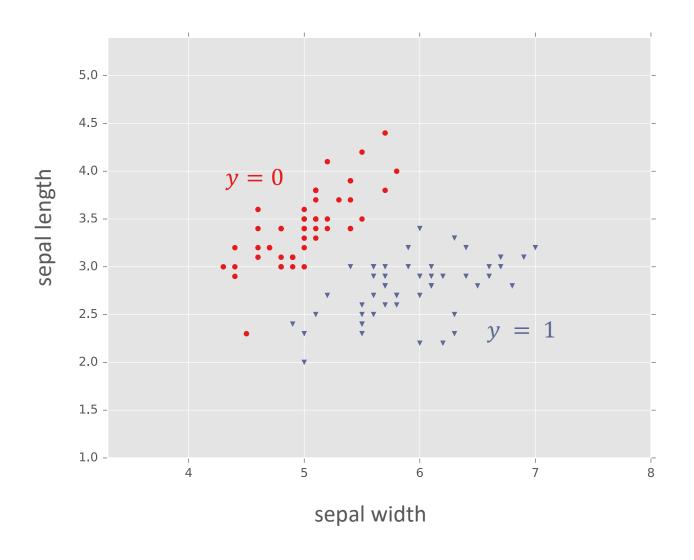
10-301/601: Introduction to Machine Learning Lecture 6 – Perceptron

Front Matter

- Announcements:
 - PA1 released 5/18, due 5/25 (tomorrow) at 11:59 PM
 - PA2 released 5/25 (tomorrow), due 6/01 at 11:59 PM
 - No lecture or OH on Memorial Day (5/29);
 please plan accordingly!
- Recommended Readings:
 - Mitchell, Chapter 4.4

Recall: Fisher Iris Dataset



Linear Algebra Review

 Notation: in this class vectors will be assumed to be column vectors by default, i.e.,

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_D \end{bmatrix}$$
 and $\mathbf{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix}$

• The dot product between two **D**-dimensional vectors is

$$\boldsymbol{a}^T \boldsymbol{b} = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_D \end{bmatrix} = \sum_{d=1}^D a_d b_d$$

- The L2-norm of $\boldsymbol{a} = \|\boldsymbol{a}\|_2 = \sqrt{\boldsymbol{a}^T \boldsymbol{a}}$
- Two vectors are orthogonal iff

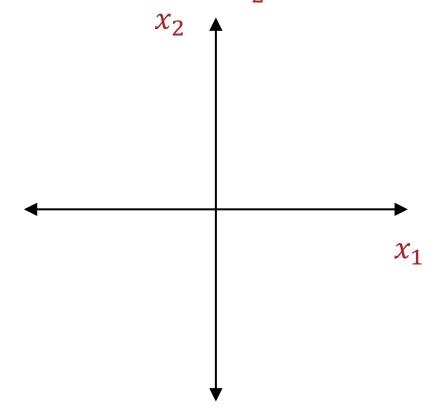
$$\mathbf{a}^T \mathbf{b} = 0$$

Geometry Warm-up

1. On the axes below, draw the region corresponding to $w_1x_1 + w_2x_2 + b > 0$

where $w_1 = 1$, $w_2 = 2$ and b = -4.

2. Then draw the vector $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

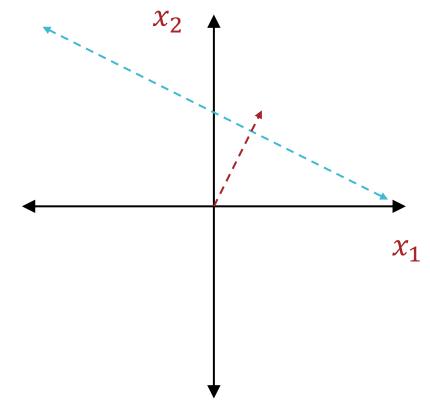


Geometry Warm-up

1. On the axes below, draw the region corresponding to $w_1x_1 + w_2x_2 + b > 0$

where $w_1 = 1$, $w_2 = 2$ and b = -4.

