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Front	Matter

� Announcements:	

� Quiz	3:	Linear	Regression	&	Optimization	on	6/6	
(tomorrow!)

� Recommended	Readings:

�Mitchell,	Estimating	Probabilities
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http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


Probabilistic	
Learning

� Previously:	
� (Unknown)	Target	function,	𝑐∗: 𝒳 → 𝒴

� Classifier,	ℎ ∶ 𝒳 → 𝒴

� Goal:	find	a	classifier,	ℎ,	that	best	approximates	𝑐∗

� Now:

� (Unknown)	Target	distribution,	𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution,	𝑝 𝑌 𝒙

� Goal:	find	a	distribution,	𝑝,	that	best	approximates	𝑝∗
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Likelihood	

� Given	𝑁	independent,	identically	distribution	(iid)	

samples	𝒟 = 𝑥 " , … , 𝑥 # 	of	a	random	variable	𝑋

� If	𝑋	is	discrete	with	probability	mass	function	(pmf)	

𝑝 𝑋|𝜃 ,	then	the	likelihood	of	𝒟	is	

𝐿 𝜃 = 7
$%"

#

𝑝 𝑥 $ |𝜃

� If	𝑋	is	continuous	with	probability	density	function	(pdf)	
𝑓 𝑋|𝜃 ,	then	the	likelihood	of	𝒟 is	

𝐿 𝜃 = 7
$%"

#

𝑓 𝑥 $ |𝜃
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Log-Likelihood	

� Given	𝑁	independent,	identically	distribution	(iid)	

samples	𝒟 = 𝑥 " , … , 𝑥 # 	of	a	random	variable	𝑋

� If	𝑋	is	discrete	with	probability	mass	function	(pmf)	

𝑝 𝑋|𝜃 ,	then	the	log-likelihood	of	𝒟 is	

ℓ 𝜃 = log 7
$%"

#

𝑝 𝑥 $ |𝜃 = >
$%"

#

log 𝑝 𝑥 $ |𝜃

� If	𝑋	is	continuous	with	probability	density	function	(pdf)	
𝑓 𝑋|𝜃 ,	then	the	log-likelihood	of	𝒟 is	

ℓ 𝜃 = log 7
$%"

#

𝑓 𝑥 $ |𝜃 = >
$%"

#

log 𝑓 𝑥 $ |𝜃
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Maximum	
Likelihood	
Estimation	
(MLE)

� Insight:	every	valid	probability	distribution	has	a	finite	

amount	of	probability	mass	as	it	must	sum/integrate	to	1

� Idea:	set	the	parameter(s)	so	that	the	likelihood	of	the	
samples	is	maximized

� Intuition:	assign	as	much	of	the	(finite)	probability	mass	
to	the	observed	data	at	the	expense	of	unobserved	data

� Example:	the	
exponential	

distribution	
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Maximum	
Likelihood	
Estimation	
(MLE)

� Insight:	every	valid	probability	distribution	has	a	finite	

amount	of	probability	mass	as	it	must	sum/integrate	to	1

� Idea:	set	the	parameter(s)	so	that	the	likelihood	of	the	
samples	is	maximized

� Intuition:	assign	as	much	of	the	(finite)	probability	mass	
to	the	observed	data	at	the	expense	of	unobserved	data

� Example:	the	
exponential	

distribution	
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?
@

𝑥 " = 0.5,
𝑥 & = 1

Source:	https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg	

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum	
Likelihood	
Estimation	
(MLE)

� Insight:	every	valid	probability	distribution	has	a	finite	

amount	of	probability	mass	as	it	must	sum/integrate	to	1

� Idea:	set	the	parameter(s)	so	that	the	likelihood	of	the	
samples	is	maximized

� Intuition:	assign	as	much	of	the	(finite)	probability	mass	
to	the	observed	data	at	the	expense	of	unobserved	data

