
Solutions
10-601 Machine Learning Name:
Summer 2023 AndrewID:
Exam 1 Practice Problems
June 8, 2023
Time Limit: N/A
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• Fill in your name and Andrew ID above. Be sure to write neatly, or you may not
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Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

 Henry Chai

# Marie Curie

# Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in
the new answer:

Select One: Who taught this course?

 Henry Chai

# Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

□ I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and
bubble in the new answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully
included in the given space. You may cross out answers or parts of answers, but the final
answer must still be within the given space.

Fill in the blank: What is the course number?

10-601 10-��SS7601
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1 Decision Trees

1. To exploit the desirable properties of decision tree classifiers and perceptrons, Adam
came up with a new algorithm called the “perceptron tree” that combines features
from both. Perceptron trees are similar to decision trees, but each leaf node contains a
perceptron rather than a majority vote.

To create a perceptron tree, the first step is to follow a regular decision tree learning
algorithm (such as ID3) and perform splitting on attributes until the specified maximum
depth is reached. Once maximum depth has been reached, at each leaf node, a perceptron
is trained on the remaining attributes which have not yet been used in that branch.
Classification of a new example is done via a similar procedure. The example is first
passed through the decision tree based on its attribute values. When it reaches a leaf
node, the final prediction is made by running the corresponding perceptron at that node.

Assume that you have a dataset with 6 binary attributes {A, B, C, D, E, F} and two
output labels {-1, 1}. A perceptron tree of depth 2 on this dataset is given below.
Weights of the perceptron are given in the leaf nodes. Assume bias b = 1 for each
perceptron.

Figure 1: Perceptron Tree of depth 2

(a) Numerical answer: What would the given perceptron tree predict as the output
label for the sample x = [1, 1, 0, 1, 0, 1]?

1, Explanation: A=1 and D=1 so the point is sent to the right-most leaf node,
where the perceptron output is (1*1)+(0*0)+((-1)*0)+(1*1)+1 = 3. Prediction =
sign(3) = 1.

(b) True or False: The decision boundary of a perceptron tree will always be linear.
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⃝ True

⃝ False

False, since decision tree boundaries need not be linear.

(c) True or False: For small values of max depth, decision trees are more likely to
underfit the data than perceptron trees.

⃝ True

⃝ False

True. For smaller values of max depth, decision trees essentially degenerate into
majority-vote classifiers at the leaves. On the other hand, perceptron trees have
the capacity to make use of “unused” attributes at the leaves to predict the correct
class. Decision trees: Non-linear decision boundaries
Perceptron: Ability to gracefully handle unseen attribute values in training data/
Better generalization at leaf nodes

2. (2 points) Select all that apply: Given an input feature vector x, where x ∈ Rn, you
are tasked with predicting a label for y, where y = 1 or y = −1. You have no knowledge
about the distributions of x and of y. Which of the following methods are appropriate?

2 Perceptron

2 k-Nearest Neighbors

2 Linear Regression

2 Decision Tree with unlimited depth

2 None of the Above

k-Nearest Neighbours and Decision Tree with unlimited depth, since these two methods
do not making the assumption of linear separation.

3. True or False: The ID3 algorithm is guaranteed to find an optimal decision tree.

⃝ True

⃝ False

False.

4. True or False: One advantage of decision trees is that they are not easy to overfit.

⃝ True

⃝ False

False.
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2 K Nearest Neighbors

1. Select one: A k-Nearest Neighbor model with a large value of k is analogous to...

⃝ A short Decision Tree with a low branching factor

⃝ A short Decision Tree with a high branching factor

⃝ A long Decision Tree with a low branching factor

⃝ A long Decision Tree with a high branching factor

A short Decision Tree with a low branching factor. The analogous tree can be thought
of as a short tree who’s leaf nodes have a large number of data points in them.

2. Select one: Imagine you are using a k-Nearest Neighbor classifier on a dataset with
lots of noise. You want your classifier to be less sensitive to the noise. Which of the
following is likely to help and with what side effect?

⃝ Increase the value of k → Increase in prediction time

⃝ Decrease the value of k → Increase in prediction time

⃝ Increase the value of k → Decrease in prediction time

⃝ Decrease the value of k → Decrease in prediction time

Increase the value of k → Increase in prediction time

3. Select all that apply: Identify the correct relationship(s) between bias, variance, and
the hyperparameter k in the k-Nearest Neighbors algorithm:

2 Increasing k leads to increase in bias

2 Decreasing k leads to increase in bias

2 Increasing k leads to increase in variance

2 Decreasing k leads to increase in variance

2 None of the above

A and D
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4. Consider the following training dataset for a regression task:

D =
{(

x(1), y(1)
)
,
(
x(2), y(2)

)
, · · · ,

(
x(N), y(N)

)}
with x(i) ∈ R and y(i) ∈ R.

For regression with k-nearest neighbors, we make predictions on unseen data points
similar to the classification algorithm, but instead of a majority vote, we take the mean
of the output values of the k nearest points to some new data point x. That is,

h(x) =
1

k

∑
i∈N (x,D)

y(i)

where N (x,D) is the set of indices of the k closest training points to x.

In the above dataset, the red ×’s denote training points and the black semi-circles A,
B, C denote test points of unknown output values. For convenience, all training data
points have integer input and output values.

Any ties are broken by selecting the point with the lower x value.
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(a) Numerical answer: When k = 1, what is the mean squared error on the training
set?

0± 0.00001

(b) Numerical answer: When k = 2, what is the predicted value at A?

4± 0.00001

(c) Numerical answer: When k = 2, what is the predicted value at B?

5± 0.00001

(d) Numerical answer: When k = 3, what is the predicted value at C?

7± 0.00001

(e) Numerical answer: When k = 8, what is the predicted value at C?

5.375± 0.1

(f) Math: With k = N , for any dataset D with the form specified in the beginning
of this question, write down a mathematical expression for the predicted value
ŷ = h(x). Your response shouldn’t include a reference to the neighborhood function
N ().

