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1 HMMs
You are given the following training data:

win_C league_C Liverpool_D

win_C Liverpool_D league_C

Liverpool_D win_C

Figure 1: Visualization of Sequences

You are also given the following observed (validation) data: Liverpool win league
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1.1 Initial, Emission, and Transition Matrices
Let each observed state xt ∈ {1, 2, 3}, where 1 corresponds to win, 2 corresponds to league, and 3
corresponds to Liverpool. Let each hidden state Yt ∈ {C,D}, where s1 = C and s2 = D.

First, we need to estimate the HMM parameters - the initial probabilities: π, the transition probability
matrix: B, and the emission probability matrix: A. Remember that we use MLE estimation to do so:

• Ĉk =
N(Y

(i)
1 =sk)

N
∀ i, k

• B̂jk =
N(Y

(i)
t =sk,Y

(i)
t−1=sj)

N(Y
(i)
t−1=sj)

∀ i, t > 1, j, k

• Âjk =
N(X

(i)
t =k,Y

(i)
t =sj)

N(Y
(i)
t =sj)

∀ i, t, j, k

Note: When learning an HMM, we add 1 to each count to make a pseudocount. This improves perfor-
mance when evaluating unseen cases in the validation set or test set.

1. Find the initial matrix π. Recall that πj = P (Y1 = sj).

• Find count matrix and pseudocount matrix:

Count
C

D

Pseudocount−−−−−−−→

Count
C

D

• Normalize:

π =
C

D

2. Find the transition matrix B. Recall that Bjk = P (Yt = sk | Yt−1 = sj).

• Find count matrix and pseudocount matrix:

C D
C

D

Pseudocount−−−−−−−→

C D
C

D

• Normalize:

B =

C D
C

D
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3. Find the emission matrix A. Recall that Ajk = P (Xt = k | Yt = sj).

• Find count matrix and pseudocount matrix:

win league Liverpool
C

D

Pseudocount−−−−−−−→

win league Liverpool
C

D

• Normalize:

A =

win league Liverpool
C

D
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1.2 The Forward Algorithm
One type of inference problem that can be answered by an HMM is Evaluation - computing the prob-
ability of a sequence of observations. We calculate the likelihood of observing the validation sequence:

Liverpool win league

To do so, we calculate the forward probability matrix α. Recall that

αt(sk) = P (x1:t, Yt = sk)

We have the following bottom-up dynamic programming algorithm to calculate the forward probabili-
ties:

for t = 1,...,T:
for j = 1,...,J:

if t == 1:
α1(sj) = πj ∗Aj,x1

else:
αt(sj) = Aj,xt ∗

∑
k αt−1(sk) ∗Bk,j

First, use the algorithm as defined above to calculate α1(C) and α1(D).

• α1 =

[
α1(C)
α1(D)

]
=

[
πC ∗AC,x1

πD ∗AC,x1

]
=

[
πC ∗AC,Liverpool

πD ∗AD,Liverpool

]
=
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Observe that this can be vectorized as π ⊙A,x1 .

Indeed, the way B and A are constructed allows us to also vectorize the computation of the forward
probabilities for 1 < t ≤ T :

A,xt ⊙ (BTαt−1)

• α2 =

[
α2(C)
α2(D)

]
= A,x2 ⊙ (BTα1) =

• α3 =

To find the likelihood of observing the validation sequence, all we need are the final forward probabili-
ties:

P (X1 = Liverpool, X2 = win, X3 = league)

=
∑

y3∈{C,D}

P (x1 = Liverpool, x2 = win, x3 = league, Y3 = yt)

=
∑

yt∈{C,D}

α3(yt)

=

=
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1.3 The Backward Algorithm
Another type of inference problem that can be answered by an HMM is computing Marginals - com-
puting the marginal probability distribution for a hidden state, given a sequence of observations. Recall
that

P (Yt = sk|x⃗) =
αt(sk)βt(sk)

P (x⃗)

Therefore, along with the forward probability matrix α, we need to find the backward probability matrix
β, where

βt(sk) = P (xt+1:T |Yt = sk)

We have a similar bottom-up dynamic programming algorithm to calculate the backward probabilities:

for t = T,...,0:
for j = 1,...,k:

if t == T:
βT (sj) = 1

else:

βt(sj) =
∑J

k=1Ak,xt+1βt+1(sk)Bj,k

Conveniently, there is also a matrix expression for the vector of backward probabilities for a given time
step t < T :

B(A,xt+1 ⊙ βt+1)

• β3 =

[
β3(C)
β3(D)

]
=

[
1
1

]

• β2 =

[
β2(C)
β2(D)