� Example:	the	
exponential	

distribution	
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?
@

𝑥 " = 2,
𝑥 & = 3

Source:	https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg	

https://en.wikipedia.org/wiki/Exponential_distribution


� Define	a	model	and	model	parameters
� Specify	the	generative	story,	i.e.,	the	data	generating	
distribution

�Write	down	an	objective	function
� 	Maximize	the	(log-)likelihood	of	𝒟 = 𝑥 " , … , 𝑥 #

� Optimize	the	objective	w.r.t.	the	model	parameters
� Solve	in	closed	form:	take	partial	derivatives,											
set	to	0	and	solve

General	
Recipe	
for	
Machine	
Learning
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� Define	a	model	and	model	parameters
� Specify	the	generative	story,	i.e.,	the	data	generating	
distribution

�Write	down	an	objective	function
� 	Maximize	the	log-likelihood	of	𝒟 = 𝑥 " , … , 𝑥 #

� Optimize	the	objective	w.r.t.	the	model	parameters
� Solve	in	closed	form:	take	partial	derivatives,											
set	to	0	and	solve

Recipe	
for	
MLE
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ℓ 𝜃 = >
$%"

#

log 𝑝 𝑥 $ |𝜃



� The	pdf	of	the	exponential	distribution	is	
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	likelihood	is

𝐿 𝜆 = 7
$%"

#

𝑓 𝑥 $ |𝜆 = 7
$%"

#

𝜆𝑒'() !

ℓ 𝜆 = >
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆 >
$%"

#

𝑥 $

� Taking	the	partial	derivative	and	setting	it	equal	to	0	gives
𝜕ℓ
𝜕𝜆 =

𝑁
𝜆 − >

$%"

#

𝑥 $

Exponential	
Distribution
MLE
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� The	pdf	of	the	exponential	distribution	is	
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	log-likelihood	is

ℓ 𝜆 = >
$%"

#

log 𝑓 𝑥 $ |𝜆 = >
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = >
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆 >
$%"

#

𝑥 $

� Taking	the	partial	derivative	and	setting	it	equal	to	0	gives
𝜕ℓ
𝜕𝜆 =

𝑁
𝜆 − >

$%"

#

𝑥 $

Exponential	
Distribution
MLE
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� The	pdf	of	the	exponential	distribution	is	
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	log-likelihood	is

ℓ 𝜆 = >
$%"

#

log 𝑓 𝑥 $ |𝜆 = >
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = >
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆 >
$%"

#

𝑥 $

� Taking	the	partial	derivative	and	setting	it	equal	to	0	gives
𝜕ℓ
𝜕𝜆 =

𝑁
L𝜆

− >
$%"

#

𝑥 $ = 0 →
𝑁
L𝜆

= >
$%"

#

𝑥 $ → L𝜆 =
𝑁

∑$%"
# 𝑥 $

Exponential	
Distribution
MLE
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Bernoulli	
Distribution
MLE
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� A	Bernoulli	random	variable	takes	value	1	(or	heads)	with	
probability	𝜙	and	value	0	(or	tails)	with	probability	1 − 𝜙

� The	pmf	of	the	Bernoulli	distribution	is	
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	log-likelihood	is

𝜕ℓ
𝜕𝜙 =

𝑁"
O𝜙

−
𝑁*

1 − O𝜙
= 0 →

𝑁"
O𝜙

=
𝑁*

1 − O𝜙
𝜕ℓ
𝜕𝜙 → 𝑁" 1 − O𝜙 = 𝑁* O𝜙 → 𝑁" = O𝜙 𝑁* + 𝑁"

𝜕ℓ
𝜕𝜙 → O𝜙 =

𝑁"
𝑁* + 𝑁"

� where	𝑁"	is	the	number	of	1’s	in	 𝑥 " , … , 𝑥 # 	and	𝑁*	is	
the	number	of	0’s



Coin	
Flipping
MLE
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� A	Bernoulli	random	variable	takes	value	1	(or	heads)	with	
probability	𝜙	and	value	0	(or	tails)	with	probability	1 − 𝜙

� The	pmf	of	the	Bernoulli	distribution	is	
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	log-likelihood	is

ℓ 𝜙 = >
$%"

#

log 𝑝 𝑥 $ |𝜙 = >
$%"

#

log 𝜙) ! 1 − 𝜙 "') !

