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* Announcements:

* PA2 released 5/25, due 6/01 at 11:59 PM

Front Matter - No new programming assignment this week!

- Recommended Readings:

* None
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Recall:
Closed Form
Solution
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w=X'xX)"1xTy

Is XTX invertible?

« When N » D + 1, XTX is (almost always) full rank and
therefore, invertible!

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others), what
does that imply about our problem?

If so, how computationally expensive is inverting XT X?

« XTX € RPH1XD+1 o5 inverting XT X takes 0(D3) time...

* Computing XTX takes O(ND?) time
* What alternative optimization method(s) can we use to

minimize the mean squared error?




Linear

Regression:
Unigueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?
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given dataset?
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Linear
Regression:
Unigueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?
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Linear

Regression:
Unigueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




Linear

Regression:
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset?




w=X'xX)"1xTy

Is XT X invertible?

« When N » D + 1, XTX is (almost always) full rank and
therefore, invertible! X \/\wk
* If XTX is not invertible (occurs when one of the

features is a linear combination of the others) then

Closed Form

: there are infinitely many solutions.
Solution

If so, how computationally expensive is inverting XT X?

« XTX € RPH1XD+1 o5 inverting XT X takes 0(D3) time...
* Computing XTX takes O(ND?) time

* Can use gradient descent to (potentially) speed things

up when N and D are large!
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

Gradient
Descent:

Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

Gradient
Descent:

Intuition

* Good news: the squared error is convex!
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N
o (W) = Z(waW y™Y? x<n> W y(n))

n=1

= I Xw — ¥1I5 where ||z, =

Recall: _ Xw— )T (KW — 9) \

= WIXTXw - 2wTXTy + yTy)

Minimizing the
Squared Error

Vo tlp(w) = 2XTXw — 2XTy)
H,tp(w) = 2XTX

H,,£5(w) is positive semi-definite
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- Suppose the current weight vector is w®

III

direction, v:

- Move some distance, n, in the “most downhil
Gradient wttD) = w(© 4 np

Descent:
Step Direction

* The gradient points in the direction of steepest increase ...

* ... SO D is a unit vector pointing in the opposite direction:

=97 doent

Vv ‘gz) (W(t))

= " Futo W] ﬂ“&
/T 9¢ 5 Aw\l’

()
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Gradient

Descent:
Step Size
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Gradient
Descent:
Step Size
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- Use a variable n(t) instead of a fixed n!

N

 Setn® = (O
[[Vitn (W)

L

I A

-~ Nno
decreases as ¥p approacolges !t%—%_

minimum — r](t) (hopefully) decreases over time
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. ~~~ N
o |nput: D — {(x(l),y(l))}i=1’r’(0)
1. Initialize w'® to all zeros and set t = 0

2.  While TERMINATION CRITERION is not satisfied

—_—

Gradient . Compute the gradient: O(U Dz>

Descent Vuto (w®) = 2XTX w = XTy
N —
Update w: w1 « w® — 5Oy o) (W)

Incrementt:t < t+ 1

- Output: w®
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L

Input: D = {(x®,y D))" 1@, e

1. Initialize w(® to all zeros and sett = 0

e
2. While ||V, 25 (W®)|| > €

Gradient . Compute the gradient:

Descent Vwtp (W)
Update w: w(t+1) « w(®©) — n0y p_ (W(t))

Incrementt:t «t+ 1

- Output: w®)
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* Input: D = {(x(i),y(i))}livzl,n(O)’T

1. Initialize w® to all zeros and set t = 0

2. Whilet<T

Gradient . Compute the gradient:
Descent Vwtp (W)
Update w: w1 « w(®) — Oy p, (W(t))

Incrementt:t < t+1

- Output: w®
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N
1 | .

Lp(wy,wy) = Nz(y(l) _ WTx(l))

A =1

A

A

mean squared error

Gradient
Descent for iteration ¢

Linear y = c*(x) (unknown)
Regression
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N
1 , 2
fl) (Wl; Wz) — NZ(}I(O — WTx(l))
A =1

A

Why
Gradient
Descent for iteration t

A

mean SC|U3I‘€C| error

Linear y = c*(x) (unknown)
Regression?
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* A function f:RP - Riis convex if
Vil eRP,x®P eRPand0<c<1
flex®W + (1 - 0)x@) < cf () + (1 = ) f(x?)

f

Convexity

cf(x(l)) + (1 - c)f(x(z))

flex® + (1 - c)x®@)
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» A function f: RP — Ris strictly convex if
Vi eR xPD eRPand0<c< 1
flex® + (1 - )x@) < cf(x®) + (1 = ) f(x?P)

f
Convexity

cf(x(l)) + (1 - c)f(x(z))

flex® + (1 - c)x®@)
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_---¥  Convex functions

Convexity

Non-convex functions
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Convexity
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a'
-
-

¥ Given a function f: R - R

* x" is a global minimum iff
fx)<f(x)vxeR?

* x* is a local minimum iff

Jest. f(x) < f(x)V

xst |lx—x*|, <e




Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...




Convexity
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Strictly convex functions:

There exists a unique global

minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...




 Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\

Gradient
Descent &

Convexity
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N
1 | o
fp(wl, Wz) = Nz(y(l) - WTx(l))
A i=1

A

The mean
squared
error Is

£D (W1; WZ)

A

mean SC|U3I‘€C| error

convex (but iteration t
not a|wayS y = c”(x) (unknown)
strictly
convex)
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Closed Form

Optimization

0.2 0.4 0.6
Wi

0.2

1 059 043
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 Convexity vs. non-convexity

* Strong vs. weak convexity

* Implications for local, global and unique optima

\CQAELCEENR

* Gradient descent

* Effect of step size

* Termination criteria
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