ȳ = 1
N

∑N
i=1 y

(i)

5. You have just enrolled into your favourite course at CMU - Introduction to Machine
Learning 10-301/601 - but you have not yet decided if you want to take it for a grade or
as pass/fail. You want to use your performance in HW1 and HW2 to make this decision.
You follow a general rule that if you can get at least a B in the course, you will take it
for a grade, and if not, you will take it as pass/fail.
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You have just learnt the new classification technique, k-NN, and wish to employ it to
make your decision. You start by collecting data on prior student performance in HW1
and HW2, along with their final letter grades. You then create a binary label (1/0)
based on the final grades such that you assign a label of 1 if the final grade is at least a
B and 0 otherwise. Next, you train the model on this data set and calculate the training
error. The distance measure you use is Euclidean distance.

Note: For ease of computation, we will use only 10 randomly selected training data
points as plotted below. Label 1 is represented by ‘+’ and green color; label 0 is repre-
sented by ‘-’ and red color.

(a) Numerical answer: What will be the training error if you choose k = 1?

0

(b) Numerical answer: What will be the training error if you choose k = 3?
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2/10; (30,80) and (40, 40) will be miss-classified
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(c) True or False: Using Euclidean distance as the distance measure, the decision
boundary of k-NN for k = 1 is a piece-wise straight line, that is, it contains only
straight line segments. Justify your answer.

⃝ True

⃝ False

True. Because 1-NN decision boundary always follows a boundary equidistant from
the two closest points in that region.

(d) Drawing: In the image above, draw a rough decision boundary for k = 1. Clearly
label the + and - sides of the decision boundary.

(e) You have scored 60 in HW1 and 40 in HW2, and you now want to predict if your
final grade would be at least a B.

i. Numerical answer: What would be the predicted class (1/0) for k = 1?

0

ii. Numerical answer: What would be the predicted class (1/0) for k = 3?

0

(f) Short answer: Looking at the training errors, you choose the model with k = 1
as it has the lowest training error. Do you think this is the right approach to select
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a model? Why or why not?

No, we would use validation dataset (validation error) to choose k as k is a hyper
parameter.

6. Select all that apply: Please select all that apply about k-NN in the following options.
Assume a point can be its own neighbor.

2 k-NN works great with a small amount of data, but struggles when the amount
of data becomes large.

2 k-NN is sensitive to outliers; therefore, in general we decrease k to avoid over-
fitting.

2 k-NN can be applied to classification problems but not regression problems.

2 We can always achieve zero training error (perfect classification) with k-NN,
but it may not generalize well in testing.

True: A, runtime becomes large; D, by setting k = 1
False: B, we increase k to avoid overfitting; C, KNN can be used for regression by average
the regression value of the nearest neighbours
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3 Model Selection and Errors

1. Train and test errors: In this problem, we will see how you can debug a classifier
by looking at its train and test errors. Consider a classifier trained until convergence on
some training data Dtrain, and tested on a separate test set Dtest. You look at the test
error, and find that it is very high. You then compute the training error and find that
it is close to 0.

(a) Short Answer: What is this scenario called?

overfitting

(b) Select all that apply: Which of the following are expected to help?

2 Increasing the training data size.

2 Decreasing the training data size.

2 Increasing model complexity (For example, if your classifier is an SVM,
use a more complex kernel. Or if it is a decision tree, increase the depth).

2 Decreasing model complexity.

2 Training on a combination of Dtrain and Dtest and test on Dtest

2 None of the above

a and d

The model is overfitting. In order to address the problem, we can either increase
training data size or decrease model complexity. We should never do (e), the model
shouldn’t see any testing data in the training process.

(c) Select one: Say you plot the train and test errors as a function of the model
complexity. Which of the following two plots is your plot expected to look like?

(a) (b)
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⃝ Plot A

⃝ Plot B

B. When model complexity increases, model can overfit better, so training error
will decrease. But when it overfits too much, testing error will increase.
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2. Training Sample Size: In this problem, we will consider the effect of training dataset
size n on a logistic regression classifier with d features. The classifier is trained by opti-
mizing the conditional log-likelihood. The optimization procedure stops if the estimated
parameters perfectly classify the training data or they converge.

The following plot shows the general trends in training and testing error as we increase
the sample size n = |S|.

(a) Short Answer: Which curve represents the training error? Provide 1-2 sentences
of justification.

Curve (ii) is the training set. Training error increases as the training set increases in
size (more points to account for). However, the increase tapers out when the model
generalizes well. Evidently, curve (i) is testing, since larger training sets better form
generalized models, which reduces testing error.

(b) Short Answer: In one word, what does the gap between the two curves represent?

overfitting

3. What are the effects of the following on overfitting? Choose the best answer.

(a) Increasing decision tree max depth.

⃝ Less likely to overfit
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⃝ More likely to overfit

More likely to overfit

(b) Increasing decision tree mutual information split threshold.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(c) Increasing decision tree max number of nodes.

⃝ Less likely to overfit

⃝ More likely to overfit

More likely to overfit

(d) Increasing k in k-nearest neighbor.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(e) Increasing the training data size for decision trees. Assume that training data points
are drawn randomly from the true data distribution.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

(f) Increasing the training data size for 1-nearest neighbor. Assume that training data
points are drawn randomly from the true data distribution.

⃝ Less likely to overfit

⃝ More likely to overfit

Less likely to overfit

4. Consider a learning algorithm that uses two hyperparameters, γ and ω, and it takes 1
hour to train regardless of the size of the training set.

We choose to do random subsampling cross-validation, where we do K runs of cross-
validation and for each run, we randomly subsample a fixed fraction αN of the dataset
for validation and use the remaining for training, where α ∈ (0, 1) and N is the number
of data points.

(a) Numerical answer: In combination with the cross-validation method above, we
choose to do grid search on discrete values for the two hyperparameters.
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Given N = 1000 data points, K = 4 runs, and α = 0.25, if we have 100 hours
to complete the entire cross-validation process, what is the maximum number of
discrete values of γ that we can include in our search if we also want to include 8
values of ω? Assume that any computations other than training are negligible.