ℓ 𝜙 = >
$%"

#

𝑥 log 𝜙 + 1 − 𝑥 log 1 − 𝜙

ℓ 𝜙 = 𝑁" log 𝜙 + 𝑁* log 1 − 𝜙

� where	𝑁"	is	the	number	of	1’s	in	 𝑥 " , … , 𝑥 # 	and	𝑁*	is	
the	number	of	0’s



Coin	
Flipping
MLE
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� A	Bernoulli	random	variable	takes	value	1	(or	heads)	with	
probability	𝜙	and	value	0	(or	tails)	with	probability	1 − 𝜙

� The	pmf	of	the	Bernoulli	distribution	is	
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� The	partial	derivative	of	the	log-likelihood	is

𝜕ℓ
𝜕𝜙 =

𝑁"
𝜙 −

𝑁*
1 − 𝜙 = 0 →

𝑁"
O𝜙

=
𝑁*

1 − O𝜙
𝜕ℓ
𝜕𝜙 → 𝑁" 1 − O𝜙 = 𝑁* O𝜙 → 𝑁" = O𝜙 𝑁* + 𝑁"

𝜕ℓ
𝜕𝜙 → O𝜙 =

𝑁"
𝑁* + 𝑁"

� where	𝑁"	is	the	number	of	1’s	in	 𝑥 " , … , 𝑥 # 	and	𝑁*	is	
the	number	of	0’s



Coin	
Flipping
MLE
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� A	Bernoulli	random	variable	takes	value	1	(or	heads)	with	
probability	𝜙	and	value	0	(or	tails)	with	probability	1 − 𝜙

� The	pmf	of	the	Bernoulli	distribution	is	
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� The	partial	derivative	of	the	log-likelihood	is

𝜕ℓ
𝜕𝜙 =

𝑁"
O𝜙

−
𝑁*

1 − O𝜙
= 0 →

𝑁"
O𝜙

=
𝑁*

1 − O𝜙
𝜕ℓ
𝜕𝜙 → 𝑁" 1 − O𝜙 = 𝑁* O𝜙 → 𝑁" = O𝜙 𝑁* + 𝑁"

𝜕ℓ
𝜕𝜙 → O𝜙 =

𝑁"
𝑁* + 𝑁"

� where	𝑁"	is	the	number	of	1’s	in	 𝑥 " , … , 𝑥 # 	and	𝑁*	is	
the	number	of	0’s





� Insight:	sometimes	we	have	prior	information	we	want	
to	incorporate	into	parameter	estimation

� Idea:	use	Bayes	rule	to	reason	about	the	posterior	
distribution	over	the	parameters

�MLE	finds	 O𝜃 = argmax
+

 𝑝 𝒟 𝜃

�MAP	finds	 O𝜃 = argmax
+

 𝑝 𝜃 𝒟

MAP	finds	 O𝜃 = argmax
+

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP	finds	 O𝜃 = argmax
+

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP	 finds	 O𝜃. = argmax
+

 log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum	a	
Posteriori	
(MAP)	
Estimation

Henry	Chai	-	6/5/23 19

likelihood prior

log-posterior



� Define	a	model	and	model	parameters
� Specify	the	generative	story,	i.e.,	the	data	generating	
distribution,	including	a	prior	distribution	

�Write	down	an	objective	function
� 	Maximize	the	log-posterior	of	𝒟 = 𝑥 " , … , 𝑥 #

� Optimize	the	objective	w.r.t.	the	model	parameters
� Solve	in	closed	form:	take	partial	derivatives,											
set	to	0	and	solve

Recipe	
for	
MAP
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ℓ,-. 𝜃 = log 𝑝 𝜃 + >
$%"

#

log 𝑝 𝑥 $ |𝜃

(how	do	we	pick	a	prior???)



