10-301/601: Introduction to Machine Learning Lecture 12 – Neural Networks

Front Matter

- Announcements
 - HW4 released 6/4, due 6/11 (tomorrow) at 11:59 PM
 - Schedule for next week:
 - Normal lecture on Monday, 6/17
 - Recitation (Midterm review) on Tuesday, 6/18
 - Juneteenth (university holiday) on Wednesday, 6/19
 - No class on Thursday, 6/20
 - Midterm on Friday, 6/21
- Recommended Readings
 - Mitchell, <u>Chapters 4.1 4.6</u>

Midterm Logistics

- Time and place:
 - Friday, 6/21 from TBD to TBD in TBD
- Closed book/notes
 - 1-page cheatsheet allowed, both back and front; can be typeset or handwritten
 - No electronic devices allowed, including calculators

Midterm Coverage

- Lectures: 1 14 (through this week's lectures)
 - Foundations: probability, linear algebra, calculus
 - Important concepts: inductive bias, overfitting, model selection/hyperparameter optimization, regularization
 - Models: decision trees, kNN, Perceptron, linear regression, logistic regression, neural networks
 - Methods: (stochastic) gradient descent, closed-form optimization, backpropagation, MLE/MAP

Midterm Preparation

- Review midterm practice problems, posted to the course website (under <u>Recitations</u>)
- Attend the exam review recitation on 6/18
- Review the homeworks and recitations handouts
- Consider whether you understand the "Key Takeaways"
 for each lecture / section
- Write your cheat sheet

Biological Neural Network

Perceptrons $\cdot h(x) = sign(w^T x)$

- Linear model for classification
- Predictions are +1 or -1

Combining Perceptrons

$$h(x) = \begin{cases} +1 \text{ if } (h_1(x) = +1 \text{ and } h_2(x) = -1) \text{ or } (h_1(x) = -1 \text{ and } h_2(x) = +1) \\ -1 \text{ otherwise} \end{cases}$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And:
$$AND(z_1, z_2) = \begin{cases} +1 \text{ if both } z_1 \text{ and } z_2 \text{ equal} + 1 \\ -1 \text{ otherwise} \end{cases}$$

• Or:
$$OR(z_1, z_2) = \begin{cases} +1 \text{ if either } z_1 \text{ or } z_2 \text{ equals } +1 \\ -1 \text{ otherwise} \end{cases}$$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And: $AND(z_1, z_2) = sign(z_1 + z_2 - 1.5)$

• Or: $OR(z_1, z_2) = sign(z_1 + z_2 + 1.5)$

Boolean Algebra

- Boolean variables are either +1 ("true") or -1 ("false")
- Basic Boolean operations
 - Negation: $\neg z = -1 * z$

• And:
$$AND(z_1, z_2) = \text{sign}\left([-1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

• Or:
$$OR(z_1, z_2) = sign\left([1.5, 1, 1] \begin{bmatrix} 1 \\ z_1 \\ z_2 \end{bmatrix} \right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

 $h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = OR\left(AND(h_1(\mathbf{x}), \neg h_2(\mathbf{x})), AND(\neg h_1(\mathbf{x}), h_2(\mathbf{x}))\right)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

$$h(\mathbf{x}) = \operatorname{sign}(\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) - \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + \\ \operatorname{sign}(-\operatorname{sign}(\mathbf{w}_1^T \mathbf{x}) + \operatorname{sign}(\mathbf{w}_2^T \mathbf{x}) - 1.5) + 1.5)$$

Multi-Layer Perceptron (MLP)

(Fully-Connected) Feed Forward Neural Network

$$f(\cdot)$$

Hyperbolic tangent:

$$\tanh(z) = \frac{\sinh(z)}{\cosh(z)} = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

•
$$\frac{\partial \tanh(z)}{\partial z} = 1 - \tanh(z)^2$$

Other Activation Functions

Logistic, sigmoid, or soft step	$\sigma(x) = rac{1}{1+e^{-x}}$
Hyperbolic tangent (tanh)	$ anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$
Rectified linear unit (ReLU) ^[7]	$egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ = & \max\{0,x\} = x 1_{x>0} \end{cases}$
Gaussian Error Linear Unit (GELU) ^[4]	$rac{1}{2}x\left(1+ ext{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$
Softplus ^[8]	$\ln(1+e^x)$
Exponential linear unit (ELU) ^[9]	$\begin{cases} \alpha \left(e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$ with parameter α
Leaky rectified linear unit (Leaky ReLU) ^[11]	$\left\{egin{array}{ll} 0.01x & ext{if } x < 0 \ x & ext{if } x \geq 0 \end{array} ight.$
Parametric rectified linear unit (PReLU) ^[12]	$\left\{egin{array}{ll} lpha x & ext{if } x < 0 \ x & ext{if } x \geq 0 \ \end{array} ight.$ with parameter $lpha$

