10-301/601: Introduction to Machine Learning Lecture 9 – MLE & MAP

Front Matter

- Announcements:
 - Quiz 3: Linear Regression & Optimization on 6/6 (tomorrow!)
- Recommended Readings:
 - Mitchell, <u>Estimating Probabilities</u>

Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target distribution, $y \sim p^*(Y|x)$
 - Distribution, p(Y|x)
 - Goal: find a distribution, p, that best approximates p^*

Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^{N} p(x^{(n)}|\theta)$$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^{N} f(x^{(n)}|\theta)$$

Log-Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the log-likelihood of \mathcal{D} is

$$\ell(\theta) = \log \prod_{n=1}^{N} p(x^{(n)}|\theta) = \sum_{n=1}^{N} \log p(x^{(n)}|\theta)$$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the log-likelihood of \mathcal{D} is

$$\ell(\theta) = \log \prod_{n=1}^{N} f(x^{(n)}|\theta) = \sum_{n=1}^{N} \log f(x^{(n)}|\theta)$$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

$$\begin{cases} x^{(1)} = 0.5, \\ x^{(2)} = 1 \end{cases}$$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

$$\begin{cases} x^{(1)} = 2, \\ x^{(2)} = 3 \end{cases}$$

General Recipe for Machine Learning

Define a model and model parameters

Write down an objective function

Optimize the objective w.r.t. the model parameters

Recipe for MLE

- Define a model and model parameters
 - Specify the *generative story*, i.e., the data generating distribution

- Write down an objective function
 - Maximize the log-likelihood of $\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$

$$\ell(\theta) = \sum_{n=1}^{N} \log p(x^{(n)}|\theta)$$

- Optimize the objective w.r.t. the model parameters
 - Solve in *closed form*: take partial derivatives, set to 0 and solve

Exponential Distribution MLE

The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the likelihood is

$$L(\lambda) = \prod_{n=1}^{N} f(x^{(n)}|\lambda) = \prod_{n=1}^{N} \lambda e^{-\lambda x^{(n)}}$$

Exponential Distribution MLE

The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given
$$N$$
 iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-likelihood is
$$\ell(\lambda) = \sum_{n=1}^{N} \log f(x^{(n)}|\lambda) = \sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}}$$

$$= \sum_{n=1}^{N} \log \lambda + \log e^{-\lambda x^{(n)}} = N \log \lambda - \lambda \sum_{n=1}^{N} x^{(n)}$$

Taking the partial derivative and setting it equal to 0 gives

$$\frac{\partial \ell}{\partial \lambda} = \frac{N}{\lambda} - \sum_{n=1}^{N} x^{(n)}$$

Exponential Distribution MLE

The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the log-likelihood is

$$\ell(\lambda) = \sum_{n=1}^{N} \log f(x^{(n)}|\lambda) = \sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}}$$

$$= \sum_{n=1}^{N} \log \lambda + \log e^{-\lambda x^{(n)}} = N \log \lambda - \lambda \sum_{n=1}^{N} x^{(n)}$$

Taking the partial derivative and setting it equal to 0 gives

$$\frac{N}{\hat{\lambda}} - \sum_{n=1}^{N} x^{(n)} = 0 \to \frac{N}{\hat{\lambda}} = \sum_{n=1}^{N} x^{(n)} \to \hat{\lambda} = \frac{N}{\sum_{n=1}^{N} x^{(n)}}$$

Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 with probability ϕ and value 0 with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

Coin **Flipping** MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

• Given
$$N$$
 iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-likelihood is
$$\ell(\phi) = \sum_{n=1}^N \log p(x^{(n)}|\phi) = \sum_{n=1}^N \log \phi^{x^{(n)}} (1-\phi)^{1-x^{(n)}}$$

$$= \sum_{n=1}^{N} x \log \phi + (1 - x) \log(1 - \phi)$$
$$= N_1 \log \phi + N_0 \log(1 - \phi)$$

• where N_1 is the number of 1's in $\{x^{(1)}, \dots, x^{(N)}\}$ and N_0 is the number of 0's

Coin Flipping MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1 - \phi)^{1-x}$$

The partial derivative of the log-likelihood is

$$\frac{\partial \ell}{\partial \phi} = \frac{N_1}{\phi} - \frac{N_0}{1 - \phi}$$

• where N_1 is the number of 1's in $\{x^{(1)}, ..., x^{(N)}\}$ and N_0 is the number of 0's

Coin Flipping MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- The partial derivative of the log-likelihood is

$$\frac{N_1}{\hat{\phi}} - \frac{N_0}{1 - \hat{\phi}} = 0 \rightarrow \frac{N_1}{\hat{\phi}} = \frac{N_0}{1 - \hat{\phi}}$$

$$\rightarrow N_1 \left(1 - \hat{\phi} \right) = N_0 \hat{\phi} \rightarrow N_1 = \hat{\phi} (N_0 + N_1)$$

$$\rightarrow \hat{\phi} = \frac{N_1}{N_0 + N_1}$$

• where N_1 is the number of 1's in $\{x^{(1)}, ..., x^{(N)}\}$ and N_0 is the number of 0's

Given the result of your 5 coin flips, what is the MLE of ϕ for your coin?