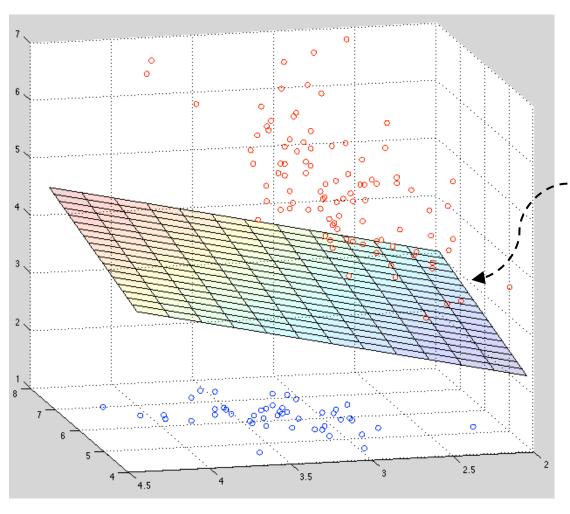
2. Then draw the vector $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$



Linear Decision Boundaries

- In 2 dimensions, $w_1x_1 + w_2x_2 + b = 0$ defines a line
- In 3 dimensions, $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$ defines a plane
- In 4+ dimensions, $\mathbf{w}^T \mathbf{x} + \mathbf{b} = \mathbf{0}$ defines a hyperplane
 - The vector \mathbf{w} is always orthogonal to this hyperplane and always points in the direction where $\mathbf{w}^T \mathbf{x} + b > 0$!
- A hyperplane creates two halfspaces:
 - $S_+ = \{x: \mathbf{w}^T \mathbf{x} + b > 0\}$ or all \mathbf{x} s.t. $\mathbf{w}^T \mathbf{x} + b$ is positive
 - $S_- = \{x: \mathbf{w}^T \mathbf{x} + b < 0\}$ or all \mathbf{x} s.t. $\mathbf{w}^T \mathbf{x} + b$ is negative

Linear Decision Boundaries: Example



Goal: learn classifiers of the form h(x) = $sign(w^Tx + b)$ (assuming $y \in \{-1, +1\}$)

Key question: how do we learn the parameters, w?

Online Learning

- So far, we've been learning in the batch setting, where we have access to the entire training dataset at once
- A common alternative is the *online* setting, where examples arrive gradually and we learn continuously
- Examples of online learning:
 - Predicting stock prices
 - Recommender systems
 - Medical diagnosis
 - Robotics

Online
Learning:
Setup

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x^{(t)}$
 - Predict its label, $\hat{y} = h_{w,b}(x^{(t)})$
 - Observe its true label, $y^{(t)}$
 - Pay a penalty if we made a mistake, $\hat{y} \neq y^{(t)}$
 - Update the parameters, w and b

Goal: minimize the number of mistakes made

(Online) Perceptron Learning Algorithm

Initialize the weight vector and intercept to all zeros:

$$\mathbf{w} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$
 and $b = 0$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 \text{ if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 \text{ otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified a positive example $(y^{(t)} = +1, \hat{y} = -1)$:

•
$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x}^{(t)}$$

•
$$b \leftarrow b + 1$$

• If we misclassified a negative example $(y^{(t)} = -1, \hat{y} = +1)$:

•
$$\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x}^{(t)}$$

•
$$b \leftarrow b - 1$$

(Online) Perceptron Learning Algorithm

Initialize the weight vector and intercept to all zeros:

$$\mathbf{w} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$
 and $b = 0$

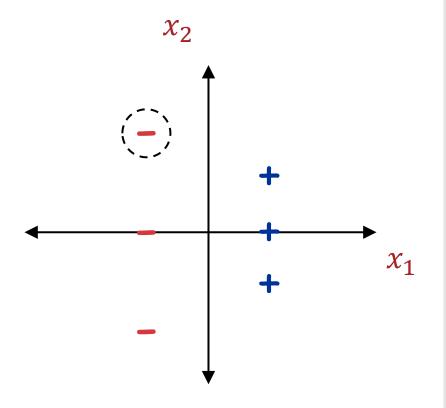
- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 \text{ if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 \text{ otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example $(y^{(t)} \neq \hat{y})$:

