10-301/601: Introduction to Machine Learning Lecture 8 – Optimization for Machine Learning

Front Matter

- Announcements:
 - PA2 released 5/25, due 6/01 at 11:59 PM
 - No new programming assignment this week!
- Recommended Readings:
 - None

Recall: Minimizing the Squared Error

$$\ell_{\mathcal{D}}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{(n)} - \mathbf{y}^{(n)})^{2} = \sum_{n=1}^{N} (\mathbf{x}^{(n)} \mathbf{w} - \mathbf{y}^{(n)})^{2}$$

$$= \|X\mathbf{w} - \mathbf{y}\|_{2}^{2} \text{ where } \|\mathbf{z}\|_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\mathbf{z}^{T} \mathbf{z}}$$

$$= (X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T} X^{T} X \mathbf{w} - 2 \mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y})$$

$$\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\widehat{\mathbf{w}}) = (2X^{T} X \widehat{\mathbf{w}} - 2X^{T} \mathbf{y}) = 0$$

$$\to X^{T} X \widehat{\mathbf{w}} = X^{T} \mathbf{y}$$

$$\to \widehat{\mathbf{w}} = (X^{T} X)^{-1} X^{T} \mathbf{y}$$

Recall: Closed Form Solution

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- 1. Is X^TX invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If X^TX is not invertible (occurs when one of the features is a linear combination of the others), what does that imply about our problem?
- 2. If so, how computationally expensive is inverting X^TX ?
 - $X^TX \in \mathbb{R}^{D+1 \times D+1}$ so inverting X^TX takes $O(D^3)$ time...
 - Computing X^TX takes $O(ND^2)$ time
 - What alternative optimization method(s) can we use to minimize the mean squared error?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

How many solutions optimal solutions are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Closed Form Solution

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- 1. Is X^TX invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If X^TX is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.
- 2. If so, how computationally expensive is inverting X^TX ?
 - $X^TX \in \mathbb{R}^{D+1 \times D+1}$ so inverting X^TX takes $O(D^3)$ time...
 - Computing X^TX takes $O(ND^2)$ time
 - Can use gradient descent to (potentially) speed things up when N and D are large!

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Good news: the squared error is convex!

Recall: Minimizing the Squared Error

$$\ell_{\mathcal{D}}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{(n)} - \mathbf{y}^{(n)})^{2} = \sum_{n=1}^{N} (\mathbf{x}^{(n)} \mathbf{w} - \mathbf{y}^{(n)})^{2}$$

$$= \|X\mathbf{w} - \mathbf{y}\|_{2}^{2} \text{ where } \|\mathbf{z}\|_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\mathbf{z}^{T} \mathbf{z}}$$

$$= (X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T} X^{T} X \mathbf{w} - 2 \mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y})$$

$$\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) = (2X^{T} X \mathbf{w} - 2X^{T} \mathbf{y})$$

$$H_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) = 2X^{T} X$$

$$H_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) \text{ is positive semi-definite}$$

Gradient Descent: Step Direction

- Suppose the current weight vector is $\mathbf{w}^{(t)}$
- Move some distance, η , in the "most downhill" direction, \hat{v} :

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \eta \widehat{\boldsymbol{v}}$$

- The gradient points in the direction of steepest *increase* ...
- ... so \hat{v} is a unit vector pointing in the opposite direction:

$$\widehat{\boldsymbol{v}}^{(t)} = -\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)}{\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|}$$

Small η

Large η

Small η

Large η

Small η

Large η

• Use a variable $\eta^{(t)}$ instead of a fixed η !

- Set $\eta^{(t)} = \eta^{(0)} \| \nabla_{\mathbf{w}} \ell_{\mathcal{D}} \left(\mathbf{w}^{(t)} \right) \|$
- $\|\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)})\|$ decreases as $\ell_{\mathcal{D}}$ approaches its minimum $\to \eta^{(t)}$ (hopefully) decreases over time

$\widehat{\boldsymbol{v}}^{(t)} = -\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right)}{\left\| \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) \right\|}$

$$\begin{aligned} \boldsymbol{w}^{(t+1)} &= \boldsymbol{w}^{(t)} + \boldsymbol{\eta}^{(t)} \widehat{\boldsymbol{v}}^{(t)} \\ &= \boldsymbol{w}^{(t)} + \left(\boldsymbol{\eta}^{(0)} \| \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) \| \right) \left(- \frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right)}{\| \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) \|} \right) \\ &= \boldsymbol{w}^{(t)} - \boldsymbol{\eta}^{(0)} \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) \end{aligned}$$

• Input:
$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}, \eta^{(0)}$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

• Input:
$$\mathcal{D} = \{ (x^{(i)}, y^{(i)}) \}_{i=1}^{N}, \eta^{(0)}, \epsilon$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While $\|\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)})\| > \epsilon$
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

• Input:
$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N, \eta^{(0)}, T$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While t < T
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

Gradient Descent for Linear Regression

30,000

. 15.000

0.6

0.8

 $\ell_{\mathcal{D}}(w_1, w_2)$

25.2

8.7

1.5

0.2

20.000

1.0

Why
Gradient
Descent for
Linear
Regression?

,30,000

. 15.000

0.8

 $\ell_{\mathcal{D}}(w_1, w_2)$

25.2

8.7

1.5

0.2

, 20.000

1.0

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 \le c \le 1$ $f(cx^{(1)} + (1-c)x^{(2)}) \le cf(x^{(1)}) + (1-c)f(x^{(2)})$

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 \le c \le 1$ $f(cx^{(1)} + (1-c)x^{(2)}) \le cf(x^{(1)}) + (1-c)f(x^{(2)})$

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is strictly convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 < c < 1$ $f(cx^{(1)} + (1-c)x^{(2)}) < cf(x^{(1)}) + (1-c)f(x^{(2)})$

Given a function $f: \mathbb{R}^D \to \mathbb{R}$

• x^* is a global minimum iff $f(x^*) \le f(x) \ \forall \ x \in \mathbb{R}^D$

• x^* is a local minimum iff $\exists \epsilon \text{ s.t. } f(x^*) \leq f(x) \forall$ $x \text{ s.t. } ||x - x^*||_2 < \epsilon$

Convex functions:
Each local minimum is a global minimum!

Non-convex functions:

A local minimum may or may not be a global minimum...

Strictly convex functions:
There exists a unique global minimum!

Non-convex functions:

A local minimum may or may not be a global minimum...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

The mean squared error is convex (but not always strictly convex)

t	w_1	w_2	$\ell_{\mathcal{D}}(w_1, w_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

Closed Form Optimization

t	w_1	W_2	$\ell_{\mathcal{D}}(w_1, w_2)$
1	0.59	0.43	0.2

Key Takeaways

- Convexity vs. non-convexity
 - Strong vs. weak convexity
 - Implications for local, global and unique optima
- Gradient descent
 - Effect of step size
 - Termination criteria