validation Sets

kNN train and validation errors on Fisher Iris data

Recipe for Linear Regression

- Define a model and model parameters
 - Assume $y = w^T x$
 - Parameters: $w = [w_0, w_1, ..., w_D]$
- Write down an objective function
 - Minimize the squared error $\ell_{\mathcal{D}}(\boldsymbol{w}) = \sum_{n=1}^{N} \ell^{(n)}(\boldsymbol{w}) = \sum_{n=1}^{N} (\boldsymbol{w}^T \boldsymbol{x}^{(n)} - \boldsymbol{y}^{(n)})^2$
- Optimize the objective w.r.t. the model parameters
 - Solve in *closed form*: take partial derivatives, set to 0 and solve

Minimizing the Squared Error

$$\ell_{\mathcal{D}}(\boldsymbol{w}) = \sum_{n=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{x}^{(n)} - \boldsymbol{y}^{(n)})^{2} = \sum_{n=1}^{N} (\boldsymbol{x}^{(n)^{T}} \boldsymbol{w} - \boldsymbol{y}^{(n)})^{2}$$
$$= \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} \text{ where } \|\boldsymbol{z}\|_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\boldsymbol{z}^{T} \boldsymbol{z}}$$
$$= (\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y})^{T} (\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y})$$
$$= (\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w} - 2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{y} + \boldsymbol{y}^{T} \boldsymbol{y})$$
$$\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{\hat{w}}) = (2\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\hat{w}} - 2\boldsymbol{X}^{T} \boldsymbol{y}) = 0$$
$$\rightarrow \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{\hat{w}} = \boldsymbol{X}^{T} \boldsymbol{y}$$
$$\rightarrow \boldsymbol{\hat{w}} = (\boldsymbol{X}^{T} \boldsymbol{X})^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$$

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Convexity

Nonlinear Models

Nonlinear Models?

Soft Constraints minimize $\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})^T (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})$

subject to $\boldsymbol{\omega}^T \boldsymbol{\omega} \leq C$

 $\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) \propto -2\widehat{\boldsymbol{\omega}}_{MAP}$

 $\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) = -2\lambda_{C} \widehat{\boldsymbol{\omega}}_{MAP} \quad \nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP})$ (0,0)

 $\nabla_{\boldsymbol{\omega}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) + 2\lambda_{C} \widehat{\boldsymbol{\omega}}_{MAP} = 0$

 $\nabla_{\boldsymbol{\omega}}(\ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) + \lambda_{C}(\widehat{\boldsymbol{\omega}}_{MAP})^{T}\widehat{\boldsymbol{\omega}}_{MAP}) = 0$

 $\ell_{\mathcal{D}}(\boldsymbol{\omega})$

 $\boldsymbol{\omega}^T \boldsymbol{\omega} = C$

Ŵ

 $\widehat{\boldsymbol{\omega}}_{MAP}$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

Building a Probabilistic Classifier

• Define a decision rule

- Given a test data point x', predict its label \hat{y} using the posterior distribution P(Y = y | X = x')
- Common choice: $\hat{y} = \underset{y}{\operatorname{argmax}} P(Y = y | X = x')$
- Model the posterior distribution
 - Option 1 Model P(Y|X) directly as some function of X (today!)
 - Option 2 Use Bayes' rule (later):

 $P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)} \propto P(X|Y) P(Y)$

Logistic Function

Stochastic Gradient Descent vs. Gradient Descent

Gradient Descent

Stochastic Gradient Descent

Linear Decision Boundaries: Example

Goal: learn classifiers of the form h(x) =- sign($w^T x + b$) (assuming $y \in \{-1, +1\}$)

Key question: how do we learn the *parameters*, **w**?

Combining Perceptrons

Building a Network

 $h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$

(Fully-Connected) Feed Forward Neural Network

Backpropagation • Input: $W^{(1)}, ..., W^{(L)}$ and $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ • Initialize: $\ell_{\mathcal{D}} = 0$ and $G^{(l)} = 0 \odot W^{(l)} \forall l = 1, \dots, L$ • For n = 1, ..., N• Run forward propagation with $x^{(n)}$ to get $o^{(1)}, ..., o^{(L)}$ • (Optional) Increment $\ell_{\mathcal{D}}: \ell_{\mathcal{D}} = \ell_{\mathcal{D}} + (o^{(L)} - y^{(n)})^2$ • Initialize: $\delta^{(L)} = 2\left(o_1^{(L)} - y^{(n)}\right)\left(1 - \left(o_1^{(L)}\right)^2\right)$ • For l = L - 1, ..., 1• Compute $\boldsymbol{\delta}^{(l)} = W^{(l+1)^T} \boldsymbol{\delta}^{(l+1)} \odot (1 - \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)})$ • Increment $G^{(l)}: G^{(l)} = G^{(l)} + \delta^{(l)} o^{(l-1)^T}$ • Output: $G^{(1)}, \ldots, G^{(L)}$, the gradients of $\ell_{\mathcal{D}}$ w.r.t $W^{(1)}, \ldots, W^{(L)}$ Three Approaches to Differentiation

