10-301/601: Introduction to Machine Learning Lecture 6 – Perceptron

Henry Chai 5/24/23

Front Matter

- Announceme[nts:](http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf)
	- · PA1 released 5/18, due 5,
	- · PA2 released 5/25 (tomor
	- No lecture or OH on Mem please plan accordingly!
- Recommended Readings:
	- Mitchell, Chapter 4.4

Recall: Fisher Iris Dataset

Linear Algebra Review

 Notation: in this class vectors will be assumed to be column vectors by default, i.e.,

$$
\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_D \end{bmatrix} \text{ and } \boldsymbol{a}^T = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix}
$$

 \cdot The dot product between two D -dimensional vectors is $\boldsymbol{a}^T \boldsymbol{b} = \begin{bmatrix} a_1 & a_2 & \cdots & a_D \end{bmatrix}$ b_1 $b₂$ $\ddot{\bullet}$ b_D $=$ $\left\langle \right\rangle$ $\overline{d=1}$ \overline{D} $a_d b_d$ The *L*2-norm of $\boldsymbol{a} = ||\boldsymbol{a}||_2 = \sqrt{\boldsymbol{a}^T \boldsymbol{a}} \qquad \sqrt{\boldsymbol{a}^T \boldsymbol{a}} = \int$ Two vectors are *orthogonal* iff $\boldsymbol{a}^T\boldsymbol{b} = 0$ Henry Chai - 5/24/23 **4**

Geometry Warm-up

Geometry Warm-up

Linear Decision Boundaries

 $\int d\tau \left(\sum_{d=1}^{D} W_d X_d \right) + b$

- \cdot In 2 dimensions, $w_1 x_1 + w_2 x_2 + b = 0$ defines a *line*
- \cdot In 3 dimensions, $w_1 x_1 + w_2 x_2 + w_3 x_3 + b = 0$ defines a *plane*
- \cdot In 4+ dimensions, $\mathbf{w}^T \mathbf{x} + b = 0$ defines a *hyperplane*
	- \cdot The vector w is always orthogonal to this hyperplane and always points in the direction where $w^T x + b > 0!$
- A hyperplane creates two *halfspaces*: $\cdot S_+ = \{x: w^T x + b > 0\}$ or all x s.t. $w^T x + b$ is positive $\cdot S_ = \{x: w^T x + b < 0\}$ or all x s.t. $w^T x + b$ is negative

Linear Decision Boundaries: Example

Goal: learn classifiers of the form $h(x) =$ $sign(w^T x + b)$ (assuming $y \in \{-1, +1\}$

Key question: how do we learn the *parameters*, w ?

Online Learning

- So far, we've been learning in the *batch* setting, where we have access to the entire training dataset at once
- A common alternative is the *online* setting, where examples arrive gradually and we learn continuously
- Examples of online learning:
	- Predicting stock prices
	- Recommender systems
	- Medical diagnosis
	- Robotics

Online Learning: Setup

- For $t = 1, 2, 3, ...$
	- Receive an unlabeled example, $x^{(t)}$
	- Predict its label, $\hat{y} = h_{w,b}(x^{(t)})$
	- Observe its true label, $y^{(t)}$
	- Pay a penalty if we made a mistake, $\hat{y} \neq y^{(t)}$
	- Update the parameters, \boldsymbol{w} and \boldsymbol{b}

Goal: minimize the number of mistakes made

(Online) Perceptron Learning Algorithm

. Initialize the weight vector and intercept to all zeros:

 $w = [0 \ 0 \ \cdots \ 0]$ and $b = 0$

• For $t = 1, 2, 3, ...$

- Receive an unlabeled example, $x^{(t)}$
- Predict its label, $\hat{y} = sign(w^T x + b) = \begin{cases} +1 \text{ if } w^T x + b \ge 0 \\ 1 \text{ otherwise.} \end{cases}$ −1 otherwise
- Observe its true label, $y^{(t)}$
- If we misclassified a positive example $(y^{(t)} = +1, \hat{y} = -1)$: $\cdot w \leftarrow w + x^{(t)}$ $\cdot b \leftarrow b + 1$
- If we misclassified a negative example $(y^{(t)} = -1, \hat{y} = +1)$: $\cdot w \leftarrow w - x^{(t)}$ $\cdot b \leftarrow b - 1$

(Online) Perceptron Learning Algorithm

• Initialize the weight vector and intercept to all zeros:

 $w = [0 \ 0 \ \cdots \ 0]$ and $b = 0$

• For $t = 1, 2, 3, ...$

- Receive an unlabeled example, $x^{(t)}$
- Predict its label, $\hat{y} = sign(w^T x + b) = \begin{cases} +1 \text{ if } w^T x + b \ge 0 \\ 1 \text{ otherwise.} \end{cases}$ −1 otherwise
- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

• $w \leftarrow w + y^{(t)} x^{(t)}$ $\cdot b \leftarrow b + v^{(t)}$

 $w \leftarrow w + y^{(5)}x^{(5)} =$

Updating the Intercept

- The intercept shifts the decision boundary off the origin
	- \cdot Increasing b shifts the decision boundary towards the negative side
	- \cdot Decreasing b shifts the decision boundary towards the positive side

Notational Hack

• If we add a 1 to the beginning of every example e.g.,

$$
\mathbf{x}' = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix} \dots
$$

• ... we can just fold the intercept into the weight vector!