•
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(t)} \mathbf{x}^{(t)}$$

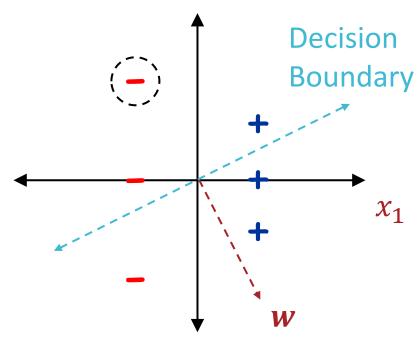
•
$$b \leftarrow b + y^{(t)}$$

x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	_	Yes

$$\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$



x_1	x_2	\hat{y}	y	Mistake?
-1	2	+	_	Yes

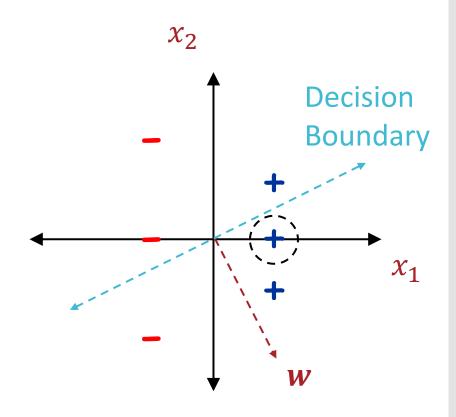


 χ_2

$$\mathbf{w} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(1)} \mathbf{x}^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

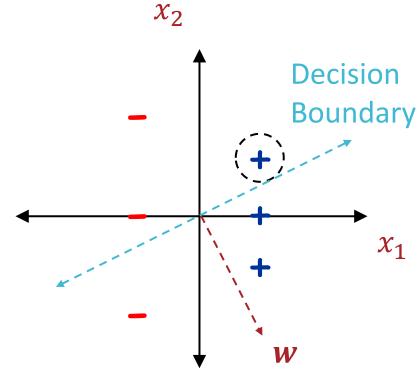
x_1	x_2	\widehat{y}	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No

$$w = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$



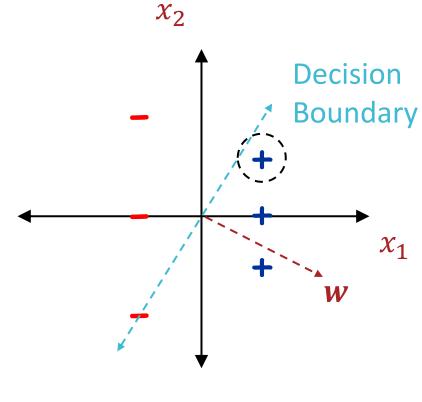
15

x_1	x_2	\widehat{y}	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	1	_	+	Yes



$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(3)} \mathbf{x}^{(3)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

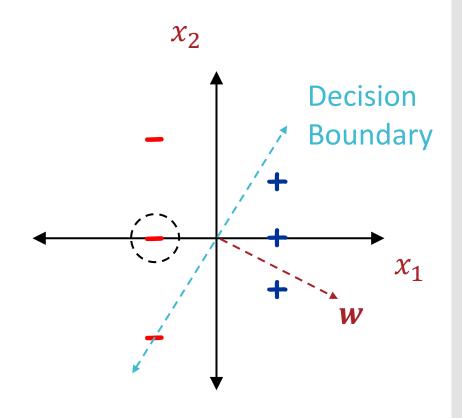
x_1	x_2	\widehat{y}	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	1	_	+	Yes