3 +−0.001. Round 100/4/8 = 3.33 down to 3.

(b) Short answer: In one sentence, give one advantage of increasing the value of α.

More data used for validation, giving a better estimate of performance on held-out
data.



10-601 Machine Learning Exam 1 Practice Problems - Page 17 of 50

4 Perceptron

1. Select all that apply: Let S = {(x(1), y(1)), · · · , (x(n), y(n))} be n linearly separable
points by a separator through the origin in Rd. Let S ′ be generated from S as: S ′ =
{(cx(1), y(1)), · · · , (cx(n), y(n))}, where c > 1 is a constant. Suppose that we would like
to run the perceptron algorithm on both data sets separately, and that the perceptron
algorithm converges on S. Which of the following statements are true?

2 The mistake bound of perceptron on S ′ is larger than the mistake bound on S

2 The perceptron algorithm when run on S and S ′ returns the same classifier,
modulo constant factors (i.e., if wS and wS′ are outputs of the perceptron for
S and S ′, then wS = c1w

′
S for some constant c1).

2 The perceptron algorithm converges on S ′.

2 None of the above.

B and C are true. Simply follow the perceptron update rule and we see that the update
on wS and wS′ is identical up to the constant c. A is false as the maximum margin
between any point to the decision hyperplane is also scaled up by c, and the mistake
bound is unchanged.

2. True or False: Given a linearly separable dataset, the convergence time of the percep-
tron algorithm depends on the sample size n.

⃝ True

⃝ False

False. For a linearly separable dataset, the runtime of the perceptron algorithm does
not depend on the size of the training data. The perceptron converges after making
mistakes. The upper bound on number of mistakes is decided by the distance of the
furthest point from the origin and the margin only.

3. Select all that apply: Which of the following are inductive biases of the perceptron
algorithm?

2 Most of the cases in a small neighborhood in feature space belong to the same
class.

2 The true decision boundary is linear.

2 We prefer to correct the most recent mistakes.

2 We prefer the simplest hypothesis that explains the data.

2 None of the above.

BC

4. True or False: If the training data is linearly separable, the perceptron algorithm
always finds the optimal decision boundary for the true distribution.
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⃝ True

⃝ False

False. The training data may not be representative of the true distribution
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5. (1 point) True or False: Consider two datasets D(1) and D(2), where

D(1) = {(x(1)
1 , y

(1)
1 ), ..., (x

(1)
n , y

(1)
n )} and D(2) = {(x(2)

1 , y
(2)
1 ), ..., (x

(2)
m , y

(2)
m )} such that x

(1)
i ∈

Rd1 , x
(2)
i ∈ Rd2 , d1 > d2 and n > m. The maximum number of mistakes the perceptron

algorithm will make is always higher for dataset D(1) than it is for dataset D(2).

⃝ True

⃝ False

False.

6. Suppose you are given the following dataset:

Example Number X1 X2 Y
1 -1 2 -1
2 -2 -2 +1
3 1 -1 +1
4 -3 1 -1

You wish to perform the Batch Perceptron algorithm on this data. Assume you start
with initial weights θT = [0, 0] and bias b = 0, and that you pass through all of the
examples in order of their example number.

i. Numerical answer: What would be the updated weight vector θ after we pass
example 1 through the Perceptron algorithm?

[1,−2]

ii. Numerical answer: What would be the updated bias b after we pass example 1
through the Perceptron algorithm?

−1

iii. Numerical answer: What would be the updated weight vector θ after we pass
example 2 through the Perceptron algorithm?

[1,−2]

iv. Numerical answer: What would be the updated bias b after we pass example 2
through the Perceptron algorithm?
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−1

v. Numerical answer: What would be the updated weight vector θ after we pass
example 3 through the Perceptron algorithm?

[1,−2]

vi. Numerical answer: What would be the updated bias b be after we pass example
3 through the Perceptron algorithm?

−1

vii. True or False: Your friend stops you here and tells you that you do not need to
update the Perceptron weights or bias anymore; is this true or false?

⃝ True

⃝ False

True, all points are classified correctly.

7. True or False: Data (X, Y ) has a non-linear decision boundary. Fortunately, there is
a function F that maps (X, Y ) to (F(X), Y ) such that (F(X), Y ) is linearly separable.
We have tried to build a modified perceptron to classify (X, Y ). Is the given (modified)
perceptron update rule correct?

if sign(wF(x(i)) + b) != y(i):
w′ = w + y(i)F(x(i))
b′ = b+ y(i)

⃝ True

⃝ False

True

8. (a) True or False: All examples (x, y) that the perceptron algorithm has seen are
weighted equally.

⃝ True

⃝ False

False. Only mistakes affect perceptron weights
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5 Linear Regression

1. Select one: The closed form solution for linear regression is θ = (XTX)−1XTy. Suppose
you have n = 35 training examples and m = 5 features (excluding the bias term). Once
the bias term is folded in, what are the dimensions of X, y, θ?

⃝ X is 35× 6, y is 35× 1, θ is 6× 1

⃝ X is 35× 6, y is 35× 6, θ is 6× 6

⃝ X is 35× 5, y is 35× 1, θ is 5× 1

⃝ X is 35× 5, y is 35× 5, θ is 5× 5

A.

2. Answer the following True/False questions, providing brief explanations to support your
answers.

(a) True or False: Consider a linear regression model with only one parameter, the
bias, i.e., y = β0. Then, given n data points (xi, yi) (where xi is the feature and yi
is the output), minimizing the sum of squared errors results in β0 being the median
of the yi values.

⃝ True

⃝ False

False.
∑n

i=1(yi−β0)
2 is the training cost, which when differentiated and set to zero

gives β0 =
∑n

i=1 yi
n

, the mean of the yi values.
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3. Select all that apply: Which of the following are valid expressions for the mean
squared error objective function for linear regression with dataset D = {x(i), y(i)}Ni=1,
with each x(i) ∈ RM and the design matrix X ∈ RN×(M+1)? y and θ are column vectors.

