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1 Naive Bayes
By applying Bayes’ rule, we can model the probability distribution P (Y |X) by estimating P (X|Y )
and P (Y ).

P (Y |X) ∝ P (Y )P (X|Y )

The Naive Bayes assumption greatly simplifies estimation of P (X|Y ) - we assume the features Xd are
independent given the label. With math:

P (X|Y ) =

Different Naive Bayes classifiers are used depending on the type of features.

• Binary Features: Bernoulli Naive Bayes - Xd |Y = y ∼ Bernoulli(θd,y)

• Discrete Features: Multinomial Naive Bayes - Xd |Y = y ∼ Multinomial(θd,1,y, . . . , θd,K−1,y)

• Continuous Features: Gaussian Naive Bayes - Xd |Y = y ∼ N (µd,y, σ
2
d,y)

We’ll walk through the process of learning a Bernoulli Naive Bayes classifier. Consider the dataset
below. You are looking to buy a car; the label is 1 if you are interested in the car and 0 if you aren’t.
There are three features: whether the car is red (your favorite color), whether the car is affordable, and
whether the car is fuel-efficient.
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Interested? Red? Affordable? Fuel-Efficient?
1 1 1 1
0 0 1 0
0 0 1 1
1 0 0 0
0 0 1 1
0 0 1 1
1 1 1 1
1 1 0 1
0 0 0 0

1. How many parameters do we need to learn?

2. Estimate the parameters via MLE.
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3. If I see a car that is red, not affordable, and fuel-efficient, would the classifier predict that I would
be interested in it?

4. Is there a problem with this classifier based on your calculations for the previous question? If so,
how can we fix it?

5. Now we will derive the decision boundary of a 2D Gaussian Naı̈ve Bayes. Show that this decision
boundary is quadratic. That is, show that p(y = 1 | x1, x2) = p(y = 0 | x1, x2) can be written as
a polynomial function of x1 and x2 where the degree of each variable is at most 2. You may fold
unimportant constants into terms such as C,C ′, C ′′, C ′′′ so long as you are clearly showing each
step.
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2 Principal Component Analysis
Principal Component Analysis aims to project data into a lower dimension, while preserving as much
as information as possible.

How do we do this? By finding an orthogonal basis (a new coordinate system) of the data, then
pruning the “less important” dimensions such that the remaining dimensions minimize the squared
error in reconstructing the original data.

In low dimensions, finding the principal components can be done visually as seen above, but in higher
dimensions we need to approach the problem mathematically. We find orthogonal unit vectors v1 . . .vM

such that the reconstruction error 1
N

∑N
i=1 ||x(i)−x̂(i)||2 is minimized, where x̂(i) =

∑M
m=1(v

T
mx(i))vm

are the reconstructed vectors.

If we have M new vectors and d original vectors, with M = d, we can reconstruct the original data
with 0 error. If M < d, it is usually not possible to reconstruct the original data without losing any
error. In other words, all the reconstruction error comes from the M − d missing components. This
error can be expressed in terms of the covariance matrix of the original data, and is minimized when the
principal component vectors v1 . . .vM are the top M eigenvectors of the covariance matrix (in terms
of eigenvalues). The higher the eigenvalues for these eigenvectors are, the more information they store
and the lower the reconstruction error.

For the following questions, use this Colab notebook.

Let’s assume we’ve performed PCA on the following dataset:

Row X1 X2 X3 X4
1 -0.21 -0.61 -0.35 0.08
2 0.15 -0.77 1.26 1.57
3 0.03 0.12 -0.39 -0.25
4 0.92 1.31 0.31 1.19
5 2.51 1.99 1.86 2.57
6 0.91 1.23 -0.01 0.04
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And we’ve obtained the following principal components:

PC1 PC2 PC3 PC4
-0.53 0.23 0.48 -0.66
-0.49 0.7 -0.27 0.44
-0.43 -0.46 0.52 0.57
-0.54 -0.49 -0.65 -0.21

Which correspond to the following eigenvalues:

[3.265, 0.999, 0.043, 0.014]

1. Why are there only 4 principal components?

2. How much of the variance in the data is preserved by the first two principal components?

3. How much of the variance in the data is preserved by the first and third principal components?

4. Perform a dimensionality reduction on the points such that we project them onto the first two prin-
cipal components. Then, inverse transform it back to four dimensions. What is the reconstruction
error for this sample?

5. Perform a dimensionality reduction such that we project the points onto the first and third principal
components. Then, inverse transform it back to four dimensions. What is the reconstruction error
of this new dataset?

6. Consider the reconstruction error of the fourth row in particular. Is it lower using the first and
second principal components or using the first and third? Why might this be the case?
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3 K-Means
Clustering is an example of unsupervised machine learning algorithm because it serves to partition
unlabeled data. There are many different types of clustering algorithms, but the one that is used most
frequently and was introduced in class is K-Means.

In K-Means, we aim to minimize the objective function:

n∑
i=1

min
j∈{1,...,k}

||x(i) − µj ||2 (1)

Below is the K-Means algorithm:

Let D = {x(1),x(2), ...,x(n)} where x(i) ∈ Rd be the set of input examples that each have d features.

Initialize k cluster centers {µ(1), ...,µ(k)} where µ(i) ∈ Rd

Repeat until convergence:

1. Assign each point x(i) to a cluster C(j) where j = argmin1≤r≤k ||x(i) − µ(r)||

2. Recompute each µ(i) as the mean of points in C(i)

3.1 Walking through an example
Lets walk through an example of K-Means with k = 3 using the following dataset for the first iteration:

Perform one iteration of the K-Means algorithm:

1. What are the cluster assignments?

2. What are the recomputed cluster centers?
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3. Draw the cluster assignments after the first iteration on the graph below.
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3.2 The importance of initialization
Given the points in the graph below, and assume we will have k = 3 cluster centers.

1. Give an example of a set of initialization points such that the K-Means algorithm would converge
to a global minimum.

2. Give an example of a set of initialization points such that the K-Means algorithm would converge
to a local minimum instead of the global minimum.
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