- Given $f: \mathbb{R}^D \to \mathbb{R}$, compute $\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}$
- 1. Finite difference method
 - Requires the ability to call f(x)
 - Great for checking accuracy of implementations of more complex differentiation methods
 - Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
 - Requires systematic knowledge of derivatives
 - Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)
 - Requires systematic knowledge of derivatives *and* an algorithm for computing f(x)
 - Computational cost of computing $\frac{\partial f(x)}{\partial x}$ is proportional to the cost of computing f(x)

Mini-batch Stochastic Gradient Descent with Momentum for Neural Networks

Mini-batch Stochastic Gradient Descent with Adaptive Gradients for Neural Networks

• Input: $\mathcal{D} = \{ (x^{(n)}, y^{(n)}) \}_{n=1}^{N}, \eta_{MB}^{(0)}, B, \epsilon \}$

- 1. Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set t = 0, $S_{-1}^{(l)} = 0 \odot W^{(l)} \forall l = 1, ..., L$
- While TERMINATION CRITERION is not satisfied 2.
 - a. Randomly sample *B* data points from $\mathcal{D}, \{(x^{(b)}, y^{(b)})\}_{h=1}^{B}$
 - b. Compute the gradient w.r.t. the sampled *batch*,

$$G_t^{(l)} = \frac{1}{B} \sum_{b=1}^{B} \nabla_{W^{(l)}} e(o^{(L)}, y^{(b)}) \forall l$$

- c. Update $S^{(l)}: S_t^{(l)} = S_{t-1}^{(l)} + G_t^{(l)} \odot G_t^{(l)} \forall l$
- d. Update $W^{(l)}: W_{t+1}^{(l)} \leftarrow W_t^{(l)} \frac{\eta_{MB}^{(0)}}{\sqrt{s_t^{(l)} + \epsilon}} \odot G_t^{(l)} \forall l$ e. Increment $t: t \leftarrow t + 1$
- Output: $W_t^{(1)}, ..., W_t^{(L)}$

What is Machine Learning 10-301/601?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
- Deep Learning
- Unsupervised Models
 - K-means
 - PCA

- Graphical Models
 - Bayesian Networks
 - HMMs
- Learning Theory
- Reinforcement Learning
- Ensemble Methods
- Important Concepts
 - Feature Engineering and Kernels
 - Regularization and Overfitting
 - Experimental Design

Q: Why did we cover so many unrelated topics in the second half of the semester?

A: You never know where the next big thing in machine learning is going to come from!

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
- Deep Learning
- Unsupervised Models
 - K-means
 - PCA

- Graphical Models
 - Bayesian Networks
 - HMMs
- Learning Theory
- Reinforcement Learning
- Ensemble Methods
- Important Concepts
 - Feature Engineering and Kernels
 - Regularization and Overfitting
 - Experimental Design

What is ChatGPT?

• Chatbot built on GPT 3.5 (or 4)

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model

What is ChatGPT GPT a language model?

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)

Recall: 3 Inference Questions for Hidden Markov Models 1. Marginal Computation: $P(Y_t = s_j | \mathbf{x}^{(n)})$ (or $P(Y | \mathbf{x}^{(n)})$)

$$P(Y|\mathbf{x}^{(n)}) = \frac{P(\mathbf{x}^{(n)}|Y)P(Y)}{P(\mathbf{x}^{(n)})} = \frac{\prod_{t=1}^{T} P(\mathbf{x}_{t}^{(n)}|Y_{t})P(Y_{t}|Y_{t-1})}{P(\mathbf{x}^{(n)})}$$

2. Decoding:
$$\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y | \boldsymbol{x}^{(n)})$$

3. Evaluation: $P(x^{(n)})$

$$P(\mathbf{x}^{(n)}) = \sum_{\mathcal{Y} \in \{\text{all possible sequences}\}} P(\mathbf{x}^{(n)} | \mathcal{Y}) P(\mathcal{Y})$$

What is ChatGPT GPT a *large* language model?