2 J(θ) = 1
N
∥y − θX∥22

2 J(θ) = 1
N
∥yT − θX∥22

2 J(θ) = 1
N
∥yT −Xθ∥22

2 J(θ) = 1
N
∥Xθ − y∥22

2 None of the Above

J(θ) = 1
N
∥Xθ − y∥22

4. Numerical answer: We have 2 data points:

x(1) = [2, 1]T y(1) = 7

x(2) = [1, 2]T y(2) = 5

We know that for linear regression with a bias/intercept term and mean squared error
objective function, there are infinite solutions with these two points.

Give a specific third point x(3), y(3) such that, when included with the first two, will
cause linear regression to still have infinite solutions. Your x(3) should not equal x(1) or
x(2) and your y(3) should not equal y(1) or y(2).

x
(3)
1

x
(3)
2

y(3)

Any x(3) that is colinear with the first two x’s; y doesn’t matter.

Select one: After adding your third point, if we then double the output of just the
first point such that now y(1) = 14, will this change the number of solutions for linear
regression?

⃝ Yes

⃝ No

No
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5. Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx + b + ϵ, where w and
b are real-valued parameters we estimate and ϵ represents the noise in the data. When
the noise is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)}
to estimate the parameters w and b is equivalent to minimizing the squared error:

argmin
w

n∑
i=1

(yi − (wxi + b))2.

Consider the dataset S plotted in Fig. 3 along with its associated regression line. For each
of the altered data sets Snew plotted in Fig. 5, indicate which regression line (relative to
the original one) in Fig. 4 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Dataset (a) (b) (c) (d) (e)
Regression line (b) (c) (b) (a) (a)

Figure 3: An observed data set and its associated regression line.

Figure 4: New regression lines for altered data sets Snew.



10-601 Machine Learning Exam 1 Practice Problems - Page 24 of 50

(a) Adding one outlier to the
original data set.

(b) Adding two outliers to the original data set.

(c) Adding three outliers to the original data set. Two on
one side and one on the other side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and adding four
points that lie on the trajectory of the original regres-
sion line.

Figure 5: New data set Snew.
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6 Optimization

1. Select all that apply: Which of the following are correct regarding Gradient Descent
(GD) and stochastic gradient descent (SGD)?

2 Each update step in SGD pushes the parameter vector closer to the parameter
vector that minimizes the objective function.

2 The gradient computed in SGD is, in expectation, equal to the gradient com-
puted in GD.

2 The gradient computed in GD has a higher variance than that computed in
SGD, which is why in practice SGD converges faster in time than GD.

2 None of the above.

B.

A is incorrect, SGD updates are high in variance and may not go in the direction of the
true gradient. C is incorrect, for the same reason.

2. (a) Select all that apply: Determine if the following 1-D functions are convex. As-
sume that the domain of each function is R. The definition of a convex function is
as follows:

f(x) is convex ⇐⇒ f(αx+(1−α)z) ≤ αf(x)+(1−α)f(z),∀α ∈ [0, 1] and ∀x, z.

2 f(x) = x+ b for any b ∈ R

2 f(x) = c2x for any c ∈ R

2 f(x) = ax2 + b for any a ∈ R and any b ∈ R

2 f(x) = 0

2 None of the above

A, B, D

f(x) = x+ b for any b ∈ R, f(x) = c2x for any c ∈ R, f(x) = 0.

(b) Select all that apply: Consider the convex function f(z) = z2. Let α be our
learning rate in gradient descent.

For which values of α will limt→∞ f(z(t)) = 0, assuming the initial value of z is
z(0) = 1 and z(t) is the value of z after the t-th iteration of gradient descent?

2 α = 0

2 α = 1
2

2 α = 1

2 α = 2
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2 None of the above

α = 1
2

(c) Numerical answer: Give the range of all values for α ≥ 0 such that limt→∞ f(z(t)) =
0, assuming the initial value of z is z(0) = 1.

(0, 1).
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7 MLE/MAP

1. For the following questions, answer True or False and provide a brief justification of your
answer.

1. True or False: Consider the linear regression model y = wTx + ϵ. Assuming
ϵ ∼ N (0, σ2), maximizing the conditional log-likelihood is equivalent to minimizing
the sum of squared errors ∥y − wTx∥22.

True. The squared error term comes from the squared term in the Gaussian distri-
bution.

2. True or False: Consider n data points, each with one feature xi and an output
yi. In linear regression, we assume yi ∼ N (wxi, σ

2) and compute ŵ through MLE.

Suppose yi ∼ N (log(wxi), 1) instead. Then the maximum likelihood estimate ŵ is
the solution to the following equality:

n∑
i=1

xiyi =
n∑

i=1

xi log(wxi)

.

False. The likelihood function can be written as

n∏
i=1

exp(−(yi − log(wxi))
2/2)√

2π
=

exp(−
∑n

i=1(yi − log(wxi))
2/2)

(
√
2π)n

Differentiating wrt w and setting to zero gives us

n∑
i=1

2(yi − log(wxi))
xi

wxi

= 0 =⇒
n∑

i=1

yi =
n∑

i=1

log(wxi)

2. Math: Let X1, X2, ..., XN be data drawn independently from a uniform distribution
over a diamond-shaped area with edge length

√
2θ in R2, where θ ∈ R+ (see Figure 6).

Thus, Xi ∈ R2 and the distribution is

p(x|θ) =
{

1
2θ2

if ∥x∥ ≤ θ
0 otherwise
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where ∥x∥ = |x1|+ |x2| is the L1 norm. Find the maximum likelihood estimate of θ.

