10-301/601: Introduction to Machine Learning Lecture 4 –KNNs

Henry Chai 5/22/23

Front Matter

- Announcements:
	- · PA1 released 5/18, due 5,
	- · Quiz 1: Decision Trees on
		- · The quiz will begin pro up on time!
		- · Closed book, closed n
- Recommended Readings:
	- · Daumé III, Chapter 3: Geo

Real-valued Features

Fisher Iris Dataset

Fisher (1936) used 150 meas from 3 different species: Iris (1), Iris versicolor (2) collecte

Fisher Iris Dataset

Fisher (1936) used 150 meas from 3 different species: Iris (1), Iris versicolor (2) collecte

Fisher Iris Dataset

The Free Encyclopedia

Main page **Contents**

Featured content Current events

Random article

Article Talk

Duck test

From Wikipedia, the free encyclopedia

For the use of "the duck test" within the Wikiped

The duck test is a form of abductive reasoning. Thi

If it looks like a duck, swims like a duck, and

The Duck Test

The Duck Test for Machine Learning

- Classify a point as the label of the "most similar" training point
- · Idea: given real-valued features, we can use a distance metric to determine how similar two data points are

 \mathcal{P}_{λ}

 \mathcal{L}

 $\int d \cdot l$

 $\sqrt{\frac{d^2}{2}}$

A common choice is Euclidean distance:

• An alternative is the Manhattan distance:

 $d(x, x') = ||x - y|$

, $\frac{1}{2}$, \frac

Nearest Neighbor: Pseudocode

$$
\begin{array}{ll}\n\text{def} & \text{train}(D_{train}) : \\
\text{check} & \text{Dirain} \\
\text{def} & \text{predict}(x^1) : \\
\text{find} & \text{In} \\
\text{final} & \text{meas} \\
\text{in } D_{train}, x^{(1)}, \text{according to} \\
\text{distance matrix} & d\n\end{array}
$$

Nearest Neighbor: Example

Nearest Neighbor: Example

Nearest Neighbor: Example

The Nearest Neighbor Model

Requires no training!

- Always has zero training error!
	- *A data point is always its own nearest neighbor*

 $\ddot{\bullet}$

Always has zero training error…

Generalization of Nearest **Neighbor** (Cover and Hart, 1967)

- Claim: under certain condition probability, the true error rate model ≤ 2 * the Bayes error
- · Interpretation: "In this sense, classification information in a contained in the nearest neig

But why limit ourselves to just one neighbor?

- Claim: under certain condition probability, the true error rate model ≤ 2 * the Bayes error
- \cdot Interpretation: "In this sense, classification information in a contained in the nearest neig

-Nearest **Neighbors** (kNN)

- Classify a point as the most common label among the labels of the k nearest training points
- \cdot Tie-breaking (in case of even k and/or more than 2 classes) $=$ add a neighbor R_{RMAMA} \sim 1015 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ \overline{U} Henry Chai - 5/22/23 **16**

k-Nearest Neighbors (kNN) : Pseudocode

$$
def train (D_{train}):\nstore D_{train}\ndef predict (x')\nreturn majority-vote (labels of the\n hearest neighbors to\n k nearest neighbors to\n x' in D train according\n to distance most to
$$

3-Class classification ($k = 2$, weights = 'uniform')

3-Class classification ($k = 3$, weights = 'uniform')

3-Class classification ($k = 5$, weights = 'uniform')

3-Class classification ($k = 10$, weights = 'uniform')

3-Class classification ($k = 20$, weights = 'uniform')

3-Class classification ($k = 50$, weights = 'uniform')

3-Class classification ($k = 100$, weights = 'uniform')

3-Class classification ($k = 120$, weights = 'uniform')

 \bigstar 这

3-Class classification ($k = 150$, weights = 'uniform')

Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- may overfit
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data
	- may underfit
- \cdot k controls the complexity of the hypothesis set \Longrightarrow k affects how well the learned hypothesis will generalize

Setting k

- Theorem:
	- \cdot If k is some function of N s.t. $k(N) \rightarrow \infty$ and $\frac{k(N)}{N}$ \overline{N} $\rightarrow 0$ as $N \to \infty$...
	- … then (under certain assumptions) the true error of a kNN model \rightarrow the Bayes error rate
- Practical heuristics:
	- $\cdot k = |\sqrt{N}|$
	- $\cdot k = 3$
- Can also set k through (cross-)validation (stay tuned)

Aside: kNN and Categorical Features

- \cdot kNNs are compatible with categorical features, either by:
	- 1. Converting categorical features into binary ones:

2. Using a distance metric that works over categorical features e.g., the Hamming distance:

$$
d(\pmb{x}, \pmb{x}') = \sum_{d=1}^{D} \pmb{\mathbb{1}}(x_d \neq x'_d)
$$

 kNN : Inductive Bias

 $d(x,x') = \sqrt{x^2+3^2}$

 Similar points should have similar labels and *all features are equivalently important for determining similarity*

 $d(x_{new}, x_{new}') =$

Feature scale can dramatically influence results!

- \cdot The fundamental assumption of kNN is that "similar" points or points close to one another should have the same label
- The closer two points are, the more confident we can be that they will have the same label
- As the dimensionality of the input grows, the less likely it is that two random points will be close
- As the dimensionality of the input grows, it takes more points to "cover" the input space

 Suppose you independently draw two one-dimensional points between 0 and 1 uniformly at random:

 Suppose you independently draw two two-dimensional points in the unit square uniformly at random:

Curse of Dimensionality and the contract of the contrac

 Suppose you independently draw two three-dimensional points in the unit cube uniformly at random:

- Assume all dimensions of the input are independent and identically distributed.
- Given $N + 1$ data points, $\mathcal{D} = \{ \boldsymbol{x}^{(1)}, ..., \boldsymbol{x}^{(N)} \}$ and \boldsymbol{x}^* , let d_+ = max $x \in \mathcal{D}$ $d(x, x^*)$ and $d_- = \min_{x \in \mathcal{D}}$ $x \in \mathcal{D}$ $d(x, x^*)$
- Then

lim $\overline{D\rightarrow\infty}$ \mathbb{E} $d_+ - d_$ d_{-} $\rightarrow 0$ Curing the Curse of **Dimensionality**

- More data
- Fewer dimensions
- Blessing of non-uniformity: data from the real world is rarely uniformly distributed across the input space

kNN : Pros and Cons

- Pros:
	- Intuitive / explainable
	- No training / retraining
	- Provably near-optimal in terms of true error rate

• Cons:

- Computationally expensive
	- Always needs to store all data: $O(ND)$
	- \cdot Finding the k closest points in D dimensions: $O(ND + N \log(k))$
		- Can be sped up through clever use of data structures (trades off training and test costs)
		- Can be approximated using stochastic methods
- Affected by feature scale
- Suffers from the curse of dimensionality

Key Takeaways

- Real-valued features and decision boundaries
- Nearest neighbor model and generalization guarantees
- \cdot kNN "training" and prediction
- **Effect of** k **on model complexity**
- \cdot kNN inductive bias
- Curse of dimensionality