10-301/601: Introduction to Machine Learning Lecture 8 – Optimization for Machine Learning

Henry Chai

5/31/23

Front Matter

- Announcements:
 - PA2 released 5/25, due 6/01 at 11:59 PM
 - No new programming assignment this week!
- Recommended Readings:
 - None

Recall: Minimizing the Squared Error

$$\ell_{\mathcal{D}}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{(n)} - \mathbf{y}^{(n)})^{2} = \sum_{n=1}^{N} (\mathbf{x}^{(n)^{T}} \mathbf{w} - \mathbf{y}^{(n)})^{2}$$

$$= \|X\mathbf{w} - \mathbf{y}\|_{2}^{2} \text{ where } \|\mathbf{z}\|_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\mathbf{z}^{T} \mathbf{z}}$$

$$= (X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y})$$

$$= (\mathbf{w}^{T} X^{T} X \mathbf{w} - 2\mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y})$$

$$\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\widehat{\mathbf{w}}) = (2X^{T} X \widehat{\mathbf{w}} - 2X^{T} \mathbf{y}) = 0$$

$$\to X^{T} X \widehat{\mathbf{w}} = X^{T} \mathbf{y}$$

$$\to \widehat{\mathbf{w}} = (X^{T} X)^{-1} X^{T} \mathbf{y}$$

Recall: Closed Form Solution

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- 1. Is X^TX invertible?
 - When $N \gg D + 1$, X^TX is (almost always) full rank and therefore, invertible!
 - If X^TX is not invertible (occurs when one of the features is a linear combination of the others), what does that imply about our problem?
- 2. If so, how computationally expensive is inverting X^TX ?
 - $X^TX \in \mathbb{R}^{D+1 \times D+1}$ so inverting X^TX takes $O(D^3)$ time...
 - Computing X^TX takes $O(ND^2)$ time
 - What alternative optimization method(s) can we use to minimize the mean squared error?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

How many solutions optimal solutions are there for the given dataset?

if minimizing the absolute error there are even more solutions!

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Closed Form Solution

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- 1. Is X^TX invertible?
 - When $N \gg D + 1$, X^TX is (almost always) full rank and therefore, invertible!
 - If X^TX is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.
- 2. If so, how computationally expensive is inverting X^TX ?
 - $X^TX \in \mathbb{R}^{D+1 \times D+1}$ so inverting X^TX takes $O(D^3)$ time...
 - Computing X^TX takes $O(ND^2)$ time
 - Can use gradient descent to (potentially) speed things up when N and D are large!

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Good news: the squared error is convex!

Recall: Minimizing the Squared Error

$$\ell_{\mathcal{D}}(\boldsymbol{w}) = \sum_{n=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{x}^{(n)} - \boldsymbol{y}^{(n)})^{2} = \sum_{n=1}^{N} (\boldsymbol{x}^{(n)} \boldsymbol{w} - \boldsymbol{y}^{(n)})^{2}$$

$$= \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} \text{ where } \|\boldsymbol{z}\|_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\boldsymbol{z}^{T}}\boldsymbol{z}$$

$$= (\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y})^{T} (\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y})$$

$$= (\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w} - 2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{y} + \boldsymbol{y}^{T} \boldsymbol{y})$$

$$\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w}) = (2\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w} - 2\boldsymbol{X}^{T} \boldsymbol{y})$$

$$H_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w}) = 2\boldsymbol{X}^{T} \boldsymbol{X}$$

$$H_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w}) \text{ is positive semi-definite}$$

Gradient Descent: Step Direction

- Suppose the current weight vector is $\mathbf{w}^{(t)}$
- Move some distance, η , in the "most downhill" direction, $\hat{\boldsymbol{v}}$:

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \eta \widehat{\boldsymbol{v}}$$

- The gradient points in the direction of steepest increase ...
- ... so $\widehat{\boldsymbol{v}}$ is a unit vector pointing in the opposite direction:

$$\widehat{\boldsymbol{v}}^{(t)} = -\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right)}{\left\| \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) \right\|} = \frac{\operatorname{gradient}}{\operatorname{magnitude}}$$

Small η

Large η

Small η

Large η

Small η

Large η

• Use a variable $\eta^{(t)}$ instead of a fixed η !

• Set $\eta^{(t)} = \eta^{(0)} \|\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)})\|_{2}$ — the magnitude $\|\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)})\|$ decreases as $\ell_{\mathcal{D}}$ approaches its the second minimum $\to \eta^{(t)}$ (hopefully) decreases over time

• Input:
$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N, \eta^{(0)}$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
- a. Compute the gradient: $\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)}) = 2X^{T}X \omega X^{T}Y$
 - b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
 - c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

• Input:
$$\mathcal{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^{N}, \eta^{(0)}, \epsilon$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While $\|\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)})\| > \epsilon^{\lambda}$
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

• Input:
$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N, \eta^{(0)}, T$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While t < T
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

Gradient
Descent for
Linear
Regression

Why Gradient Descent for Linear Regression?

. 15.000 , 20.000

0.8

25.2

8.7

1.5

0.2

1.0

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 \le c \le 1$ $f(cx^{(1)} + (1-c)x^{(2)}) \le cf(x^{(1)}) + (1-c)f(x^{(2)})$

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 \le c \le 1$ $f(cx^{(1)} + (1-c)x^{(2)}) \le cf(x^{(1)}) + (1-c)f(x^{(2)})$

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is strictly convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 < c < 1$ $f(cx^{(1)} + (1-c)x^{(2)}) < cf(x^{(1)}) + (1-c)f(x^{(2)})$ $cf(x^{(1)}) + (1-c)f(x^{(2)})$ $f(cx^{(1)} + (1-c)x^{(2)})$ $cx^{(1)} + (1-c)x^{(2)} x^{(2)}$ $\chi^{(1)}$

33

Given a function $f: \mathbb{R}^D \to \mathbb{R}$

• x^* is a global minimum iff $f(x^*) \le f(x) \ \forall \ x \in \mathbb{R}^D$

• x^* is a local minimum iff $\exists \epsilon \text{ s.t. } f(x^*) \leq f(x) \forall$

$$\boldsymbol{x}$$
 s.t. $\|\boldsymbol{x} - \boldsymbol{x}^*\|_2 < \epsilon$

Convex functions:
Each local minimum is a global minimum!

Non-convex functions:

A local minimum may or may not be a global minimum...

Strictly convex functions:
There exists a unique global minimum!

Non-convex functions:

A local minimum may or may not be a global minimum...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

The mean squared error is convex (but not always strictly convex)

t	w_1	w_2	$\ell_{\mathcal{D}}(w_1, w_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Closed Form Optimization

t	w_1	W_2	$\ell_{\mathcal{D}}(w_1, w_2)$
1	0.59	0.43	0.2

Key Takeaways

- Convexity vs. non-convexity
 - Strong vs. weak convexity
 - Implications for local, global and unique optima
- Gradient descent
 - Effect of step size
 - Termination criteria