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Front Matter

 Announcements: 

 HW2 released on 5/16, due 5/23 at 11:59 PM

 Unlike HW1 you will only have…

 1 graded submission for the written portion

 10 submissions to the autograder

 Mini-lecture on 5/21 (tomorrow), instructor OH after

 Recommended Readings:

 Daumé III, Chapter 2: Geometry and Nearest Neighbors

Henry Chai - 5/20/24 2

http://ciml.info/dl/v0_99/ciml-v0_99-ch03.pdf
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris virginica 

(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  Henry Chai - 5/20/24
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 

from 3 different species: Iris setosa (0), Iris virginica 

(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  Henry Chai - 5/20/24

https://en.wikipedia.org/wiki/Iris_flower_data_set
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The Duck Test
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The Duck Test 
for Machine 
Learning

 Classify a point as the label of the “most similar” 

training point

 Idea: given real-valued features, we can use a distance 

metric to determine how similar two data points are

 A common choice is Euclidean distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙′
2 = 

𝑑=1

𝐷

𝑥𝑑 − 𝑥𝑑
′ 2

 An alternative is the Manhattan distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙′
1 = 

𝑑=1

𝐷

𝑥𝑑 − 𝑥𝑑
′
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Nearest 
Neighbor: 
Pseudocode
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def train(𝒟):

 store 𝒟 

def predict(𝒙′):

 find the nearest neighbor to 𝒙′ in 𝒟, 𝒙 𝑖

 return 𝑦 𝑖
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Nearest 
Neighbor: 
Example
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Nearest 
Neighbor: 
Example
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Nearest 
Neighbor: 
Example



The Nearest 
Neighbor 
Model

 Requires no training!

 Always has zero training error! 

 A data point is always its own nearest neighbor

⋮

 Always has zero training error…
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Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)

 Claim: under certain conditions, as 𝑁 → ∞, with high 

probability, the true error rate of the nearest neighbor 

model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

 Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 

contained in the nearest neighbor.”

Henry Chai - 5/20/24 14Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964


But why limit 
ourselves to 
just one 
neighbor?

 Claim: under certain conditions, as 𝑁 → ∞, with high 

probability, the true error rate of the nearest neighbor 

model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

 Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 

contained in the nearest neighbor.”

Henry Chai - 5/20/24 15Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964


𝑘-Nearest 
Neighbors 
(𝑘NN)

 Classify a point as the most common label among the 

labels of the 𝑘 nearest training points

 Tie-breaking (in case of even 𝑘 and/or more than 2 classes) 

 Weight votes by distance

 Remove furthest neighbor

 Add next closest neighbor

 Use a different distance metric
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𝑘-Nearest 
Neighbors 
(𝑘NN):
Pseudocode
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def train(𝒟):

 store 𝒟 

def predict(𝒙′):

 return majority_vote(labels of the 𝑘 
 nearest neighbors to 𝒙′ in 𝒟)



𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data



21Figure courtesy of Matt GormleyHenry Chai - 5/20/24

𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data



Setting 𝑘

 When 𝑘 = 1:

 many, complicated decision boundaries 

 may overfit

 When 𝑘 = 𝑁:

 no decision boundaries; always predicts the most 

common label in the training data 

 may underfit

 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘 

affects how well the learned hypothesis will generalize
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Setting 𝑘

 Theorem: 

 If 𝑘 is some function of 𝑁 s.t. 𝑘 𝑁 → ∞ and
𝑘 𝑁

𝑁
→ 0 

as 𝑁 → ∞ … 

 … then (under certain assumptions) the true error of a 

𝑘NN model → the Bayes error rate 

 Practical heuristics:

 𝑘 = 𝑁

 𝑘 = 3

 Can also set 𝑘 through (cross-)validation (tomorrow!)
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𝑘NN and 
Categorical 
Features

 𝑘NNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

2. Using a distance metric that works over categorical 

features e.g., the Hamming distance: 

𝑑 𝒙, 𝒙′ = 
𝑑=1

𝐷

𝟙 𝑥𝑑 = 𝑥𝑑
′
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Cholesterol 

Normal

Normal

Abnormal

Normal 
Cholesterol?

