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Front Matter

Henry Chai- 5/20/24

* Announcements:

* HW?2 released on 5/16, due 5/23 at 11:59 PM
* Unlike HW1 you will only have...
- 1 graded submission for the written portion
* 10 submissions to the autograder

* Mini-lecture on 5/21 (tomorrow), instructor OH after

- Recommended Readings:

* Daumé |ll, Chapter 2: Geometry and Nearest Neighbors



http://ciml.info/dl/v0_99/ciml-v0_99-ch03.pdf




Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris virginica

), Iris versicolor (2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width

Fisher Iris )
Dataset 0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Henry Chai - 5/20/24 Source: https://en.wikipedia.org/wiki/lris_flower data_set



https://en.wikipedia.org/wiki/Iris_flower_data_set

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris virginica

(1), Iris versicolor (2) collected by Anderson (1936)

Sepal Sepal
Length Width

Fisher Iris 0 e 3.0
D ataset 0 4.9 3.6
0 5.3 3.7
1 4.9 2.4
1 5.7 2.8
1 6.3 3.3
1 6.7 3.0

Henry Chai - 5/20/24 Source: https://en.wikipedia.org/wiki/lris_flower data_set



https://en.wikipedia.org/wiki/Iris_flower_data_set

Fisher Iris

Dataset
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Article Talk

WIKIPEDIA Duck test

The Free Encyclopedia From Wikipedia, the free encyclopedia
Main page For the use of "the duck test" within the Wikipedia community, see Wikipedia:DUCK.
Contents . . . . .

y The duck test is a form of abductive reasoning. This is its usual expression:

Featured content
Current events
Random article

| If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

The Duck Test

Henry Chai - 5/20/24 Source: https://en.wikipedia.org/wiki/Duck_test



https://en.wikipedia.org/wiki/Duck_test

* Classify a point as the label of the “most similar”

training point

* Idea: given real-valued features, we can use a distance

metric to determine how similar two data points are

The Duck Test - A common choice is Euclidean distance:

for Machi Ve e o'l = [ 2 .
or Machine d(Ce ) = llx 7<)l_Z @_ﬁ)

Learning

* An alternative is the Manhattan distance:

b
d0) ==X = 7, g
d=|

Henry Chai- 5/20/24
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Nearest
Neighbor:

Example
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Nearest
Neighbor:

Example
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Nearest
Neighbor:

Example
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The Nearest
Neighbor

\Y[eYe =]
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* Requires no training!

* Always has zero training error!

- A data point is always its own nearest neighbor

- Always has zero training error...

13



Generalization
of Nearest
Neighbor

(Cover and
Hart, 1967)
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* Claim: under certain conditions,as N — oo, with high
probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

* Interpretation: “In this sense, it may be said that half the
classification information in an infinite sample set is

contained in the nearest neighbor.”

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 14


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964

But why limit
ourselves to

just one
neighbor?

Henry Chai- 5/20/24

* Claim: under certain conditions,as N — oo, with high
probability, the true error rate of the nearest neighbor

model < 2 * the Bayes error rate (the optimal classifier)

* Interpretation: “In this sense, it may be said that half the
classification information in an infinite sample set is

contained in the nearest neighbor.”

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 15


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964

k-Nearest

Neighbors
(KNN)

Henry Chai- 5/20/24

* Classify a point as the most common label among the

labels of the k nearest training points

* Tie-breaking (in case of even k and/or more than 2 classes)

S AN et of /\g\j\go (hl)
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m m_

Suppose you have a kNN model with £ > 1 and 3 possible classes. Which of the following tie-
breaking methods is guaranteed to break a tie in the majority vote? Select all that apply.