Name ¢	Release date ^[a] ◆	Developer 🗢	Number of parameters ^[b] ◆	Corpus size 🗢
BERT	2018	Google	340 million ^[105]	3.3 billion words ^[105]
XLNet	2019	Google	~340 million ^[109]	33 billion words
GPT-2	2019	OpenAl	1.5 billion ^[112]	40GB ^[113] (~10 billion tokens) ^[114]
GPT-3	2020	OpenAl	175 billion ^[37]	300 billion tokens ^[114]
GPT-4	March 2023	OpenAl	Exact number unknown ^[f]	Unknown
PaLM 2 (Pathways Language Model 2)	May 2023	Google	340 billion ^[162]	3.6 trillion tokens ^[162]

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)
 - GPT is short for generative pre-trained transformer

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)
 - GPT is short for *generative* pre-trained transformer
 - Generative means the model can create new sequences by **sampling** from the distribution

Sampling for Bayesian Networks

- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - 3. Stop once all variables have been sampled

$$P(S = 1) \approx \frac{\text{\# of samples w/} S = 1}{\text{\# of samples}}$$

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)
 - GPT is short for generative *pre-trained* transformer
 - Pre-training is the process of initializing some or all model parameters using a dataset or objective function other than the actual task
 - Pre-trained parameters are then *fine-tuned* to the actual task

Pre-training (Bengio et al., 2006)

	Train	Val.	Test
Deep net, auto-associator pre-training	0%	1.4%	1.4%
Deep net, supervised pre-training	0%	1.7%	2.0%
Deep net, no pre-training	.004%	2.1%	2.4%
Shallow net, no pre-training	.004%	1.8%	1.9%

• Error rates on MNIST

- Primary finding: pre-training is crucial to unlock the benefits of deep learning!
- Auto-associator is another word for autoencoder

Deep Autoencoders

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)
 - GPT is short for generative *pre-trained* transformer
 - GPT parameters are fine-tuned in part using

reinforcement learning with human feedback

Reinforcement Learning with Human Feedback (RLHF) Insight: for many machine learning tasks, there is no universal ground truth, e.g., there are lots of possible ways to respond to a question or prompt.

- Idea: solve the problem using reinforcement learning and use human feedback as the reward function by having people determine how good or bad some action is.
- Issue: if the state/action space is huge, in order to train a good model, we would need tons and tons of feedback and human annotation is expensive...
- Idea: use a small number of annotations to learn a reward function!

Reinforcement Learning with Human Feedback (RLHF)

Step 1

Collect demonstration data and train a supervised policy.

A prompt is \mathbf{O} sampled from our Explain reinforcement prompt dataset. learning to a 6 year old. A labeler demonstrates the desired output We give treats and behavior. punishments to teach... SFT This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

A labeler ranks the outputs from best to worst.

A prompt and several model

outputs are sampled.

This data is used

to train our reward model.

Collect comparison data and

train a reward model.

 \bigcirc Explain reinforcement learning to a 6 year old. A B In reinforcemen Explain rewards.

learning, the agent is... C D In machine learning... We give treats and punishments to

D > C > A > B

D > C > A > B

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)
 - GPT is short for generative pre-trained *transformer*
 - A transformer is a **neural network architecture** that uses just *attention* mechanisms to model sequences ("attention is all you need").

Attention

Bidirectional Recurrent Neural Networks

$$\boldsymbol{o}_{t}^{(1)} = \left[1, \theta\left(W^{(1)}\boldsymbol{x}_{t}^{(i)} + W^{(f)}\boldsymbol{o}_{t-1}^{(1)}\right)\right]^{T} \text{ and } \boldsymbol{o}_{t}^{(2)} = \left[1, \theta\left(W^{(2)}\boldsymbol{o}_{t}^{(1)} + W^{(b)}\boldsymbol{o}_{t+1}^{(2)}\right)\right]^{T}$$

Multi-headed Attention

Scaled Dot-Product Attention

AlexNet (Krizhevsky et al., 2012)

Transformers

Figure 1: The Transformer - model architecture.

- Chatbot built on GPT 3.5 (or 4)
 - GPT 3.5 is a large language model
 - A language model is just a probability distribution over sequences of words (e.g., sentences)
 - GPT is short for generative pre-trained *transformer*
 - Lots of other relevant implementation details:
 - Optimizer: Adam = SGD with Momentum + RMSprop (variant of AdaGrad)
 - Regularization: Normalized weight decay (variant of L2 regularization)
 - Hyperparameter tuning, bias mitigation, etc...

Key Takeaways

- You are ready (at least in theory) to go out and learn about the latest machine learning models/concepts
 - You're also equipped to succeed in subsequent machine learning courses you might take
- You all have been a great class, thanks for an amazing summer!