Coin	
Flipping
MAP
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� A	Bernoulli	random	variable	takes	value	1	(or	heads)	with	
probability	𝜙	and	value	0	(or	tails)	with	probability	1 − 𝜙

� The	pmf	of	the	Bernoulli	distribution	is	
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Assume	a	Beta	prior	over	the	parameter	𝜙,	which	has	pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙/'" 1 − 𝜙 0'"

Β 𝛼, 𝛽

where	Β 𝛼, 𝛽 = ∫*
"𝜙/'" 1 − 𝜙 0'"𝑑𝜙	is	a	normalizing	

constant	to	ensure	the	distribution	integrates	to	1



Beta	
Distribution
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Beta	
Distribution
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Beta	
Distribution
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Beta	
Distribution
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Beta	
Distribution
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Coin	
Flipping
MAP
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� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	log-posterior	is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 + >
$%"

#

log 𝑝 𝑥 $ 𝜙

ℓ 𝜙 = log
𝜙/'" 1 − 𝜙 0'"

Β 𝛼, 𝛽
+ >
$%"

#

log 𝜙) ! 1 − 𝜙 "') !

ℓ 𝜙 = 𝛼 − 1 log 𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = + >
$%"

#

𝑥 $ log 𝜙 + 1 − 𝑥 $ log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁" log 𝜙 + 𝛽 − 1 + 𝑁* log 1 − 𝜙
ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin	
Flipping
MAP
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� Given	𝑁	iid	samples	 𝑥 " , … , 𝑥 # ,	the	partial	derivative	of	
the	log-posterior	is

𝜕ℓ
𝜕𝜙 =

𝛼 − 1 + 𝑁"
𝜙 −

𝛽 − 1 + 𝑁*
1 − 𝜙

  ⋮

→ O𝜙,-. =
𝛼 − 1 + 𝑁"

𝛽 − 1 + 𝑁* + 𝛼 − 1 + 𝑁"
�𝛼 − 1 is	a	“pseudocount”	of	the	number	of	1’s	(or	heads)	
you’ve	“observed”	

�𝛽 − 1 is	a	“pseudocount”	of	the	number	of	0’s	(or	tails)	
you’ve	“observed”



Coin	
Flipping
MAP:
Example
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� Suppose	𝒟 consists	of	ten	1’s	or	heads	(𝑁" = 10)	and					
two	0’s	or	tails	(𝑁* = 2):

𝜙,12 =
10

10 + 2 =
10
12

� Using	a	Beta	prior	with	𝛼 = 2	and	𝛽 = 5,	then

𝜙,-. =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2) =
11
17 <

10
12



Coin	
Flipping
MAP:
Example
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� Suppose	𝒟 consists	of	ten	1’s	or	heads	(𝑁" = 10)	and					
two	0’s	or	tails	(𝑁* = 2):

𝜙,12 =
10

10 + 2 =
10
12

� Using	a	Beta	prior	with	𝛼 = 101	and	𝛽 = 101,	then

𝜙,-. =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2) =
110
212 ≈

1
2



Coin	
Flipping
MAP:
Example
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� Suppose	𝒟 consists	of	ten	1’s	or	heads	(𝑁" = 10)	and					
two	0’s	or	tails	(𝑁* = 2):

𝜙,12 =
10

10 + 2 =
10
12

� Using	a	Beta	prior	with	𝛼 = 1	and	𝛽 = 1,	then

𝜙,-. =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2) =
10
12 = 𝜙,12



Key	Takeaways

� Probabilistic	learning	tries	to	learn	a	probability	

distribution	as	opposed	to	a	classifier

� Two	ways	of	estimating	the	parameters	of	a	probability	
distribution	given	samples	of	a	random	variable:

�Maximum	likelihood	estimation	–	maximize	the	
(log-)likelihood	of	the	observations

�Maximum	a	posteriori	estimation	–	maximize	the	
(log-)posterior	of	the	parameters	conditioned	on	the	

observations

� Requires	a	prior	distribution,	drawn	from	
background	knowledge	or	domain	expertise
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