10-301/601: Introduction to Machine Learning Lecture 30: Course Recap & Large Language Models

Henry Chai

8/9/23

Front Matter

- Announcements
	- Final on 8/11, this Friday!
		- Today's lecture is out-of-scope for the Final
		- OH in lieu of recitation on 8/10 (tomorrow)
	- Please complete your course evals!
- Recommended Supplementary Material
	- Papers linked throughout the lecture slides

Recall: What is **Machine Learning** 10 -301/601?

- **· Supervised Models**
	- Decision Trees
	- \cdot KNN
	- Naïve Bayes
	- Perceptron
	- Logistic Regression
	- **· Linear Regression**
	- Neural Networks
- Deep Learning
- Unsupervised Models
	- K-means
	- \cdot PCA
- Graphical Models
	- **· Bayesian Networks**
	- HMMs
- Learning Theory
- **· Reinforcement Learning**
- Ensemble Methods
- Important Concepts
	- **Feature Engineering**
	- Regularization and Overfitting
	- Experimental Design

It was all a ruse!

- Linear Regression
- Neural Networks
- Deep Learning
- Unsupervised Models
	- K-means
	- PCA

Graphical Models

- **· Bayesian Networks**
- · HMMs

 Learning Theory Reinforcement Learning

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
	- Try to find the smallest tree that achieves a **training error rate of 0** with high mutual information features at the top
- Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

Overfitting in Decision Trees

Nearest Neighbor: Example

Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- may overfit
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data
	- may underfit
- \cdot k controls the complexity of the hypothesis set \Rightarrow k affects how well the learned hypothesis will generalize

Setting k for kNN with Validation Sets

train 0.7 validation $0.6 0.5 \frac{1}{4}$ 0.4 - $0.3 0.2 0.1 10⁰$ $+$ $+$ $1 - 1$ $10¹$ $10²$ k

k NN train and validation errors on Fisher Iris data

Recipe for Linear Regression

- Define a model and model parameters
	- Assume $y = w^T x$
	- Parameters: $w = [w_0, w_1, ..., w_D]$
- Write down an objective function Minimize the squared error $\ell_{\mathcal{D}}(w) = \sum_{n=1}^{N} \ell^{(n)}(w) = \sum_{n=1}^{N} (w^{T} x^{(n)} - y^{(n)})^{2}$
- Optimize the objective w.r.t. the model parameters
	- Solve in *closed form*: take partial derivatives, set to 0 and solve

Minimizing the Squared Error

$$
\ell_{\mathcal{D}}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{(n)} - \mathbf{y}^{(n)})^{2} = \sum_{n=1}^{N} (\mathbf{x}^{(n)}^{T} \mathbf{w} - \mathbf{y}^{(n)})^{2}
$$

$$
= ||X\mathbf{w} - \mathbf{y}||_{2}^{2} \text{ where } ||\mathbf{z}||_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\mathbf{z}^{T} \mathbf{z}}
$$

$$
= (X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y})
$$

$$
= (\mathbf{w}^{T} X^{T} X \mathbf{w} - 2\mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y})
$$

$$
\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\widehat{\mathbf{w}}) = (2X^{T} X \widehat{\mathbf{w}} - 2X^{T} \mathbf{y}) = 0
$$

$$
\rightarrow X^{T} X \widehat{\mathbf{w}} = X^{T} \mathbf{y}
$$

$$
\rightarrow \widehat{\mathbf{w}} = (X^{T} X)^{-1} X^{T} \mathbf{y}
$$

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Convexity

Nonlinear Models

Nonlinear Models?

Soft **Constraints** minimize $\ell_{\mathcal{D}}(\boldsymbol{\omega}) = (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})^T (\mathbf{X}\boldsymbol{\omega} - \boldsymbol{y})$