Figure 6: Area of ∥x∥ ≤ θ

Analysis: As X1, X2, ..., XN are samples that have been drawn from the distribution,
their probability of occurrence must be non-zero. Therefore, each of X1, X2, ..., XN must
obey the condition ∥x∥ ≤ θ. Knowing this, we can write the likelihood function as

L(X1, X2, ..., XN ; θ) =
1

(2θ2)N
1

{
max
1≤i≤N

∥Xi∥ ≤ θ

}
To maximize likelihood, we want θ to be as small as possible with the constraint of
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max
1≤i≤N

∥Xi∥ ≤ θ, otherwise the likelihood drops to 0. So the MLE of θ is

θ̂ = max
1≤i≤N

∥Xi∥

3. Math: Suppose we want to model a 1-dimensional dataset of N real valued features(
x(i)
)
and targets

(
y(i)
)
by:

y(i) ∼ N
(
exp(wx(i)), 1

)
,

where w is our unknown (scalar) parameter and N is the normal distribution with
probability density function:

f(a)N (µ,σ2) =
1√
2πσ2

exp

(
−(a− µ)2

2σ2

)
Can the maximum conditional negative log likelihood estimator of w be solved analyti-
cally? If so, find the expression for wMLE. If not, say so and write down the update rule
for w using gradient descent.

Cannot be found analytically. The negative log likelihood can be defined as:

NLL = − log(
n∏

i=1

exp(−(yi − exp(wxi))
2/2)√

2π
) = − log(

exp(−
∑n

i=1(yi − exp(wxi))
2/2)

(
√
2π)n

)

This can be further simplified as

NLL =
n∑

i=1

(yi − exp(wxi))
2/2 + log((

√
2π)n)

Taking the derivative of the negative log likelihood with respect to w yields:

∂NLL

∂w
=

N∑
i

−x(i)y(i) exp(wx(i)) + x(i) exp(2wx(i))
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Update rule is thus

w ← w − η
∂NLL

∂w

4. Assume we have n random variables xi, i ∈ [1, n], each drawn independently from a
Normal distribution with mean µ and variance σ2.

p(x1, x2, ..., xn|µ, σ2) =
n∏

i=1

1√
2πσ

exp

(
−(xi − µ)2

2σ2

)
a) Write the log-likelihood function ℓ(x1, x2...xn|µ, σ2).

log(
n∏

i=1

1√
2πσ

exp
{−(xi − µ)2

2σ2

}
) =

n∑
i=1

[log(
1√
2πσ

)− (xi − µ)2

2σ2
] (1)

= −n log(
√
2πσ)− 1

2σ2

n∑
i=1

(xi − µ)2 (2)

b) Derive an expression for the Maximum Likelihood Estimate for the variance (σ2).
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We can find the estimator by solving ∇σl(x1, x2...xn|µ, σ2) = 0.

− n
1√
2πσ

√
2π +

1

σ3

n∑
i=1

(xi − µ)2 = 0 (3)

1

σ3

n∑
i=1

(xi − µ)2 =
n

σ
(4)

1

n

n∑
i=1

(xi − µ)2 = σ2 (5)

5. Assume we have n random variables xi, i ∈ [1, n], each drawn independently from a
Bernoulli distribution with mean θ. Recall that in a Bernoulli distribution X ∈ {0, 1}
and the pdf is:

p(X|θ) = θx(1− θ)1−x

a) Derive the likelihood L(θ;X1, . . . , Xn).

L(θ;X1, . . . , Xn) =
∏n

i=1 p(Xi; θ)
L(θ;X1, . . . , Xn) =

∏n
i=1 θ

xi(1− θ)1−xi

L(θ;X1, . . . , Xn) = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

Either of the final two steps are acceptable.
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b) Show that the log-likelihood is:

l(θ;X1, . . . , Xn) =

(
n∑

i=1

Xi

)
log(θ) +

(
n−

n∑
i=1

Xi

)
log(1− θ)

l(θ;X1, . . . , Xn) = logL(θ;X1, . . . , Xn)

l(θ;X1, . . . , Xn) = log
[
θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

]
l(θ;X1, . . . , Xn) = (

∑n
i=1 xi) log(θ) + (n−

∑n
i=1 xi) log(1− θ)

c) Show that the MLE is θ̂ = 1
n

n∑
i=1

Xi.

Take the derivative of the log likelihood and set it to zero
dl

dθ
=

d

dθ

[
(
∑n

i=1 xi) log(θ) + (n−
∑n

i=1 xi) log(1− θ)
]
= 0∑n

i=1 xi

θ
− n−

∑n
i=1 xi

1− θ
= 0(∑n

i=1 xi

)
(1− θ)−

(
n−

∑n
i=1 xi

)
θ = 0∑n

i=1 xi − nθ = 0

θ̂ =
1

n
(
∑n

i=1Xi)
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6. Magnetic Resonance Imaging (MRI) scans are commonly used to generate detailed im-
ages of patients’ internal anatomy at hospitals. The scanner returns an image with N
pixels. For each pixel we extract the noise from that pixel to obtain a vector of noise
terms x ∈ RN s.t. ∀ i ∈ {1...N}, xi ≥ 0 and xi is independent and identically distributed
and follows a Rayleigh distribution. The probability density function of a Rayleigh
distribution is given by:

f(x | σ) = x

σ2
exp

(
−x2

2σ2

)
for scale parameter σ ≥ 0 and x ≥ 0.

i. (2 points) Write the log-likelihood ℓ(σ) of a noise vector x obtained from one image.
Report your answer in terms of the variables xi, i, N, σ, the function exp(·), and any
constants you may need. For full credit you must push the log through to remove
as many multiplications/divisions as possible.

ℓ(σ) =
N∑
i=1

[
log xi − 2 log σ − x2

i

2σ2

]

ii. (2 points) Report the maximum likelihood estimator of the scale parameter, σ, for
a single image’s noise vector x.
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0 =
∂

∂σ

N∑
i=1

log p(xi | σ) =
N∑
i=1

−2
σ

+
x2
i

σ3

=⇒ σ̂ =

[
1

2N

N∑
i=1

x2
i

] 1
2
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8 Logistic Regression and Regularization

1. A generalization of logistic regression to a multiclass settings involves expressing the

per-class probabilities P (y = c|x) as the softmax function exp(wT
c x)∑

d∈C exp(wT
d x)

, where c is some

class from the set of all classes C.

