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* Announcements:

* PA2 released 5/25, due 6/01 at 11:59 PM
Front Matter - No new programming assignment this week!

- Recommended Readings:

* None
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Recall:

Minimizing the
Squared Error
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N

N
%’@(W)=Z(wa(") y™y? Z x(n)TW y(n))

n=1

D
= [IXw — y1I3 where ||z]|, = Z 22 =

= Xw—-y)'Xw-y)
= WIXTXw - 2wTXTy + yTy)
Vi lp(W) = XTXw —2XTy) =0
> XTXxXw=X"y
w=X"X)"1xTy



Recall:

Closed Form
Solution
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w=X"X)"1xTy

Is XTX invertible?

« When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others), what
does that imply about our problem?

If so, how computationally expensive is inverting X7 X?

« XTX € RPH1XP+1 o5 inverting XT X takes O(D3) time...

« Computing XT X takes O(ND?) time
* What alternative optimization method(s) can we use to

minimize the mean squared error?



Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?

=Y
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* Consider a 2D linear
regression model trained
to minimize the mean

Linear
squared error: how many

Regression:
Unigqueness

optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Linear
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,
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Closed Form

Solution
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w=X"X)"1xTy

Is XTX invertible?

« When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others) then
there are infinitely many solutions.

If so, how computationally expensive is inverting X7 X?

« XTX € RPH1XP+1 o5 inverting XT X takes O(D3) time...

« Computing XT X takes O(ND?) time
* Can use gradient descent to (potentially) speed things

up when N and D are large!
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

* Good news: the squared error is convex!
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N

N
%’@(W)=Z(wa(") y™y? Z x(n)TW y(n))

n=1

D
= [IXw — y1I3 where ||z]|, = Z 22 =
\ d=1

Recall: = (Xw—-Y)TXw—y)

= WIXTXw —2wTXTy + yTy)

Minimizing the
Squared Error

Vilp(w) = 2XTXw — 2XTy)
H,?p(w) = 2XTX

H,,£5(w) is positive semi-definite
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Gradient

Descent:
Step Direction
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- Suppose the current weight vector is w®

- Move some distance, 1, in the “most downhill” direction, v:

wttD) = W) 4 9%

* The gradient points in the direction of steepest increase ...

* ... SO PV is a unit vector pointing in the opposite direction:

. Vw'gy_) (W(t))
Vw4 (w®)

AN

() =
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Gradient

Descent:
Step Size

Small7n Large 7

Henry Chai - 5/31/23 19



Gradient

Descent:
Step Size

Small7n Large 7

Henry Chai - 5/31/23 20



Gradient

Descent:
Step Size

Small7n Large 7

Henry Chai - 5/31/23 21



Gradient

Descent:
Step Size
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* Use a variable n(t) instead of a fixed n!

set® = nO||v,,£p (wO)|

. ||VW£D (W(t))l decreases as ¥ approaches its

minimum — n(t) (hopefully) decreases over time
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Gradient

Descent
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- ) —

L VW'BD (W(t))
[Vwtp (w®)]

7 ® = O, £5 (WD)

WD = O 4 pOF®

VW’BD (W(t))

=w® + 1OV > W) (-

= w® — pOy, 2 (W®)

[Vwtp (w®))]

)
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Gradient

Descent
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“Input: D = {(x(i),y(i))}livzl,n(o)
1. Initialize w© to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:
waz) (W(t))

b. Update w: w1 « w® — Oy ¢ (w®)

c. Incrementt:t<t+1

- Qutput; w®
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* Input: D = {(x(i),y(i))}livzl,n(o), €
1. Initialize w® to all zeros and sett = 0

2. While ||V, £p (W®)|| > €
a. Compute the gradient:
wap (W(t))

b. Update w: w1 « w® _ pOy o (W(t))

c. Incrementt:t<t+1

- Qutput: w®)
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Gradient

Descent
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* Input: D = {(x(i),y(i))}il,n(o),T
1. Initialize w© to all zeros and sett = 0

2. Whilet<T

a. Compute the gradient:
waz) (W(t))

b. Update w: w1 « w® — Oy ¢ (w®)

c. Incrementt:t<t+1

- Qutput; w®
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Gradient

Descent for
Linear
Regression
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mean squared error
fi) (er WZ)

N
1 . N 2
ep(wy,wy) = 1 (y© — wTx®)
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Why
Gradient

Descent for
Linear
Regression?
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Convexity
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* A function f:RP - Riis convex if
Ve eRP,x® eRPand0<c<1
flex® + (1 -c)x@) < cf (W) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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* A function f:RP - Riis convex if
Ve eRP,x® eRPand0<c<1
flex® + (1 -c)x@) < cf (W) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)
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Convexity
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» A function f: RP — Ris strictly convex if
Vil e R x®D eRPand0<c< 1
flex® + (1 - )x@) < cf (x®) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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¥ Convex functions

Non-convex functions
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Convexity
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r'
-
-

/-7 Given a function f: R” > R

* x* is a global minimum iff
fx)<f(x)vxeR?

* x* is a local minimum iff

Jest. f(x") < f(x)V

xst||lx—x"||, <€
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Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Convexity
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Strictly convex functions:

There exists a unique global

minimum/!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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The mean
squared
error is

convex (but
not always
strictly
convex)
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mean squared error
fi) (er WZ)

N
1 , N 2
ep(wy,wy) = 1 (y© — wTx®)
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iteration t
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* Convexity vs. hon-convexity
- Strong vs. weak convexity

* Implications for local, global and unique optima

* Gradient descent
* Effect of step size

* Termination criteria
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