subject to $\boldsymbol{\omega}^T \boldsymbol{\omega} \leq C$

0,0 $\widehat{\boldsymbol{\omega}}$ $\nabla_{\omega} \ell_{\mathcal{D}}(\widehat{\omega}_{MAP}) = -2\lambda_{C}\widehat{\omega}_{MAP} \nabla_{\omega} \ell_{\mathcal{P}}(\widehat{\omega}_{MAP})$ $\nabla_{\bm{\omega}} \ell_\mathcal{D}(\widehat{\bm{\omega}}_{MAP}) \propto -2\widehat{\bm{\omega}}_{MAP}$ $\nabla_{\boldsymbol{\omega}} \ell_\mathcal{D}(\widehat{\boldsymbol{\omega}}_{MAP}) + 2 \lambda_\mathcal{C} \widehat{\boldsymbol{\omega}}_{MAP} = 0$ $\nabla_{\boldsymbol{\omega}} (\ell_{\mathcal{D}}(\widehat{\boldsymbol{\omega}}_{MAP}) + \lambda_{\mathcal{C}}(\widehat{\boldsymbol{\omega}}_{MAP})^T \widehat{\boldsymbol{\omega}}_{MAP}) = 0$ $\boldsymbol{\omega}^T \boldsymbol{\omega} = C$ $\widehat{\boldsymbol{\omega}}$

 $\ell_{\mathcal{D}}(\boldsymbol{\omega})$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution

Building a Probabilistic **Classifier**

Define a decision rule

- Given a test data point x' , predict its label \hat{y} using the *posterior distribution* $P(Y = y | X = x')$
- Common choice: $\hat{y} = \argmax P(Y = y | X = x')$ \overline{y}
- Model the posterior distribution
	- Option 1 Model $P(Y|X)$ directly as some function of X (today!)
	- Option 2 Use Bayes' rule (later):

 $P(Y|X) = \frac{P(X|Y) P(Y)}{P(X)} \propto P(X|Y) P(Y)$

Logistic Function

Stochastic **Gradient** Descent vs. Gradient **Descent**

Gradient Descent Stochastic Gradient Descent

Linear Decision Boundaries: Example

Goal: learn classifiers of the form $h(x) =$ $sign(w^T x + b)$ (assuming $y \in \{-1, +1\}$

Key question: how do we learn the *parameters*, w ?

Combining Perceptrons

Building a

 $\text{sign}(-\text{sign}(\bm{w}_{1}^{T}\bm{x}) + \text{sign}(\bm{w}_{2}^{T}\bm{x}) - 1.5) + 1.5)$ $h(x) = sign(sign(sign(w_1^T x) - sign(w_2^T x) - 1.5) +$

(Fully - Connected) Feed Forward Neural Network

Backpropagation

• Input: $W^{(1)}$, ..., $W^{(L)}$ and $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, y^{(n)})\}$ $n=1$ \boldsymbol{N} • Initialize: $\ell_{\mathcal{D}} = 0$ and $G^{(l)} = 0 \odot W^{(l)}$ $\forall l = 1, ..., L$ \cdot For $n=1,...,N$ • Run forward propagation with $\boldsymbol{x}^{(n)}$ to get $\boldsymbol{o}^{(1)}$, ..., $\boldsymbol{o}^{(L)}$ • (Optional) Increment $\ell_{\mathcal{D}}$: $\ell_{\mathcal{D}} = \ell_{\mathcal{D}} + \left(o^{(L)} - y^{(n)}\right)^2$ • Initialize: $\delta^{(L)} = 2\left(o_1^{(L)} - y^{(n)}\right)\left(1 - \left(o_1^{(L)}\right)^2\right)$ • For $l = L - 1, ..., 1$ • Compute $\boldsymbol{\delta}^{(l)} = W^{(l+1)}{}^{T}$ $\boldsymbol{\delta}^{(l+1)} \odot (1 - \boldsymbol{o}^{(l)} \odot \boldsymbol{o}^{(l)})$ • Increment $G^{(l)}$: $G^{(l)} = G^{(l)} + \delta^{(l)} o^{(l-1)^T}$ • Output: $G^{(1)}$, ..., $G^{(L)}$, the gradients of $\ell_{\mathcal{D}}$ w.r.t $W^{(1)}$, ..., $W^{(L)}$ Three Approaches to **Differentiation**

• Given $f: \mathbb{R}^D \to \mathbb{R}$, compute $\nabla_x f(x) = \frac{\partial f(x)}{\partial x}$ ∂x