$$
\boldsymbol{\theta} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \\ w_D \end{bmatrix} \rightarrow \boldsymbol{\theta}^T \boldsymbol{x}' = \boldsymbol{w}^T \boldsymbol{x} + b
$$

(Online) Perceptron Learning Algorithm

 \cdot Initialize the weight vector and intercept to all zeros:

 $w = [0 \ 0 \ ... \ 0]$ and $b = 0$

• For $t = 1, 2, 3, ...$

- Receive an unlabeled example, $x^{(t)}$
- Predict its label, $\hat{y} = sign(w^T x + b) = \begin{cases} +1 \text{ if } w^T x + b \ge 0 \\ 1 \text{ otherwise.} \end{cases}$ −1 otherwise
- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:
	- $w \leftarrow w + y^{(t)} x^{(t)}$ $\cdot b \leftarrow b + y^{(t)}$

(Online) Perceptron Learning Algorithm

. Initialize the parameters to all zeros:

 $\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$ • For $t = 1, 2, 3, ...$ • Receive an unlabeled example, $x^{(t)}$ Predict its label, $\hat{y} = \text{sign}\left(\boldsymbol{\theta}^T \boldsymbol{x'}^{(t)}\right) = \begin{cases} +1 \text{ if } \boldsymbol{\theta}^T \boldsymbol{x'}^{(t)} \geq 0 \end{cases}$ −1 otherwise 1 prepended to $\pmb{x}^{(t)}$

 $\frac{1}{1}$ we misclassified a negative example ($\frac{1}{1}$

• Observe its true label, $y^{(t)}$

 $\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} \boldsymbol{x}'^{(t)}$

If we misclassified an example $(y^{(t)} \neq \hat{y})$:

```
Automatically handles
updating the intercept
```
Perceptron Learning Algorithm: **Intuition**

• Suppose $(x, y) \in \mathcal{D}$ is a misclassified training example and $y = +1$ \rightarrow \odot^{\intercal} is negative $A \rightarrow A$ $A + \sqrt{x} = C$ \sim \sim \sim \sim \sim U_{new} \uparrow U t \uparrow $=$ $(0^{\circ}$ + \times $= \bigoplus^T x + y$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ Henry Chai - 5/24/23 **26**

(Online) Perceptron Learning Algorithm: Inductive Bias

 The decision boundary is linear and *recent mistakes are more important than older ones* (and should be corrected immediately)

(Online) Perceptron Learning Algorithm

 \cdot Initialize the parameters to all zeros:

 $\theta = \begin{bmatrix} 0 & 0 & \cdots & 0 \end{bmatrix}$

• For $t = 1, 2, 3, ...$

• Receive an unlabeled example, $x^{(t)}$

• Predict its label, $\hat{y} = \text{sign}(\boldsymbol{\theta}^T \boldsymbol{x'}^{(t)})$

- Observe its true label, $y^{(t)}$
- If we misclassified an example $(y^{(t)} \neq \hat{y})$:

 $\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} {\boldsymbol{x}'}^{(t)}$

(Batch) Perceptron Learning Algorithm

• Input:
$$
\mathcal{D} = \{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(N)}, y^{(N)}) \}
$$

 \cdot Initialize the parameters to all zeros:

 $\theta = [0 \ 0 \ \cdots \ 0]$

- While NOT CONVERGED \rightarrow For $t \in \{1, ..., N\}$
	- Predict the label of ${x'}^{(t)}$, $\hat{y} = \text{sign} ({{\boldsymbol{\theta}}^T}{x'}^{(t)})$
	- Observe its true label, $y^{(t)}$
	- If we misclassified $x'^{(t)}$ $(y^{(t)} \neq \hat{y})$:

 $\cdot \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + y^{(t)} {\boldsymbol{x}'}^{(t)}$

True or False: The parameter vector \boldsymbol{w} learned by the batch Perceptron Learning Algorithm can be written as a linear combination of the examples, i.e., $\bm{w} = c_1 \bm{x}^{(1)} + c_2 \bm{x}^{(2)} + \ldots + c_N \bm{x}^{(N)}$

Perceptron Mistake Bound

- Definitions:
	- A dataset is *linearly separable* if ∃ a linear decision boundary that perfectly classifies the examples in D
	- \cdot The margin, γ , of a dataset $\mathcal D$ is the greatest possible distance between a linear separator and the closest example in D to that linear separator

Perceptron Mistake Bound

- Theorem: if the examples seen by the Perceptron Learning Algorithm (online and batch)
	- 1. lie in a ball of radius R (centered around the origin)
	- 2. have a margin of γ
- \rightarrow then the algorithm makes at most $\left(R/\gamma\right)^2$ mistakes.
	- Key Takeaway: if the training dataset is linearly separable, the batch Perceptron Learning Algorithm will converge (i.e., stop making mistakes on the training dataset or achieve 0 training error) in a finite number of steps!

- \cdot Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x" be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $\left.w\right\|_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x" be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $w\Vert_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x" be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $w\Vert_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane and let x'' be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $w\Vert_2$,
, the unit vector orthogonal to the hyperplane

$$
\int d\tau \times \tau(\omega)
$$

 $||u||_2$

.
'' a

Key Takeaways

- Batch vs. online learning
- Perceptron learning algorithm for binary classification
- Impact of the bias term in perceptron
- Inductive bias of perceptron
- Convergence properties, guarantees and limitations for the batch Perceptron learning algorithm