True or False: both the linear regression model and the logistic regression model can be expressed as neural networks.

$$T(x) = X$$

Linear Regression as a Neural Network

Logistic Regression as a Neural Network

(Fully-Connected) Feed Forward Neural Network

counting the bias node

(Fully-Connected) Feed Forward Neural Network

The weights between layer l-1 and layer l are a matrix:

 $w_{j,i}^{(l)}$ is the weight between node i in layer l-1 and node j in layer l

Signal and Outputs

Every node has an incoming signal and outgoing output

Signal and Outputs

Every node has an incoming signal and outgoing output

Forward Propagation for Making Predictions

- Input: weights $W^{(1)}$, ..., $W^{(L)}$ and a query data point \boldsymbol{x}
- Initialize $\boldsymbol{o}^{(0)} = [1, \boldsymbol{x}]^T$
- For l = 1, ..., L

$$s^{(l)} = W^{(l)} o^{(l-1)}$$

$$\boldsymbol{o}^{(l)} = \left[1, f(\boldsymbol{s}^{(l)})\right]^T$$

• Output: $h_{W^{(1)},...,W^{(L)}}(x) = o^{(L)}$

Gradient Descent for Learning

• Input:
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, \mathbf{y}^{(n)})\}_{n=1}^{N}, \eta^{(0)}$$

- Initialize all weights $W_{(0)}^{(1)}, \dots, W_{(0)}^{(L)}$ to small, random numbers and set t=0
- While TERMINATION CRITERION is not satisfied
 - For l = 1, ..., L
 - Compute $G^{(l)} = \nabla_{W^{(l)}} \ell_{\mathcal{D}} \left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)} \right)$
 - Update $W^{(l)}$: $W^{(l)}_{(t+1)} = W^{(l)}_{(t)} \eta_0 G^{(l)}$
 - Increment t: t = t + 1
- Output: $W_{(t)}^{(1)}, ..., W_{(t)}^{(L)}$

Loss Functions for Neural Networks

Regression - squared error (same as linear regression!)

$$\ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = \sum_{n=1}^{N} \left(h_{W^{(1)}, \dots, W^{(L)}}(\mathbf{x}^{(n)}) - y^{(n)}\right)^{2}$$

- Binary classification cross-entropy loss (same as logistic regression!)
 - Assume $P(Y = 1 | x, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)}, ..., W^{(L)}}(x^{(n)})$ $= -\sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(n)}, W^{(1)}, W^{(1)}, ..., W^{(L)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, W^{(1)}, W^{(1)}, W^{(1)}, W^{(1)}, W^{(1)}) \right] + \sum_{n=1}^{N} \left[o_{S} P(Y^{(n)} | \chi^{(n)}, W^{(1)}, W^$

$$= - \sum_{n=1}^{\infty} \gamma(n) \log_{n} h_{w(i)} \chi_{v(n)} + (\chi(n)) + (\chi(n)) \log_{n} (1 - h_{w(i)}) \log_{n} (1 - h_{w(i)}) + (\chi(n))$$

Loss Functions for Neural Networks

- Multi-class classification cross-entropy loss
 - Express the label as a one-hot or one-of-C vector e.g.,

$$y = [0 \ 0 \ 1 \ 0 \ \cdots \ 0]$$

ullet Assume the neural network output is also a vector of length ${oldsymbol{\mathcal{C}}}$

$$P(y[c] = 1 | \mathbf{x}, W^{(1)}, ..., W^{(L)}) = h_{W^{(1)}, ..., W^{(L)}}(\mathbf{x}^{(n)})[c]$$

Then the cross-entropy loss is

$$\ell_{\mathcal{D}}\left(W_{(t)}^{(1)}, \dots, W_{(t)}^{(L)}\right) = -\sum_{n=1}^{N} \log P(y^{(n)}|\boldsymbol{x}^{(n)}, W^{(1)}, \dots, W^{(L)})$$

$$= -\sum_{n=1}^{N} \left(\sum_{c=1}^{n} \gamma_{c}^{n} c_{c}^{n} | \log_{n} h_{v}(i), \dots, h_{c}(i) \left(\chi_{c}^{(n)} \right) [c] \right)$$

Key Takeaways

- Perceptrons can be combined to achieve non-linear decision boundaries
- Feed-forward neural network model
 - Activation function
 - Layers: input, hidden & output
 - Weight matrices
 - Signals & outputs
- Forward propagation for making predictions
- Neural networks can use the same loss functions as other machine learning models (e.g., squared error for regression, cross-entropy for classification)