- 1. Finite difference method
	- Requires the ability to call $f(x)$
	- Great for checking accuracy of implementations of more complex differentiation methods
	- Computationally expensive for high-dimensional inputs
- 2. Symbolic differentiation
	- Requires systematic knowledge of derivatives
	- Can be computationally expensive if poorly implemented
- 3. Automatic differentiation (reverse mode)
	- Requires systematic knowledge of derivatives *and* an algorithm for computing $f(x)$
- Henry Chai 8/9/23 **27** • Computational cost of computing $\frac{\partial f(x)}{\partial x}$ ∂x is proportional to the cost of computing $f(x)$

Mini -batch Stochastic Gradient Descent with Momentum for Neural **Networks**

Mini-batch **Stochastic** Gradient Descent with Adaptive Gradients for **Neural Networks**

- Input: $\mathcal{D} = \{(\pmb{x}^{(n)}, y^{(n)})\}$ $n=1$ \boldsymbol{N} , $\eta_{MB}^{(0)}$, B , ϵ
- 1. Initialize all weights $W_{(0)}^{(1)}$, ..., $W_{(0)}^{(L)}$ to small, random numbers and set $t = 0$, $S_{-1}^{(l)} = 0 \odot W^{(l)}$ $\forall l = 1, ..., L$
- 2. While TERMINATION CRITERION is not satisfied
	- a. Randomly sample B data points from D, $\{(\boldsymbol{x}^{(b)}, y^{(b)})\}$ $b=1$ \boldsymbol{B}
	- b. Compute the gradient w.r.t. the sampled *batch*,

$$
G_t^{(l)} = \frac{1}{B} \sum_{b=1}^{B} \nabla_{W^{(l)}} e(\mathbf{o}^{(L)}, y^{(b)}) \ \forall \ l
$$

- c. Update $S^{(l)}$: $S_t^{(l)} = S_{t-1}^{(l)} + G_t^{(l)} \odot G_t^{(l)}$ \forall l
- d. Update $W^{(l)}: W_{t+1}^{(l)} \leftarrow W_t^{(l)} \frac{\eta_{MB}^{(0)}}{\sqrt{S_t^{(l)} + \epsilon}} \bigcirc G_t^{(l)} \ \forall \ l$
- e. Increment $t: t \leftarrow t + 1$
- Henry Chai 8/9/23 **29** • Output: $W_t^{(1)},...,W_t^{(L)}$

What is **Machine** Learning 10 -301/601? Supervised Models

• Decision Trees

• KNN

• KNN

• Naïve Bayes

• Learning Theory

• Learning Theory

• Learning Theory

• Learning Fraction

• Learning Fraction

• Learning Fraction

• Neural Networks

• Deep Learning

- -
	-
	-
	-
	-
	-
	-
-
- -
	-
- -
	-
-
-
-
- - and Kernels
	- Regularization and Overfitting
	- Experimental Design

Q: Why did we cover so many unrelated topics in the second half of the semester?

A: You never know where the next big thing in machine learning is going to come from! Vhy did we

Prices and Models

Prices and Models

Prices and Models

Prices and Models

Price Bayes

Preceptron

Preceptron

Preceptron

Preceptron

Preceptron

Preception

Preception

Preception

Preception

Preception

P

- -
	-
	-
	-
	-
	-
	-
-
- -
	-
- -
	-
-
-
-
- - and Kernels
	- Regularization and Overfitting
	- Experimental Design

What is ChatGPT?

Chatbot built on GPT 3.5 (or 4)

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model

What is ChatGPT GPT a language model?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a **probability distribution** over **sequences of words** (e.g., sentences)

Recall: 3 **Inference** Questions for Hidden Markov **Models**

1. Marginal Computation: $P(Y_t = s_j | x^{(n)})$ (or $P(Y | x^{(n)}))$

$$
P(Y | x^{(n)}) = \frac{P(x^{(n)} | Y) P(Y)}{P(x^{(n)})} = \frac{\prod_{t=1}^{T} P(x_t^{(n)} | Y_t) P(Y_t | Y_{t-1})}{P(x^{(n)})}
$$

2. Decoding:
$$
\hat{Y} = \underset{Y}{\text{argmax}} P(Y | x^{(n)})
$$

3. Evaluation: $P(x^{(n)})$

$$
P(\mathbf{x}^{(n)}) = \sum_{y \in \{\text{all possible sequences}\}} P(\mathbf{x}^{(n)} | y) P(y)
$$

What is ChatGPT GPT a *large* language model?

