10-301/601: Introduction to Machine Learning Lecture 5 – Model **Selection**

Henry Chai

5/23/23

Lecture 5 Polls

0 done

 \sim 50 underway construction of the const

Front Matter

- Announcements:
	- · PA1 released 5/18, due 5,
- · Recommended Readings:
	- · Daumé III, Chapter 2: Lim

Recall: Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- may overfit
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data
	- · may underfit
- \cdot k controls the complexity of the hypothesis set \Longrightarrow k affects how well the learned hypothesis will generalize

Recall: Setting k

- Theorem:
	- \cdot If k is some function of N s.t. $k(N) \rightarrow \infty$ and $\frac{k(N)}{N}$ \boldsymbol{N} $\rightarrow 0$ as $N \rightarrow \infty$...
	- ... then (under certain assumptions) the true error of a kNN model \rightarrow the Bayes error rate
- Practical heuristics:
	- $\cdot k = |\sqrt{N}|$
	- $\cdot k = 3$
- \cdot This is a question of **model selection**: each value of k corresponds to a different "model"

Model Selection

- A **model** is a (typically infinite) set of classifiers that a learning algorithm searches through to find the best one (the "hypothesis space")
- **· Model parameters** are the numeric values or structure that are selected by the learning algorithm
- **Hyperparameters** are the tunable aspects of the model that are not selected by the learning algorithm

Example: Decision Trees

- \cdot Model = set of all possible trees, potentially narrowed down according to the hyperparameters (see below)
- Model parameters = structure of a specific tree e.g., splits, split order, predictions at leaf nodes,
- Hyperparameters = splitting criterion, maxdepth, tie-breaking procedures, etc...

Model Selection

- A model is a (typically infinite) set of classifiers that a learning algorithm searches through to find the best one (the "hypothesis space")
- **Model parameters** are the numeric values or structure that are selected by the learning algorithm
- **Hyperparameters** are the tunable aspects of the model that are not selected by the learning algorithm

Example: kNN

 \cdot Model = set of all possible nearest neighbors classifiers

• Model parameters = none! kNN is a "nonparametric model"

• Hyperparameters = k

Model **Selection** with **Test Sets**

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using D_{test} and choose the one with lowest test error:

> $\dot{m} = \argmin_{m \in \{1, ..., M\}} err(h_m, D_{test})$ $m \in \{1,...,M\}$

Model Selection with Test Sets? Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using D_{test} and choose the one with lowest test error:

> $\dot{m} = \arg\!\min_{m \in \{1, \ldots, M\}} err(h_m, \mathcal{D}_{test})$ $m \in \{1,...,M\}$

 \cdot Is $err(h_{\hat{m}}, D_{test})$ a good estimate of $err(h_{\hat{m}})$?

Model Selection with **Validation Sets** Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models: $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only D_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\dot{m} = \argmin$ $m \in \{1,...,M\}$ $err(h_m, D_{val})$ • Now $err(h_{\hat{m}}, D_{test})$ is a good estimate of $err(h_{\hat{m}})$!

Hyperparameter **Optimization** with **Validation Sets**

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings: $\theta_1, \theta_2, ..., \theta_M$

- Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$
- Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\dot{m} = \underset{m \in \{1, \ldots, M\}}{\text{argmin}} \text{err}(h_m, D_{val})$ $m \in \{1,...,M\}$

• Now $err(h_{\hat{m}}, D_{test})$ is a good estimate of $err(h_{\hat{m}})$!

Setting k for kNN with **Validation Sets**

k NN train and validation errors on Fisher Iris data

How should we partition our dataset?

k NN train and validation errors on Fisher Iris data

• Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \underline{\mathcal{D}} \backslash \underline{\mathcal{D}}_i$ (all folds other than $\underline{\mathcal{D}}_i$) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{CV_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{CV_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$

• Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{CV_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{CV_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$

• Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{CV_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given $\mathcal D$, split $\mathcal D$ into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{CV_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

• Special case when $K = N$: Leave-one-out cross-validation

• Choosing between M candidates requires training MK times

Summary

Hyperparameter **Optimization**

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings:

 $\theta_1, \theta_2, ..., \theta_M$

- Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$
- Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\hat{m} = \underset{m \in \{1, \ldots, M\}}{\text{argmin}} \text{err}(h_m, \mathcal{D}_{val})$ $m \in \{1,...,M\}$

• Now $err(h_{\hat{m}}^+, D_{test})$ is a good estimate of $err(h_{\hat{m}}^+)$!

Pro tip: train your final model using *both* training and validation datasets

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings:

 $\theta_1, \theta_2, ..., \theta_M$

- Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$
- Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\hat{m} = \underset{m \in \{1, \ldots, M\}}{\text{argmin}} \text{err}(h_m, \mathcal{D}_{val})$ $m \in \{1,...,M\}$

• Train a new model on \mathcal{D}_{train} ∪ \mathcal{D}_{val} using $\theta_{\widehat{m}}$, $\left\langle h_{\widehat{m}}^{\pm}\right\rangle$

• Now $err(h_{\hat{m}}^+, D_{test})$ is a good estimate of $err(h_{\hat{m}}^+)$!

How do we pick hyperparameter settings to try?

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings:

 $\theta_1, \theta_2, ..., \theta_M$

• Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$

Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

> $\hat{m} = \underset{m \in \{1, \ldots, M\}}{\text{argmin}} \text{err}(h_m, \mathcal{D}_{val})$ $m \in \{1,...,M\}$

• Train a new model on \mathcal{D}_{train} ∪ \mathcal{D}_{val} using $\theta_{\widehat{m}}$, $h^{\pm}_{\widehat{m}}$

• Now $err(h_{\hat{m}}^+, D_{test})$ is a good estimate of $err(h_{\hat{m}}^+)$!

General **Methods** for Hyperparameter **Optimization**

- · Idea: set the hyperparameter performance metric of the me
- Issue: if we have many hyper take on lots of different value test all possible combinations
- Commonly used methods:
	- Grid search
	- Random search
	- · Bayesian optimization (us to optimize the hyperpara https://arxiv.org/pdf/181
		- Evolutionary algorithms
		- Graduate-student descen

Grid Search vs. Random Search (Bergstra and Bengio, 2012)

Grid Layout

In general, which hyperparameter optimization method do you think will perform better?

Grid Search

Random Search

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Henry Chai - 5/23/23 **26**

Grid Search vs. Random Search (Bergstra and Bengio, 2012)

Important parameter

Grid and random search of nine trial $f(x, y) = g(x) + h(y) \approx g(x)$ with Above each square $g(x)$ is shown in $h(y)$ is shown in yellow. With grid se in three distinct places. With random distinct values of g . This failure of gr the exception in high dimensional hy Key Takeaways

- Differences between training, validation and test datasets in the model selection process
- Cross-validation for model selection
- Relationship between training, hyperparameter optimization and model selection
- Grid search vs. random search for hyperparameter optimization