0/5

1/5

2/5

3/5

4/5

5/5

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the posterior distribution over the parameters
 - MLE finds $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} p(\mathcal{D}|\theta)$
 - MAP finds $\hat{\theta} = \operatorname{argmax} \ p(\theta | \mathcal{D})$ = argmax $p(\mathcal{D}|\theta)p(\theta)/p(\mathcal{D})$ = argmax $p(\mathcal{D}|\theta)p(\theta)$ likelihood prior = argmax $\log p(\mathcal{D}|\theta) + \log p(\theta)$

log-posterior

Recipe for MAP

- Define a model and model parameters
 - Specify the *generative story*, i.e., the data generating distribution, including a *prior distribution*

(how do we pick a prior???)

- Write down an objective function
 - Maximize the log-posterior of $\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$

$$\ell_{MAP}(\theta) = \log p(\theta) + \sum_{n=1}^{N} \log p(x^{(n)}|\theta)$$

- Optimize the objective w.r.t. the model parameters
 - Solve in *closed form*: take partial derivatives, set to 0 and solve

Coin Flipping MAP

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

• Assume a Beta prior over the parameter ϕ , which has pdf

$$f(\phi|\alpha,\beta) = \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{B(\alpha,\beta)}$$

where $B(\alpha,\beta)=\int_0^1\phi^{\alpha-1}(1-\phi)^{\beta-1}d\phi$ is a normalizing constant to ensure the distribution integrates to 1

Coin Flipping MAP

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the log-posterior is

$$\ell(\phi) = \log f(\phi | \alpha, \beta) + \sum_{n=1}^{N} \log p(x^{(n)} | \phi)$$

$$= \log \frac{\phi^{\alpha - 1} (1 - \phi)^{\beta - 1}}{B(\alpha, \beta)} + \sum_{n=1}^{N} \log \phi^{x^{(n)}} (1 - \phi)^{1 - x^{(n)}}$$

$$= (\alpha - 1) \log \phi + (\beta - 1) \log(1 - \phi) - \log B(\alpha, \beta)$$

$$+ \sum_{n=1}^{N} x^{(n)} \log \phi + (1 - x^{(n)}) \log(1 - \phi)$$

$$= (\alpha - 1 + N_1) \log \phi + (\beta - 1 + N_0) \log(1 - \phi)$$

$$- \log B(\alpha, \beta)$$

Coin Flipping MAP

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the partial derivative of the log-posterior is

$$\frac{\partial \ell}{\partial \phi} = \frac{(\alpha - 1 + N_1)}{\phi} - \frac{(\beta - 1 + N_0)}{1 - \phi}$$

•

$$\to \hat{\phi}_{MAP} = \frac{(\alpha - 1 + N_1)}{(\beta - 1 + N_0) + (\alpha - 1 + N_1)}$$

- $\alpha 1$ is a "pseudocount" of the number of 1's (or heads) you've "observed"
- $\beta 1$ is a "pseudocount" of the number of 0's (or tails) you've "observed"

Coin Flipping MAP: Example

• Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=2$ and $\beta=5$, then

$$\phi_{MAP} = \frac{(2-1+10)}{(2-1+10)+(5-1+2)} = \frac{11}{17} < \frac{10}{12}$$

Coin Flipping MAP: Example

• Suppose $\mathcal D$ consists of ten 1's or heads ($N_1=10$) and two 0's or tails ($N_0=2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=101$ and $\beta=101$, then

$$\phi_{MAP} = \frac{(101 - 1 + 10)}{(101 - 1 + 10) + (101 - 1 + 2)} = \frac{110}{212} \approx \frac{1}{2}$$

Coin Flipping MAP: Example

• Suppose \mathcal{D} consists of ten 1's or heads ($N_1=10$) and two 0's or tails ($N_0=2$):

$$\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$$

• Using a Beta prior with $\alpha=1$ and $\beta=1$, then

$$\phi_{MAP} = \frac{(1-1+10)}{(1-1+10)+(1-1+2)} = \frac{10}{12} = \phi_{MLE}$$

Key Takeaways

- Probabilistic learning tries to learn a probability distribution as opposed to a classifier
- Two ways of estimating the parameters of a probability distribution given samples of a random variable:
 - Maximum likelihood estimation maximize the (log-)likelihood of the observations
 - Maximum a posteriori estimation maximize the (log-)posterior of the parameters conditioned on the observations
 - Requires a prior distribution, drawn from background knowledge or domain expertise