Consider a 2-class problem (labels 0 or 1). Rewrite the above expression for this situation
to end up with expressions for P (Y = 1|x) and P (Y = 0|x) that we have already come
across in class for binary logistic regression.

P (y = 1|x) = exp(wT
1 x)

exp(wT
0 x)+exp(wT

1 x)
= exp((w1−w0)T x)

1+exp((w1−w0)T x)
= exp(wT x)

1+exp(wT x)
= p

Therefore, 1− p = 1
1+exp(wT x)

2. Considering a Gaussian prior, write out the MAP objective function J(w)MAP in terms
of the MLE objective J(w)MLE. Name the variant of logistic regression this results in.

JMAP (w) = JMLE(w)− λ∥w∥22. This is L2 regularized logistic regression.

3. Given a training set D = {(x(1), y(1), . . . , (x(N), y(N))} where x(i) ∈ Rd is a feature vector
and yi ∈ {0, 1} is a binary label, we want to find the parameters ŵ that maximize the
likelihood for the training set, assuming a parametric model of the form

p(y = 1|x;w) = 1

1 + exp(−wTx)
.
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The conditional log likelihood of the training set is

ℓ(w) =
n∑

i=1

yi log p(yi, |xi;w) + (1− yi) log(1− p(yi, |xi;w)),

and the gradient is

∇ℓ(w) =
n∑

i=1

(yi − p(yi|xi;w))xi.

a) Is it possible to get a closed form for the parameters ŵ that maximize the conditional
log likelihood? How would you compute ŵ in practice?

There is no closed form expression for maximizing the conditional log likelihood.
One has to consider iterative optimization methods, such as gradient descent, to
compute ŵ.

b) For a binary logistic regression model, we predict y = 1 when p(y = 1|x) ≥ 0.5.
Show that this is a linear classifier.
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Using the parametric form for p(y = 1|x):

p(y = 1|x) ≥ 1

2
=⇒ 1

1 + exp(−wTx)
≥ 1

2

=⇒ 1 + exp(−wTx) ≤ 2

=⇒ exp(−wTx) ≤ 1

=⇒ −wTx ≤ 0

=⇒ wTx ≥ 0,

so we predict ŷ = 1 if wTx ≥ 0.

c) Consider the case with binary features, i.e, x ∈ {0, 1}d, where feature x1 is rare
and happens to appear in the training set with only label 1. What is ŵ1? Is the
gradient ever zero for any finite w? Why is it important to include a regularization
term to control the norm of ŵ?

If a binary feature fired for only label 1 in the training set then, by maximizing
the conditional log likelihood, we will make the weight associated to that feature
be infinite. This is because, when this feature is observed in the training set, we
will want to predict predict 1 irrespective of everything else. This is an undesired
behaviour from the point of view of generalization performance, as most likely we
do not believe this rare feature to have that much information about class 1. Most
likely, it is spurious co-occurrence. Controlling the norm of the weight vector will
prevent these pathological cases.

4. Given the following dataset, D, and a fixed parameter vector, θ, write an expression for
the binary logistic regression conditional likelihood.

D = {(x(1), y(1) = 0), (x(2), y(2) = 0), (x(3), y(3) = 1), (x(4), y(4) = 1)}

• Write your answer in terms of θ, x(1), x(2), x(3), and x(4).



10-601 Machine Learning Exam 1 Practice Problems - Page 38 of 50

• Do not include y(1), y(2), y(3), or y(4) in your answer.

• Don’t try to simplify your expression.

Conditional likelihood:

(
1− 1

1+e−θT x1

)(
1− 1

1+e−θT x2

)
1

1+e−θT x3
1

1+e−θT x4

5. Write an expression for the decision boundary of binary logistic regression with a bias
term for two-dimensional input features x1 ∈ R and x2 ∈ R and parameters b (the
intercept parameter), w1, and w2. Assume that the decision boundary occurs when
P (Y = 1 | x, b, w1, w2) = P (Y = 0 | x, b, w1, w2).

(a) Write your answer in terms of x1, x2, b, w1, and w2.

Decision boundary equation:

0 = b+ w1x1 + w2x2

(b) What is the geometric shape defined by this equation?

A line.

6. We have now feature engineered the two-dimensional input, x1 ∈ R and x2 ∈ R, mapping

it to a new input vector: x =

 1
x1

2

x2
2


(a) Write an expression for the decision boundary of binary logistic regression with this

feature vector x and the corresponding parameter vector θ = [b, w1, w2]
T . Assume

that the decision boundary occurs when P (Y = 1 | x,θ) = P (Y = 0 | x,θ). Write
your answer in terms of x1, x2, b, w1, and w2.

Decision boundary expression:

0 = b+ w1x
2
1 + w2x

2
2.

(b) Assume that w1 > 0, w2 > 0, and b < 0. What is the geometric shape defined by
this equation?
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An ellipse

(c) If we add an L2 regularization term when learning [w1, w2]
T , what happens to the

parameters as we increase the λ that scales this regularization term?

The magnitude of the parameters will decrease.

(d) If we add an L2 regularization term when learning [w1, w2]
T , what happens to the

decision boundary shape as we increase the λ that scales this regularization
term?

The parameters shrink, so the ellipse will get bigger.

7. Short Answer: Your friend is training a logistic regression model with ridge regu-
larization, where λ is the regularization constant. They run cross-validation for λ =
[0.01, 0.1, 1, 10] and compare train, validation and test errors. They choose λ = 0.01
because that had the lowest test error.

However, you observe that the test error linearly increases from λ = 0.01 to 10 and
thus, there exists a value of λ < 0.01 that gives a lower test error. You tell your friend
that they should run the cross-validation for λ = [0.0001, 0.001, 0.01] to get the optimal
model.

Do you think you did the right thing by giving your friend this suggestion? Briefly justify
your answer in 1-2 concise sentences.