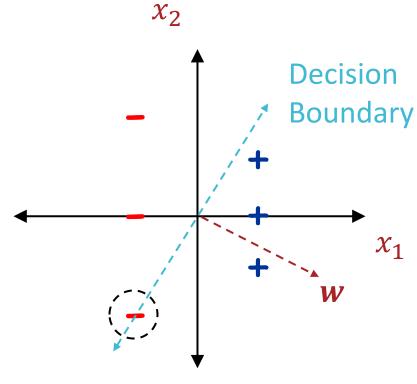
$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(3)} \mathbf{x}^{(3)} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

x_1	x_2	\widehat{y}	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	1	_	+	Yes
-1	0	_	_	No

$$w = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$



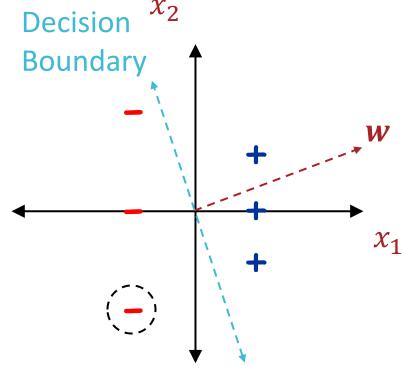
x_1	x_2	\widehat{y}	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	1	_	+	Yes
-1	0	_	_	No
-1	-2	+	_	Yes



$$\mathbf{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\mathbf{w} \leftarrow \mathbf{w} + y^{(5)} \mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

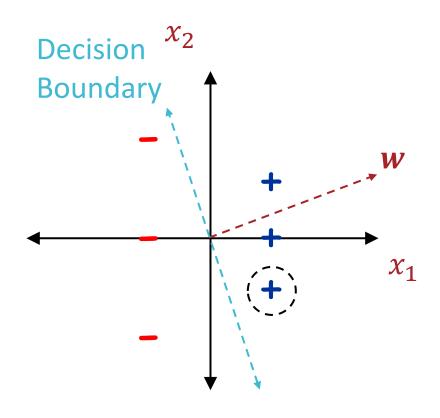
x_1	x_2	\widehat{y}	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	1	_	+	Yes
-1	0	_	_	No
-1	-2	+	_	Yes



$$\mathbf{w} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(5)} \mathbf{x}^{(5)} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \begin{bmatrix} -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

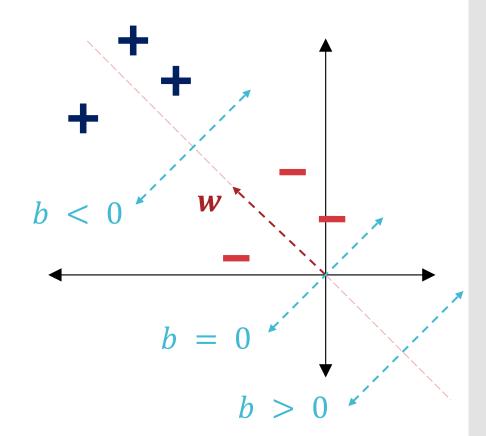
x_1	x_2	ŷ	y	Mistake?
-1	2	+	_	Yes
1	0	+	+	No
1	1	_	+	Yes
-1	0	_	_	No
-1	-2	+	_	Yes
1	-1	+	+	No

$$w = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$



Updating the Intercept

- The intercept shifts the decision boundary off the origin
 - Increasing b shifts
 the decision
 boundary towards
 the negative side
 - Decreasing b shifts the decision boundary towards the positive side



Notational Hack

If we add a 1 to the beginning of every example e.g.,

$$\boldsymbol{x}' = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \dots$$

... we can just fold the intercept into the weight vector!

$$\boldsymbol{\theta} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \rightarrow \boldsymbol{\theta}^T \boldsymbol{x}' = \boldsymbol{w}^T \boldsymbol{x} + b$$

(Online) Perceptron Learning Algorithm

Initialize the weight vector and intercept to all zeros:

$$\mathbf{w} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$
 and $b = 0$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b) = \begin{cases} +1 \text{ if } \mathbf{w}^T \mathbf{x} + b \ge 0 \\ -1 \text{ otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example $(y^{(t)} \neq \hat{y})$:

