10-301/601: Introduction
to Machine Learning
Lecture 9 — MLE & MAP




* Announcements:

* Quiz 3: Linear Regression & Optimization on 6/6

Front Matter (tomorrow!)

- Recommended Readings:

* Mitchell, Estimating Probabilities
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http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

* Previously:

* (Unknown) Target function, c*: X = Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning * Now:

* (Unknown) Target distribution, y ~ p*(Y|x)
» Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p*
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Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), . x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)

X|0), th he likelihood of D i
p(X|0), then the /i e;voo of D is ?(Am@c?@()\)@
L) =| [p(x™]8) \C A -5

e tadepulod

* If X is continuous with probability density function (pdf)
f(X|0), then the likelihood of D is

N
L(8) = 1_[ f(x™10)
n=1



Log-Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), . x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|60), then the log-likelihood of D is

N N
£(6) = logl_[p(x(")|9) = Z logp(x(™)0)
n=1 n=1

* If X is continuous with probability density function (pdf)
f(X|0), then the log-likelihood of D is

N N
£(0) = logl_[f(x(”)|9) = z logf(x(")|9)
n=1 n=1




Maximum
Likelihood
Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* Idea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* Idea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* Idea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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General
Recipe

for
Machine
Learning

Henry Chai - 6/5/23

- Define a model and model parameters

* Write down an objective function

* Optimize the objective w.r.t. the model parameters




- Define a model and model parameters C\ Jr
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- Write down an objective functlon

~ e uS klhood o8 D=0 A

l(@) CP(X( " @BB

* Optimize the objectlve w.r.t. the model parameters
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* The pdf of the exponential distribution is
f(x]A) = de™

- Given N iid samples {x@, ... x(N)} the likelihood is

L) = Tr P [N = —whﬂx

(n)

Exponential
Distribution
MLE
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* The pdf of the exponential distribution is
f(x|A) = 1e™

- Given N iid samples {xW, .., xM} the log- Ilkellhood is

PN+ 2 teg (6410 = (r,\e~>x(”‘>

Exponential
Distribution
MLE
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Exponential
Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = le ™

* Given N iid samples {x(l), ...,x(N)}, the log-likelihood is

N N
2(2) = z log f(x™|2) = z log Ae=2*™
n=1 n=1

N N
= Z log A +log e ™ = N logA — A z x (™
n=1 n=1

L )

—\/

- Taking the par’g!al derivative and setting it equal to O gives

oL

O N

%L _ _
oNz

~



* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulh distributionis _» ©

p(x|p) = ¢*(1— )

Bernoulli

Distribution
MLE
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* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|g) = p*(1 —p)'™* ( \
N
Gnen 5’0‘"\*- obser vehons DE Z ) j (n\)>

Coin 1) Z Loy (O 1)) = AR (cz%x )
Flipping

MLE S FANOREDIIED
=N, \03@\ + Uo\OjG’}ZSB
Ny oo \L\'M :Hf £ s e D
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* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|¢) = p*(1 — p)'™*

* The partial derivative of the log-likelihood is

Co ] _
oin ggzg&(Nl\%(@%M@%G }&B

Flipping
MLE

M‘ ‘
3 1-f =P

SN (1=p) = Na(B) = 1, - M H@
- vM_(M+M)¢




Coin

Flipping
MLE
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* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|¢p) = p*(1 — )™

* The partial derivative of the log-likelihood is

Ny Ny N1 Ny

— ) —
e e e

¢ 1—¢ ¢ 1—-9¢
- Ni(1—¢) = No¢p > Ny = ¢(Ny + Ny)

N1
Ny + Ny

5=

- where N; is the number of 1’s in {x(l), ...,x(N)} and N is

the number of 0’s



[ & When poll is active, respond at pollev.com/301601polls [

Given the result of your 5 coin flips, what is the MLE of ¢ for

your coin?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



* Insight: sometimes we have prior information we want
to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior
distribution over the parameters

Ill/laximum d MLE 'CN\AS @Mw _ c\\famcxﬂ<6 Gfﬁm Cr ?63
osteriori oo / ikl h
(MAP) MAP I Qnés @N\A? = (j P (@\D> 0:)0’6&‘

Estimation _ Mam@c P (Dl 9\?(95

© ~  p(D)
e P(D)OYFP®)

"5 oy (P(18)) + [ (?(9)>
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- Define a model and model parameters

— 5 n() N {'w*c S;{'a( \aclud e~ n?)r“
e Al ngm C???B

* Write down an objectlve function Nj

- N\&mm%e bi émblb( 64 ) me

Luar(6) = los (P() + o log C%C‘“‘;@B}

* Optimize the objective w.r.t. the model parameters

O losed - foren



* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
Coin p(x|¢p) = p*(1 — p)*
Flipping - Assume a Beta prior over th\e paraXVeter &, which has pdf

MAP ¢a 1( ¢)B 1

B(a, B)

where B(a, B) = fol d*1(1 — p)P~1de is a normalizing

constant to ensure the distribution integrates to 1

f(@la, p) =
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Beta Distribution w/ a=1 and =1

Beta

Distribution
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Beta Distribution w/ a=2 and =2

Beta

Distribution
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Beta Distribution w/ a=10 and =10

Beta

Distribution
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Beta Distribution w/ a=2 and =5

Beta

Distribution
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Beta Distribution w/ a=4 and =1

Beta

Distribution
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Coin

Flipping
MAP

+ Given N iid samples {xV, ..., x(M}, the log-posterior is

o (B = 5(3(9510(,/?))*2 lj(P(X“'@b
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- Given N iid samples {x1, ..., x(M)}, the partial derivative of
the log-posterior is

oL ol — 1+ N, ]3~lJrMo
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Coin t
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Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ny = 2):

10 10

PMLE = 1072~ 12

* Using a Beta prior with @ = 2 and f = 5, then

(2~!+l0\ A

— —_ - <r"
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Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ny = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 101 and f = 101, then

Q/ (Dl’(% (DB
AP () )+|O)+(fo|—\+2)



* Suppose D consists of ten 1’s or heads (N; = 10) and
two 0’s or tails (Ny = 2):
elly 10 10
Flipping Puie = 10+2 12

MAP: * Using a Beta prior witha = 1 and f = 1, then
Example
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* Probabilistic learning tries to learn a probability

distribution as opposed to a classifier

- Two ways of estimating the parameters of a probability

distribution given samples of a random variable:

* Maximum likelihood estimation — maximize the

Key Ta keaways (log-)likelihood of the observations

* Maximum a posteriori estimation — maximize the

(log-)posterior of the parameters conditioned on the
observations

* Requires a prior distribution, drawn from

background knowledge or domain expertise
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