No. because we should not be using test error at all in making any model selection
decisions.
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9 Feature Engineering and Regularization

1. Model Complexity: In this question we will consider the effect of increasing the
model complexity, while keeping the size of the training set fixed. To be concrete, con-
sider a classification task on the real line R with distribution D and target function
c∗ : R → {±1}, and suppose we have a random sample S of size n drawn iid from D.
For each degree d, let ϕd be the feature map given by ϕd(x) = (1, x, x2, . . . , xd) that
maps points on the real line to (d+ 1)-dimensional space.

Now consider the learning algorithm that first applies the feature map ϕd to all the
training examples and then runs logistic regression. A new example is classified by first
applying the feature map ϕd and then using the learned classifier.

a) For a given dataset S, is it possible for the training error to increase when we
increase the degree d of the feature map? Please explain your answer in 1 to
2 sentences.

No. Every linear separator using the feature map ϕd can also be expressed using
the feature map ϕd+1, since we are only adding new features. It follows that the
training error will not increase cvv for any given sample S.

b) Briefly explain in 1 to 2 sentences why the true error first drops and then
increases as we increase the degree d. When the dimension d is small, the true error
is high because it is not possible to the target function is not well approximated
by any linear separator in the ϕd feature space. As we increase d, our ability to
approximate c∗ improves, so the true error drops. But, as we continue to increase
d, we begin to overfit the data and the true error increases again.
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10 Neural Networks

Figure 7: neural network

1. Consider the neural network architecture shown above for a binary classification problem.
The values for weights and biases are shown in the figure. We define:

a1 = w11x1 + b11

a2 = w12x1 + b12

a3 = w21z1 + w22z2 + b21

z1 = ReLU(a1)

z2 = ReLU(a2)

z3 = σ(a3), σ(x) =
1

1+e−x

(i) For x1 = 0.3, compute z3 in terms of e.

z3 =
1

1+e−0.15

(ii) Which class does the network predict for the data point (x1 = 0.3)? Note that
ŷ = 1 if z3 >

1
2
, else ŷ = 0.
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ŷ(x1 = 0.3) = 1

(iii) Perform backpropagation on the bias term b21 by deriving the expression for the
gradient of the loss function L(y, z3) with respect to the bias term b21,

∂L
∂b21

, in

terms of the partial derivatives ∂α
∂β
, where α and β can be any of L, zi, ai, bij, wij, x1

for all valid values of i, j. Your backpropagation algorithm should be as explicit
as possible — that is, make sure each partial derivative ∂α

∂β
cannot be decomposed

further into simpler partial derivatives. Do not evaluate the partial derivatives.

∂L
∂b21

= ∂L
∂z3

∂z3
∂a3

∂a3
∂b21

(iv) Perform backpropagation on the bias term b12 by deriving the expression for the
gradient of the loss function L(y, z3) with respect to the bias term b12,

∂L
∂b12

, in

terms of the partial derivatives ∂α
∂β
, where α and β can be any of L, zi, ai, bij, wij, x1

for all valid values of i, j. Your backpropagation algorithm should be as explicit
as possible — that is, make sure each partial derivative ∂α

∂β
cannot be decomposed

further into simpler partial derivatives. Do not evaluate the partial derivatives.

∂L
∂b12

= ∂L
∂z3

∂z3
∂a3

∂a3
∂z2

∂z2
∂a2

∂a2
∂b12

2. In this problem we will use a neural network to distinguish the crosses (×) from the
circles (◦) in the simple data set shown in Figure 8a. Even though the crosses and
circles are not linearly separable, we can break the examples into three groups, S1, S2,
and S3 (shown in Figure 8a) so that S1 is linearly separable from S2 and S2 is linearly
separable from S3. We will exploit this fact to design weights for the neural network
shown in Figure 8b in order to correctly classify this training set. For all nodes, we will
use the threshold activation function

ϕ(z) =

{
1 z > 0
0 z ≤ 0.
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(a) The data set with groups S1, S2, and S3.

y
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(b) The neural network architecture

Figure 8
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(b) Set S1 and S2
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(c) Set S1, S2 and S3

Figure 9: NN classification.

(i) First we will set the parameters w11, w12 and b1 of the neuron labeled h1 so that its
output h1(x) = ϕ(w11x1 +w12x2 + b1) forms a linear separator between the sets S2

and S3.

(a) On Fig 9a, draw a linear decision boundary that separates S2 and S3.
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(b) Write down the corresponding weights w11, w12, and b1 so that h1(x) = 0 for
all points in S3 and h1(x) = 1 for all points in S2. One solution suffices and
the same applies to (ii) and (iii).

w11 = −1, w12 = 0, b1 = 3

(ii) Next we set the parameters w21, w22 and b2 of the neuron labeled h2 so that its
output h2(x) = ϕ(w21x1 +w22x2 + b2) forms a linear separator between the sets S1

and S2.

(a) On Fig 9b, draw a linear decision boundary that separates S1 and S2.

0 1 2 3 4 5
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2

3

4

5

x1

x
2

i

(b) Write down the corresponding weights w21, w22, and b2 so that h2(x) = 0 for
all points in S1 and h2(x) = 1 for all points in S2.

w21 = 3, w22 = 1, b2 = −7
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(iii) Now we have two classifiers h1 (to classify S2 from S3) and h2 (to classify S1 from
S2). We will set the weights of the final neuron of the neural network based on
the results from h1 and h2 to classify the crosses from the circles. Let h3(x) =
ϕ
(
w31h1(x) + w32h2(x) + b3

)
.

(a) Compute w31, w32, b3 such that h3(x) correctly classifies the entire data set.

w31 = 1, w32 = 1, b3 = −1.5

(b) Draw your decision boundary in Fig 9c.
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3. One part of learning parameters in a neural network is getting the gradients of the
parameters.

Suppose we have a dataset D with N data points xi with label yi, where i ∈ [1, N ]. xi

is a d × 1 vector and yi ∈ {0, 1}. We use the data to train a neural network with one
hidden layer:

h(x) =σ(W1x+ b1)

p(x) =σ(W2h(x) + b2),

where σ(x) = 1
1+exp(−x)

is the sigmoid function, W1 is a n by d matrix, b1 is a n by 1
vector, W2 is a 1 by n matrix, and b1 is a 1 by 1 vector.