]
= B(A,x3 ⊙ β3) =

• β1 = B(A,x2 ⊙ β2) =
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Now, we have our α and β matrices:

α =

C D
1
2
3

 0.0750 0.2667
0.1150 0.0186
0.0225 0.0123



β =

C D
1
2
3

 0.0823 0.1072
0.2500 0.3229
1.0000 1.0000


1. What is P (Y2 = C|x⃗)?

2. What is P (Y2 = D|x⃗)?

3. What is P (Y3 = C|x⃗)?

4. What is the minimum Bayes risk (MBR) decoder prediction for Y2, assuming our MBR loss
function is the Hamming loss?
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1.4 The Viterbi Algorithm
Instead of finding the most likely hidden state at some time t, we may instead want to find the most
likely sequence of hidden states. This is known as Viterbi Decoding - computing the most probable
assignment of hidden states, given a sequence of observations.

The sequence of words you observe is again the same: Liverpool win league

However, you are only given the tag of the last word: league_C

1. Recall that:
ωt(sk) = max

y1:t−1

P (x1:t, y1:t−1, yt = sk)

bt(sk) = argmax
y1:t−1

P (x1:t, y1:t−1, yt = sk)

Using the formulae above and the first order Markov assumption, derive a recursive definition for
ωt(sk) and bt(sk) that will let you employ bottom-up dynamic programming.
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Below is the trellis corresponding to the given data:

2. Annotate the trellis at the nodes that correspond to:

(a) ω1(C)

(b) ω1(D)

(c) ω2(C)

(d) ω2(D)

(e) ω3(C)

(f) ω3(D)
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3. Find the most likely sequence of tags given the observed data:

(a) Set up the matrices ω and b

ω =

C D START
ω0

ω1

ω2

ω3


0 0 1
− − −
− − −
− − −


and

b =

C D END
b1
b2
b3
b4


− − −
− − −
− − −
− − −


Initialize w0(START) = 1

(b) Solve for matrix entries using Dynamic Programming:

ω1(C) = max
sj∈C,D,START

P (x1 = Liverpool|Y1 = C)ω0(sj)P (Y1 = C)

=

b1(C) =

ω1(D) = max
sj∈C,D,START

P (x1 = Liverpool|Y1 = D)w0(sj)P (Y1 = D)

=

=

b1(D) =

ω2(C) = max
sj∈C,D

P (x2 = win|Y2 = C)ω1(sj)P (Y2 = C|Y1 = sj)

= max
( )

=

b2(C) =
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ω2(D) = max
sj∈C,D

P (x2 = win|Y2 = D)ω1(sj)P (Y2 = D|Y1 = sj)

= max
( )

=

b2(D) =

ω3(C) = max
sj∈C,D

P (x3 = league|Y3 = C)ω2(sj)P (Y3 = C|Y2 = sj)

= max
( )

=

b3(C) =

ω3(D) = max
sj∈C,D

P (x3 = league|Y3 = D)ω2(sj)P (Y3 = D|Y2 = sj)

= max
( )

=

b3(D) =
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Now, to figure out the order, we set ŷt = bt+1(ŷt+1)

ŷT+1 = END

ŷ3 = b4(END)

=

ŷ2 = b3( )

=

ŷ1 = b2( )

=

ŷ0 = b1( )

=

So, the most likely sequence is:
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2 Working in Log-space
2.1 Motivation
Some of the probabilities we work with in PA6 are tiny and some of them are much larger. We tend to
work with the tiny ones in log-space and only get back probabilities if we really need them for some
other purpose. Throughout PA6 you will keep your probabilities in log-space.In this section we will
motivate why we use log-space for small values.

Given the following series of probability values:

P (x1 = 1) P (x2 = 1 | x1 = 1) P (x3 = 1 | x2 = 1, x1 = 1)

0.002 0.004 0.003

We want to find P (x1 = 1, x2 = 1, x3 = 1). Suppose we have a calculator which only has 4 decimal
places of precision, so it can only store values of format X.XXXX

1. What is the correct value of P (x1 = 1, x2 = 1, x3 = 1) without any precision limits?

P (x1 = 1, x2 = 1, x3 = 1) = P (x3 = 1 | x2 = 1, x1 = 1) ∗ P (x2 = 1 | x1 = 1) ∗ P (x1 = 1)
=

2. What is the value of P (x1 = 1, x2 = 1, x3 = 1) using our faulty calculator?

P (x1 = 1, x2 = 1)