Abnormal 
Cholesterol?

1 0

1 0

0 1



 Similar points should have similar labels and all features 

are equivalently important for determining similarity

 Feature scale can dramatically influence results!

𝑘NN: 
Inductive Bias
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Curse of 
Dimensionality

 The fundamental assumption of 𝑘NN is that “similar” 

points or points close to one another should have the 

same label

 The closer two points are, the more confident we can 

be that they will have the same label

 As the dimensionality of the input grows, the less likely 

it is that two random points will be close

 As the dimensionality of the input grows, it takes more 

points to “cover” the input space
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 Suppose you independently draw two one-dimensional 

points between 0 and 1 uniformly at random:

 𝔼 𝑑 𝑥, 𝑥′ = 𝔼 𝑥 − 𝑥′ 2

 𝔼 𝑑 𝑥, 𝑥′ = 𝔼 𝑥2 − 2𝔼 𝑥 𝔼 𝑥′ + 𝔼 𝑥′2

 𝔼 𝑑 𝑥, 𝑥′ = 2𝔼 𝑥2 − 2𝔼 𝑥 2 = 2
1

3
− 2

1

2

2

=
1

6

0 1

𝑥′ 𝑥

Curse of 
Dimensionality

𝑑 𝑥, 𝑥 ′
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 Suppose you independently draw two two-dimensional 

points in the unit square uniformly at random:

 𝔼 𝑑 𝑥, 𝑥′ = 𝔼 𝑥1 − 𝑥1
′ 2 + 𝑥2 − 𝑥2

′ 2

 𝔼 𝑑 𝑥, 𝑥′ = 2𝔼 𝑥1 − 𝑥1
′ 2

 𝔼 𝑑 𝑥, 𝑥′ = 2
1

6
=

1

3

0 1

1

𝑥

𝑥′

Curse of 
Dimensionality
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 Suppose you independently draw two three-dimensional 

points in the unit cube uniformly at random:

 𝔼 𝑑 𝑥, 𝑥′ = 𝔼 𝑥1 − 𝑥1
′ 2 + 𝑥2 − 𝑥2

′ 2 + 𝑥3 − 𝑥3
′ 2

 𝔼 𝑑 𝑥, 𝑥′ = 3𝔼 𝑥1 − 𝑥1
′ 2

 𝔼 𝑑 𝑥, 𝑥′ = 3
1

6
=

1

2

Curse of 
Dimensionality

0
11

𝑥
𝑥′

1
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Curse of 
Dimensionality

 Assume all dimensions of the input are independent 

and identically distributed. 

 Given 𝑁 + 1 data points, 𝒟 = 𝒙 1 , … , 𝒙 𝑁  and 𝒙∗, let 

𝑑+ = max
𝒙∈𝒟

 𝑑 𝒙, 𝒙∗ and 𝑑− = min
𝒙∈𝒟

 𝑑 𝒙, 𝒙∗

 Then

lim
𝐷→∞

𝔼
𝑑+ − 𝑑−

𝑑−
→ 0
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Curing the 
Curse of 
Dimensionality

 More data

 Fewer dimensions

 Blessing of non-uniformity: data from the real world is 

rarely uniformly distributed across the input space
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𝑘NN:
Pros and Cons

 Pros:

 Intuitive / explainable

 No training / retraining

 Provably near-optimal in terms of true error rate

 Cons:

 Computationally expensive

 Always needs to store all data: 𝑂 𝑁𝐷

 Finding the 𝑘 closest points in 𝐷 dimensions: 
𝑂 𝑁𝐷 + 𝑁 log 𝑘

 Can be sped up through clever use of data 
structures (trades off training and test costs) 

 Can be approximated using stochastic methods

 Affected by feature scale

 Suffers from the curse of dimensionality
Henry Chai - 5/20/24 40



Key Takeaways

 Real-valued features and decision boundaries

 Nearest neighbor model and generalization guarantees

 𝑘NN “training” and prediction

 Effect of 𝑘 on model complexity

 𝑘NN inductive bias

 Curse of dimensionality 
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