We use cross entropy loss and minimize the negative log likelihood to train the neural
network:

ℓD(W ) =
1

N

N∑
i=1

ℓi(W ) =
1

m

N∑
i=1

−(yi log pi + (1− yi) log(1− pi)),

where pi = p(xi), hi = h(xi).

(a) Describe how you would derive the gradients w.r.t the parametersW1,W2 and b1, b2.
You do not need to write out the actual mathematical expression.
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Use the chain rule.

(b) When N is large, we typically use a small subset of the dataset to estimate the
gradient — stochastic gradient descent (SGD). Explain why we use SGD instead
of gradient descent.

SGD converges faster than gradient descent.

(c) Derive expressions for the following gradients: ∂l
∂pi

, ∂l
∂W2

, ∂l
∂b2

, ∂l
∂hi

, ∂l
∂W1

, ∂l
∂b1

. When
deriving the gradient w.r.t. the parameters in lower layers, you may assume the
gradient in upper layers are available to you (i.e., you can use them in your equa-
tion). For example, when calculating ∂l

∂W1
, you can assume ∂l

∂pi
, ∂l
∂W2

, ∂l
∂b2

, ∂l
∂hi

are
known.



10-601 Machine Learning Exam 1 Practice Problems - Page 47 of 50

∂l

∂pi
=

1

m
(−yi

pi
+

1− yi
1− pi

)

∂l

∂W2

=
1

m

∑
i

∂li
∂pi

∂pi
∂W2

=
1

m

∑
i

∂li
∂pi

pi(1− pi)h
T
i

∂l

∂b2
=

1

m

∑
i

∂li
∂pi

pi(1− pi)

∂l

∂hi

=
∂pi
∂hi

∂l

∂pi
= W T

2 pi(1− pi)
∂l

∂pi
∂l

∂W1

=
1

m

∑
i

∂li
∂hi

∂hi

∂W1

=
1

m

∑
i

[
∂li
∂hi

◦ hi ◦ (1− hi)

]
xT
i

∂l

∂b1
=

1

m

∑
i

∂li
∂hi

∂hi

∂b1
=

1

m

∑
i

∂li
∂hi

◦ hi ◦ (1− hi)

4. Consider the following neural network for a 2-D input, x1 ∈ R and x2 ∈ R where:

Figure 13: Neural Network

• All g functions are the same arbitrary non-linear activation function with no pa-
rameters

• ℓ(y, ŷ) is an arbitrary loss function with no parameters, and:

z1 = wAx1 + wBx2 a1 = g(z1)

z2 = wCa1 a2 = g(z2)

z3 = wDa1 a3 = g(z3)

z4 = wEa2 + wFa3 ŷ = g(z4)

Note: There are no bias terms in this network.

(a) What is the chain of partial derivatives needed to calculate the derivative ∂ℓ
∂wE

?

Your answer should be in the form: ∂ℓ
∂wE

= ∂?
∂?

∂?
∂?

. . . Make sure each partial derivative
∂?
∂?

in your answer cannot be decomposed further into simpler partial derivatives.
Do not evaluate the derivatives. Be sure to specify the correct subscripts in
your answer.

∂ℓ
∂wE

=
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∂ℓ
∂wE

= ∂ℓ
∂ŷ

∂ŷ
∂z4

∂z4
∂wE

(b) The network diagram from above is repeated here for convenience: What is the

Figure 14: Neural Network

chain of partial deriviatives needed to calculate the derivative ∂ℓ
∂wC

?
Your answer should be in the form:

∂ℓ

∂wC

=
∂?

∂?

∂?

∂?
...

Make sure each partial derivative ∂?
∂?

in your answer cannot be decomposed further
into simpler partial derivatives. Do not evaluate the derivatives. Be sure to
specify the correct superscripts in your answer.

∂ℓ
∂wC

=

∂ℓ
∂wC

= ∂ℓ
∂ŷ

∂ŷ
∂z4

∂z4
∂a2

∂a2
∂z2

∂z2
∂wC

(c) We want to modify our neural network objective function to add an L2 regulariza-
tion term on the weights. The new objective is:

ℓ(y, ŷ) + λ
1

2
∥w∥22

where λ (lambda) is the regularization hyperparamter and w is all of the weights
in the neural network stacked into a single vector, w = [wA, wB, wC , wD, wE, wF ]

T .

Write the right-hand side of the new gradient descent update step for weight wC

given this new objective function. You may use ∂ℓ
∂wC

in your answer.

Update: wC ← ...

Update for wC : wC ← wC − α
(

∂ℓ
∂wC

+ λwC

)
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5. Backpropagation in neural networks can lead to slow or unstable learning because of the
vanishing or exploding gradients problem. Understandably, Neural the Narwhal does
not believe this. To convince Neural, Lamar Jackson uses the example of an N layer
neural network that takes in a scalar input x, and where each layer consists of a single
neuron. More formally, x = o0, and for each layer i ∈ {1, 2, ..., N}, we have

si = wioi−1 + bi

oi = σ(si)

where σ is the sigmoid activation function. Note that wi, bi, oi, si are all scalars.

i. (1 point) Give an expression for ∂oN
∂w1

. Your expression should be in terms of the si’s,
the wi’s, N , xi, and σ′(·), the derivative of the sigmoid function.

∂oN
∂w1

=
∂oN
∂oN−1

∂oN−1

∂oN−2

· · · ∂o1
∂w1

=
∂o1
∂w1

N∏
i=2

∂oi
∂oi−1

= σ′(s1)x
N∏
i=2

σ′(si)wi

ii. (1 point) Knowing that σ′(·) is at most 1
4
and supposing that all the weights are 1

(i.e. wi = 1 for all i), give an upper bound for ∂oN
∂w1

. Your answer should be in terms
of x and N .
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∂oN
∂w1
≤ x

(
1
4

)N
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