•
$$\mathbf{w} \leftarrow \mathbf{w} + y^{(t)} \mathbf{x}^{(t)}$$

•
$$b \leftarrow b + y^{(t)}$$

(Online) Perceptron Learning Algorithm

Initialize the parameters to all zeros:

$$\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$
 1 prepended to $\boldsymbol{x}^{(t)}$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}\left(\boldsymbol{\theta}^T \boldsymbol{x'}^{(t)}\right) = \begin{cases} +1 \text{ if } \boldsymbol{\theta}^T \boldsymbol{x'}^{(t)} \geq 0 \\ -1 \text{ otherwise} \end{cases}$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example $(y^{(t)} \neq \hat{y})$:

•
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} x'^{(t)}$$

Automatically handles updating the intercept

Perceptron Learning Algorithm: Intuition

Initialize the parameters to all zeros:

$$\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$
• For $t = 1, 2, 3, \dots$

- Receive an unlabeled example, $x^{(t)}$
- Predict its label, $\hat{y} = \text{sign}\left(\boldsymbol{\theta}^T \boldsymbol{x'}^{(t)}\right) = \begin{cases} +1 \text{ if } \boldsymbol{\theta}^T \boldsymbol{x'}^{(t)} \geq 0 \\ -1 \text{ otherwise} \end{cases}$
- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} x'^{(t)}$$

Automatically handles updating the intercept

Perceptron Learning Algorithm (Intuition)

- Suppose $(x, y) \in \mathcal{D}$ is a misclassified training example and y = +1
 - $\theta^T x$ is negative
 - After updating $\theta_{new} = \theta + yx$:

$$\boldsymbol{\theta}_{new}^T \boldsymbol{x} = (\boldsymbol{\theta} + y\boldsymbol{x})^T \boldsymbol{x} = \boldsymbol{\theta}^T \boldsymbol{x} + y\boldsymbol{x}^T \boldsymbol{x}$$

which is less negative than $\boldsymbol{\theta}^T \boldsymbol{x}$

- Because y > 0 and $x^T x > 0$
- Our prediction for x "improved"!
- A similar argument holds if y = -1

(Online) Perceptron Learning Algorithm: Inductive Bias

 The decision boundary is linear and recent mistakes are more important than older ones (and should be corrected immediately)

(Online) Perceptron Learning Algorithm

Initialize the parameters to all zeros:

$$\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$

- For t = 1, 2, 3, ...
 - Receive an unlabeled example, $x^{(t)}$
 - Predict its label, $\hat{y} = \text{sign}\left(\boldsymbol{\theta}^T \boldsymbol{x'}^{(t)}\right)$
 - Observe its true label, $y^{(t)}$
 - If we misclassified an example $(y^{(t)} \neq \hat{y})$:

$$\boldsymbol{\cdot} \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \boldsymbol{x'}^{(t)}$$

(Batch) Perceptron Learning Algorithm

• Input:
$$\mathcal{D} = \{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)}) \}$$

Initialize the parameters to all zeros:

$$\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$$

- While NOT CONVERGED
 - For $t \in \{1, ..., N\}$
 - Predict the label of $\mathbf{x'}^{(t)}$, $\hat{y} = \operatorname{sign}\left(\mathbf{\theta}^T \mathbf{x'}^{(t)}\right)$
 - Observe its true label, $y^{(t)}$
 - If we misclassified $x'^{(t)}$ ($y^{(t)} \neq \hat{y}$):

$$\boldsymbol{\cdot} \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \boldsymbol{x'}^{(t)}$$

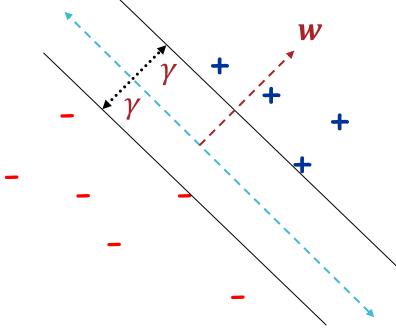
True or False: The parameter vector \boldsymbol{w} learned by the batch Perceptron Learning Algorithm can be written as a linear combination of the examples, i.e.,

$$\boldsymbol{w} = c_1 \boldsymbol{x}^{(1)} + c_2 \boldsymbol{x}^{(2)} + \ldots + c_N \boldsymbol{x}^{(N)}$$