Weight the votes by distance

0%
Remove the furthest neighbor

0%
Add another neighbor

0%
Use a different distance metric

0%
None of the above

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Neighbors
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kNN on
Fisher Iris

DEI
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Y

3-Class classification (k = 1, weights = 'uniform')
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Figure courtesy of Matt Gormley
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 2, weights = 'uniform’)
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Figure courtesy of Matt Gormley 20



kNN on
Fisher Iris

DEI
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3-Class classification (k = 3, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 5, weights = 'uniform')
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 10, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 20, weights = 'uniform’)
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 30, weights = 'uniform’)
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kNN on
Fisher Iris

Data
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 100, weights
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kNN on
Fisher Iris

DEI
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3-Class classification (k = 120, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

Figure courtesy of Matt Gormley

28



J

3-Class classification (k = 150, weights = 'uniform’)

kNN on
Fisher Iris

DEI

Henry Chai- 5/20/24 Figure courtesy of Matt Gormley



Setting k
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* When k = 1:

- many, complicated decision boundaries

* may overfit

* When k = N:

* no decision boundaries; always predicts the most

common label in the training data

* may underfit

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize

30



Setting k

Henry Chai- 5/20/24

* Theorem:

* If k is some function of N s.t. k(N) — oo and @ -0

as N —» oo ...

* ... then (under certain assumptions) the true error of a
kNN model — the Bayes error rate

* Practical heuristics:

k = |VN]|
k=3

* Can also set k through (cross-)validation (tomorrow!)

31



- kNNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

Cholesterol Normal Abnormal
Cholesterol? | Cholesterol?

kNN and Morml — 1 -
: Normal 1 0
CategOrICal Abnormal 0 1

Features

2. Using a distance metric that works over categorical

features e.g., the Hamming distance:

D
d(x,x) = ) 1xq #x0)
d=1

Henry Chai- 5/20/24 32



kNN:

Inductive Bias
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- Similar points should have similar labels and all features

are equivalently important for determining similarity

Qa‘}urc SG&\e/ Con Arz“mr&»c QH/ cﬂﬂi&"’
The  resul

Figure courtesy of Matt Gormley 33



Curse of

Dimensionality
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* The fundamental assumption of kNN is that “similar”
points or points close to one another should have the

same label

* The closer two points are, the more confident we can

be that they will have the same label

* As the dimensionality of the input grows, the less likely

it is that two random points will be close

* As the dimensionality of the input grows, it takes more

points to “cover” the input space

34



* Suppose you independently draw two one-dimensional

points between 0 and 1 uniformly at random:

Curse of A

elte ') = el - o)t
= e[x"] ~2ElTex ]l
= 26E]x7] - ZEM

Henry Chai- 5/20/24 — Z (\/c\f VCa CQ o-€ ’7\> —_ e—-o 35

Dimensionality




Curse of

Dimensionality
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* Suppose you independently draw two two-dimensional

points in the unit square uniformly at random:
1

Ei_é (ﬁﬂ())l] — E[CX‘_XI‘)Z,\\ <Xz_ XL))L]
- 2(0) = 4

36



Curse of

Dimensionality
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* Suppose you independently draw two three-dimensional

points in the unit cube uniformly at random:

37



Curse of

Dimensionality
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‘% Assume all dimensions of the input are independent

and identically distributed.

- Given N + 1 data points, D = {x(l), ,x(N)} and x*, let

d, = max d(x,x*)and d_ = min d(x, x*)

T T
. [3)
Then =7

d, —d_ -
hmE[+ ]eo A=)
D—00 d_ -

38



Curing the
Curse of

Dimensionality
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* More data
* Fewer dimensions

* Blessing of non-uniformity: data from the real world is

rarely uniformly distributed across the input space

39



kNN:

Pros and Cons
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* Pros:

* Intuitive / explainable
* No training / retraining
* Provably near-optimal in terms of true error rate

* Cons:

- Computationally expensive
- Always needs to store all data: O(ND)

* Finding the k closest points in D dimensions:
O(ND + N log(k))

* Can be sped up through clever use of data
structures (trades off training and test costs)

* Can be approximated using stochastic methods
- Affected by feature scale

* Suffers from the curse of dimensionality
40



Key Takeaways
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* Real-valued features and decision boundaries

* Nearest neighbor model and generalization guarantees
* kNN “training” and prediction

* Effect of kK on model complexity

* kNN inductive bias

* Curse of dimensionality

41
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