= P (x2 = 1 | x1 = 1)P (x1 = 1) =

P (x1 = 1, x2 = 1, x3 = 1) =

3. How do the values of P (x1 = 1, x2 = 1, x3 = 1) from part (1) and (2) compare?

No precision limits: P (x1 = 1, x2 = 1, x3 = 1) =

Faulty calculator: P (x1 = 1, x2 = 1, x3 = 1) =

4. What is the value of P (x1 = 1, x2 = 1, x3 = 1) if we perform the same computation but in log
space?

log
(
P (x1 = 1, x2 = 1, x3 = 1)

)
= log(x1 = 1) + log(P (x2 = 1 | x1 = 1)) + log(P (x3 = 1 | x2 = 1, x1 = 1)

=

If we were to recover our value of P (x1 = 1, x2 = 1, x3 = 1) = elog
(
P (x1=1,x2=1,x3=1)

)
=

This is good! But we can use the log sum exp trick to extend its use to even smaller scales.
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2.2 Forward and Backward Algorithm in Log Space
In the forward algorithm, recall that the entries in α can be computed using the bottom-up dynamic
programming algorithm:

• α1(j) = πjAjx1

• For t > 1, αt(j) = Ajxt

∑J
k=1 αt−1(k)Bkj

1. Derive log
(
α1(j)

)
in terms of log(πj) and log(Ajx1)

log
(
α1(j)

)
= log

(
πjAjx1

)
=

2. Derive log
(
αt(j)

)
in terms of log

(
αt−1(k)

)
and logAkj

log
(
αt(j)

)
= log

(
Ajxt

∑J
k=1 αt−1(k)Bkj

)
= log(Ajxt) + log

(∑J
k=1 αt−1(k)Bkj

)
=

In the backward algorithm, we also have a similar bottom-up dynamic programming algorithm:

• βT (j) = 1

• For 1 ≤ t ≤ T − 1, βt(j) =
∑J

k=1Akxt+1βt+1(k)Bjk

1. Derive log
(
βT (j)

)
log

(
βT (j)

)
= log(1) = 0

2. Derive log
(
βt(j)

)
in terms of log(Akxt+1), log

(
βt+1(k)

)
, and log(Bjk)

log
(
βt(j)

)
= log

(∑J
k=1Akxt+1βt+1(k)Bjk

)
= log

(∑J
k=1 e

log
(
Akxt+1

βt+1(k)Bjk

))

=
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After transforming the equations into log form, you may discover calculations of the following
type:

log
∑
i

exp (vi)

This may be programmed as is, but exp (vi) may cause underflow when vi is large and negative.
One way to avoid this is to use the log-sum-exp trick.

The log-sum-exp trick simply adds the maximum value in the vector to the log probabilities as
follows:

m+ log
∑
i

exp(vi −m))

where
m = max

i
(vi)

Page 15

https://www.xarg.org/2016/06/the-log-sum-exp-trick-in-machine-learning/


3 Bayesian Networks
3.1 HMMs as Bayes Nets

x1 x2 x3

x4 x5 x6

Figure 2: Graphical Model

1. Write down the factorization of the above directed graphical model.

P (X1, X2, X3, X4, X5, X6)

2. Given X3, what are the relationships (cond. independent or not) between the random variables
listed below

• (X1 X4)|X3

• (X1 X2)|X3

• (X4 X6)|X3

3. Given the graph structure and assuming all variables are boolean valued, how many parameters
are required to learn the graphical model?

4. Without the Bayesian network, how many parameters are required to learn the joint probability
model of these five random variables?

3.2 Conditional Independence
Consider the graphical model below over 4 boolean random variables:

X1 X2

X3

X4
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We also have the associated conditional probability tables (as an example, the top left element of the
bottom table reads as P (X4 = 0|X3 = 0) = 0.8):

X1 = 0 0.3

X1 = 1 0.7

X2 = 0 0.5

X2 = 1 0.5

X1 = 0, X2 = 0 X1 = 0, X2 = 1 X1 = 1, X2 = 0 X1 = 1, X2 = 1

X3 = 0 0.4 0.7 0.8 0.5

X3 = 1 0.6 0.3 0.2 0.5

X3 = 0 X3 = 1

X4 = 0 0.8 0.25

X4 = 1 0.2 0.75

Table 1: Conditional Probability tables

For the following questions, indicate whether the independence claim is true or false.

1. (X1 ⊥⊥ X2) |X3

⃝ True

⃝ False

2. (X1 ⊥⊥ X4) |X3

⃝ True

⃝ False

Based on the graphical model and the conditional probability tables, calculate the following values:

1. What is P (X1 = 1, X2 = 0, X3 = 1, X4 = 0)?

2. What is P (X1 = 1, X2 = 1, X4 = 1)?

3. What is P (X2 = 1|X4 = 1, X3 = 0)?

4 Dynamic Programming
DP Notebook

To access this Colab notebook you will need to be logged into Google Drive with your Andrew email.
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