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Front Matter

� Announcements: 

� PA1 released 5/18, due 5/25 at 11:59 PM

� Quiz 1: Decision Trees on 5/19 (tomorrow!) 

� The quiz will begin promptly at 11 AM, please show 

up on time!

� Closed book, closed notes, no calculators.

� Recommended Readings:

� Daumé III, Chapter 2: Geometry and Nearest Neighbors
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http://ciml.info/dl/v0_99/ciml-v0_99-ch03.pdf
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris virginica 
(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Source: https://en.wikipedia.org/wiki/Iris_flower_data_setHenry Chai - 5/22/23
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris virginica 
(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Source: https://en.wikipedia.org/wiki/Iris_flower_data_setHenry Chai - 5/22/23
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The Duck Test
Henry Chai - 5/22/23 7Source: https://en.wikipedia.org/wiki/Duck_test
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The Duck Test 
for Machine 
Learning

� Classify a point as the label of the “most similar” 

training point

� Idea: given real-valued features, we can use a distance 
metric to determine how similar two data points are

� A common choice is Euclidean distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙% & = '
'()

*

𝑥' − 𝑥'% &

� An alternative is the Manhattan distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙% ) = '
'()

*

𝑥' − 𝑥'%
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Nearest 
Neighbor: 
Pseudocode

Henry Chai - 5/22/23 9

def train(𝒟):

store 𝒟

def predict(𝒙′):

find the nearest neighbor to 𝒙′ in 𝒟, 𝒙 +

return 𝑦 +
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Nearest 
Neighbor: 
Example
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Nearest 
Neighbor: 
Example
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Nearest 
Neighbor: 
Example



The Nearest 
Neighbor 
Model

� Requires no training!

� Always has zero training error! 

� A data point is always its own nearest neighbor

⋮

� Always has zero training error…

Henry Chai - 5/22/23 13



Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)

� Claim: under certain conditions, as 𝑛 → ∞, with high 

probability, the true error rate of the nearest neighbor 
model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 
contained in the nearest neighbor.”

Henry Chai - 5/22/23 14Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964
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But why limit 
ourselves to 
just one 
neighbor?

� Claim: under certain conditions, as 𝑛 → ∞, with high 

probability, the true error rate of the nearest neighbor 
model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 
contained in the nearest neighbor.”
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𝑘-Nearest 
Neighbors 
(𝑘NN)

� Classify a point as the most common label among the 

labels of the 𝑘 nearest training points

� Tie-breaking (in case of even 𝑘 and/or more than 2 classes) 

� Weight votes by distance

� Remove furthest neighbor

� Add next closest neighbor

� Use a different distance metric
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𝑘-Nearest 
Neighbors 
(𝑘NN):
Pseudocode
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def train(𝒟):

store 𝒟

def predict(𝒙′):

return majority_vote(labels of the 𝑘
nearest neighbors to 𝒙′ in 𝒟)



𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data



Setting 𝑘

� When 𝑘 = 1:

� many, complicated decision boundaries 

� may overfit

� When 𝑘 = 𝑁:

� no decision boundaries; always predicts the most 
common label in the training data 

� may underfit

� 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘
affects how well the learned hypothesis will generalize
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Setting 𝑘

� Theorem: 

� If 𝑘 is some function of 𝑁 s.t. 𝑘 𝑁 → ∞ and , -
-

→ 0

as 𝑁 → ∞ … 

� … then (under certain assumptions) the true error of a 
𝑘NN model → the Bayes error rate 

� Practical heuristics:

� 𝑘 = 𝑁

� 𝑘 = 3

� Can also set 𝑘 through (cross-)validation (stay tuned)
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Aside: 𝑘NN 
and Categorical 
Features

� 𝑘NNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

2. Using a distance metric that works over categorical 
features e.g., the Hamming distance: 

𝑑 𝒙, 𝒙% = '
'()

*

𝟙 𝑥' = 𝑥'%

Henry Chai - 5/22/23 31

Cholesterol 

Normal

Normal

Abnormal

Normal 
Cholesterol?