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative pre-trained transformer

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for *generative* pre-trained transformer
			- Generative means the model can create new sequences by **sampling** from the distribution

Sampling for Bayesian **Networks**

- Sampling from a Bayesian network is easy!
	- 1. Sample all free variables $(H \text{ and } W)$
	- 2. Sample any variable whose parents have already been sampled
	- 3. Stop once all variables have been sampled

 $P(S = 1) \approx \frac{\text{\# of samples w}}{\text{\# of samples}}$

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative *pre-trained* transformer
			- Pre-training is the process of initializing some or all model parameters using a dataset or objective function other than the actual task
			- Pre-trained parameters are then *fine-tuned* to the actual task

Pre-training (Bengio et al., 2006) The Error rates on MNIST

-
- Primary finding: pre-training is crucial to unlock the benefits of deep learning!
- Auto-associator is another word for **autoencoder**

Deep Autoencoders

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative *pre-trained* transformer
			- GPT parameters are fine-tuned in part using

reinforcement learning with human feedback

Reinforcement Learning with Human Feedback (RLHF)

- Insight: for many machine learning tasks, there is no universal ground truth, e.g., there are lots of possible ways to respond to a question or prompt.
- Idea: solve the problem using reinforcement learning and use human feedback as the reward function by having people determine how good or bad some action is.
- Issue: if the state/action space is huge, in order to train a good model, we would need tons and tons of feedback and human annotation is expensive…
- Idea: use a small number of annotations to learn a reward function!

Reinforcement Learning with Human Feedback (RLHF)

Step1

behavior.

with supervised

learning.

Collect demonstration data and train a supervised policy.

A prompt is sampled from our Explain reinforcement prompt dataset. learning to a 6 year old. A labeler demonstrates the desired output

We give treats and punishments to teach...

 Ω

SFT This data is used to fine-tune GPT-3.5 自自自 A prompt and several model outputs are

to worst.

Step 2

sampled.

A labeler ranks the outputs from best

Collect comparison data and

train a reward model.

This data is used to train our reward model.

 $\boldsymbol{\Omega}$ ◉ In reinforcement Explain rewards... learning, the
agent is... \bullet \bullet In machine
learning... We give treats and
punishments to
teach...

 $\mathbf C$

Explain reinforcement

learning to a 6 year old.

 $\mathbf{D} \cdot \mathbf{O} \cdot \mathbf{O} \cdot \mathbf{O}$

 \mathbf{D} > \mathbf{G} > \mathbf{A} > \mathbf{B}

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative pre-trained *transformer*
			- A transformer is a **neural network architecture** that uses just *attention* mechanisms to model sequences ("attention is all you need").

Attention

Bidirectional Recurrent Neural **Networks**

$$
\boldsymbol{o}_{t}^{(1)} = \left[1, \theta\left(W^{(1)} \boldsymbol{x}_{t}^{(i)} + W^{(f)} \boldsymbol{o}_{t-1}^{(1)}\right)\right]^T \text{ and } \boldsymbol{o}_{t}^{(2)} = \left[1, \theta\left(W^{(2)} \boldsymbol{o}_{t}^{(1)} + W^{(b)} \boldsymbol{o}_{t+1}^{(2)}\right)\right]^T
$$

Multi-headed Attention

Scaled Dot-Product Attention

Multi-Head Attention Linear Concat Scaled Dot-Product 9– հ Attention Linear Linear Linear Κ Q V

AlexNet(Krizhevsky et al., 2012)

Transformers

Figure 1: The Transformer - model architecture.

What is ChatGPT GPT?

- Chatbot built on GPT 3.5 (or 4)
	- GPT 3.5 is a large language model
		- A language model is just a probability distribution over sequences of words (e.g., sentences)
		- GPT is short for generative pre-trained *transformer*
			- Lots of other relevant implementation details:
				- Optimizer: Adam = **SGD** with **Momentum** + RMSprop (variant of **AdaGrad**)
				- Regularization: Normalized weight decay (variant of **L2 regularization**)
				- Hyperparameter tuning, bias mitigation, etc…

Key Takeaways

 You are ready (at least in theory) to go out and learn about the latest machine learning models/concepts

 You're also equipped to succeed in subsequent machine learning courses you might take

 You all have been a great class, thanks for an amazing summer!