True False

Perceptron Mistake Bound

- Definitions:
 - A dataset \mathcal{D} is *linearly separable* if \exists a linear decision boundary that perfectly classifies the examples in \mathcal{D}
 - The margin, γ , of a dataset \mathcal{D} is the greatest possible distance between a linear separator and the closest example in \mathcal{D} to that linear separator



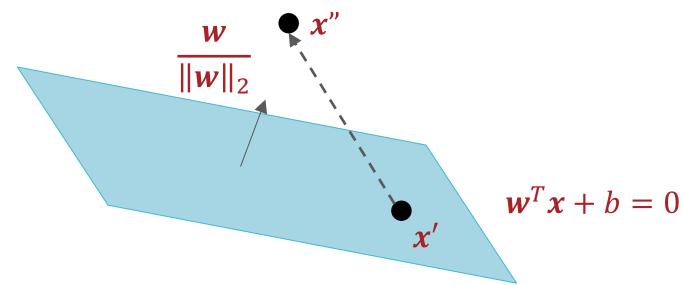
Perceptron Mistake Bound

- Theorem: if the examples seen by the Perceptron Learning Algorithm (online and batch)
 - 1. lie in a ball of radius R (centered around the origin)
 - 2. have a margin of γ

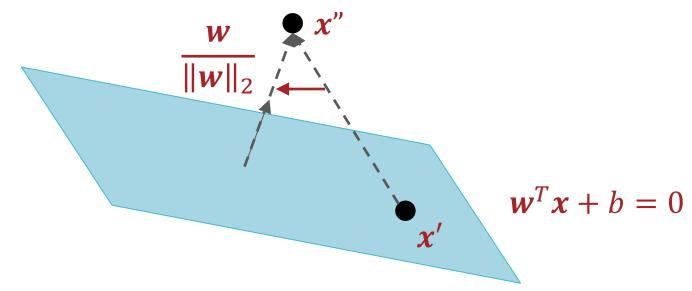
then the algorithm makes at most $(R/\gamma)^2$ mistakes.

 Key Takeaway: if the training dataset is linearly separable, the batch Perceptron Learning Algorithm will converge (i.e., stop making mistakes on the training dataset or achieve 0 training error) in a finite number of steps!

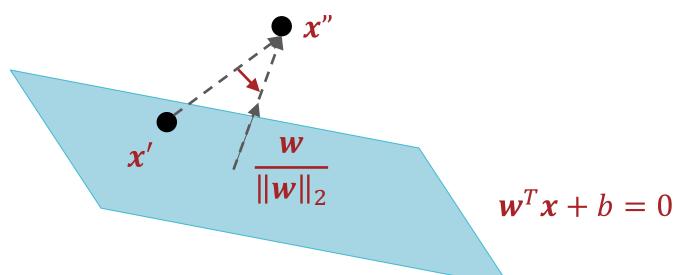
- Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane



- Let x' be an arbitrary point on the hyperplane $w^Tx + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane



- Let x' be an arbitrary point on the hyperplane $w^Tx + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane



- Let x' be an arbitrary point on the hyperplane and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane

$$\left| \frac{\mathbf{w}^T (\mathbf{x}^{"} - \mathbf{x}^{'})}{\|\mathbf{w}\|_2} \right| = \frac{|\mathbf{w}^T \mathbf{x}^{"} - \mathbf{w}^T \mathbf{x}^{'}|}{\|\mathbf{w}\|_2} = \frac{|\mathbf{w}^T \mathbf{x}^{"} + b|}{\|\mathbf{w}\|_2}$$

Key Takeaways

- Batch vs. online learning
- Perceptron learning algorithm for binary classification
- Impact of the bias term in perceptron
- Inductive bias of perceptron
- Convergence properties, guarantees and limitations for the batch Perceptron learning algorithm