Abnormal 
Cholesterol?

1 0
1 0
0 1



� Similar points should have similar labels and all features 
are equivalently important for determining similarity

� Feature scale can dramatically influence results!

𝑘NN: 
Inductive Bias
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Curse of 
Dimensionality

� The fundamental assumption of 𝑘NN is that “similar” 

points or points close to one another should have the 
same label

� The closer two points are, the more confident we can 
be that they will have the same label

� As the dimensionality of the input grows, the less likely 
it is that two random points will be close

� As the dimensionality of the input grows, it takes more 
points to “cover” the input space
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� Suppose you independently draw two one-dimensional 

points between 0 and 1 uniformly at random:

� 𝔼 𝑑 𝑥, 𝑥% = 𝔼 𝑥 − 𝑥% &

� 𝔼 𝑑 𝑥, 𝑥% = 𝔼 𝑥& − 2𝔼 𝑥 𝔼 𝑥% + 𝔼 𝑥%&

� 𝔼 𝑑 𝑥, 𝑥% = 2𝔼 𝑥& − 2𝔼 𝑥 & = 2 )
.
− 2 )

&

&
= )

/

0 1
𝑥′ 𝑥

Curse of 
Dimensionality

𝑑 𝑥, 𝑥!
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� Suppose you independently draw two two-dimensional 
points in the unit square uniformly at random:

� 𝔼 𝑑 𝑥, 𝑥% = 𝔼 𝑥) − 𝑥)% & + 𝑥& − 𝑥&% &

� 𝔼 𝑑 𝑥, 𝑥% = 2𝔼 𝑥) − 𝑥)% &

� 𝔼 𝑑 𝑥, 𝑥% = 2 )
/ = )

.

0 1

1

𝑥

𝑥′

Curse of 
Dimensionality

𝑑 𝑥, 𝑥 !
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� Suppose you independently draw two three-dimensional 
points in the unit cube uniformly at random:

� 𝔼 𝑑 𝑥, 𝑥% = 𝔼 𝑥) − 𝑥)% & + 𝑥& − 𝑥&% & + 𝑥. − 𝑥.% &

� 𝔼 𝑑 𝑥, 𝑥% = 3𝔼 𝑥) − 𝑥)% &

� 𝔼 𝑑 𝑥, 𝑥% = 3 )
/ = )

&

Curse of 
Dimensionality 0

11

𝑥𝑥′

𝑑 𝑥, 𝑥 !

1
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Curse of 
Dimensionality

� Assume all dimensions of the input are independent 

and identically distributed. 

� Given 𝑁 + 1 data points, 𝒟 = 𝒙 ) , … , 𝒙 - and 𝒙∗, let 

𝑑5 = max
𝒙∈𝒟

𝑑 𝒙, 𝒙∗ and 𝑑9 = min
𝒙∈𝒟

𝑑 𝒙, 𝒙∗

� Then

lim
*→;

𝔼
𝑑5 − 𝑑9
𝑑9

→ 0
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Curing the 
Curse of 
Dimensionality

� More data

� Fewer dimensions

� Blessing of non-uniformity: data from the real world is 
rarely uniformly distributed across the input space
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𝑘NN:
Pros and Cons

� Pros:
� Intuitive / explainable
� No training / retraining
� Provably near-optimal in terms of true error rate

� Cons:
� Computationally expensive

� Always needs to store all data: 𝑂 𝑁𝐷
� Finding the 𝑘 closest points in 𝐷 dimensions: 
𝑂 𝑁𝐷 + 𝑁 log 𝑘
� Can be sped up through clever use of data 

structures (trades off training and test costs) 
� Can be approximated using stochastic methods

� Affected by feature scale
� Suffers from the curse of dimensionality
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Key Takeaways

� Real-valued features and decision boundaries

� Nearest neighbor model and generalization guarantees

� 𝑘NN “training” and prediction

� Effect of 𝑘 on model complexity

� 𝑘NN inductive bias

� Curse of dimensionality 
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