10-301/601: Introduction to Machine Learning Lecture 9 – MLE & MAP

Henry Chai

6/3/24

Front Matter

- Announcements:
 - HW3 released 5/23, due 6/4 (tomorrow) at 11:59 PM
 - HW4 released 6/4 (tomorrow), due 6/11 at 11:59 PM
- Recommended Readings:
 - Mitchell, Estimating Probabilities

Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target *distribution*, $y \sim p^*(Y|\mathbf{x})$
 - Distribution, $p(Y|\mathbf{x})$
 - Goal: find a distribution, p, that best approximates p^*

Recall: P(A ∩ B) = P(A)P(B) if A ~ B ~ independent Likelihood

• Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, ..., x^{(N)}\}$ of a random variable X • If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *likelihood* of \mathcal{D} is $L(\theta) = \prod_{n=1}^{N} p(x^{(n)}|\theta)$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the *likelihood* of \mathcal{D} is

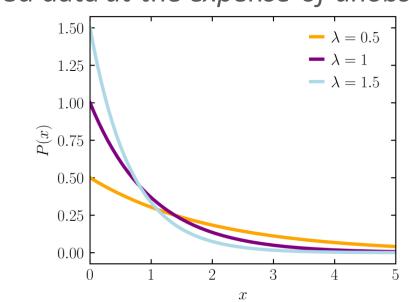
$$L(\theta) = \prod_{n=1}^{N} f(x^{(n)}|\theta)$$

Log-Likelihood

• Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X • If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *log-likelihood* of \mathcal{D} is $\ell(\theta) = \log \prod_{n=1}^{N} p(x^{(n)}|\theta) = \sum_{n=1}^{N} \log p(x^{(n)}|\theta)$ • If X is continuous with probability density function (pdf) $f(X|\theta)$, then the log-likelihood of \mathcal{D} is $\ell(\theta) = \log \prod_{n=1}^{N} f(x^{(n)}|\theta) = \sum_{n=1}^{N} \log f(x^{(n)}|\theta)$

Maximum Likelihood Estimation (MLE)

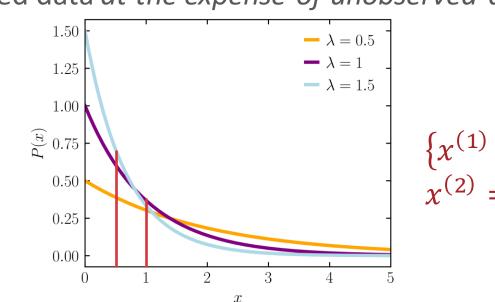
- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution



Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

Maximum Likelihood Estimation (MLE)

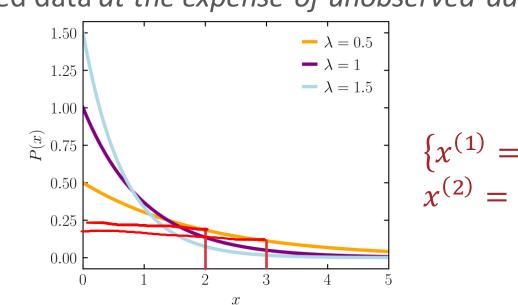
- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution



Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data *at the expense of unobserved data*
- Example: the exponential distribution



Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg

General Recipe for Machine Learning Define a model and model parameters

• Write down an objective function

• Optimize the objective w.r.t. the model parameters

Recipe for MLE

Define a model and model parameters
 Specify the generative distribution along
 with the tonable parameters

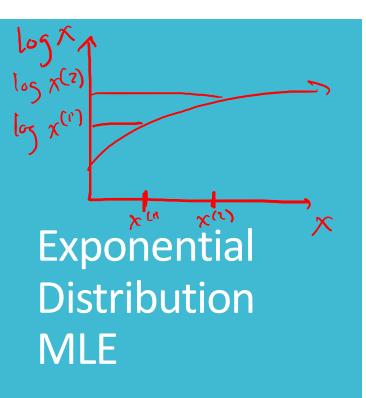
• Write down an objective function - Maximize the by-likelihood of the date D $\int_{N} \int_{N} \int_{N}$

• Optimize the objective w.r.t. the model parameters

- Solve for O in closed-form: take partial derivatives, set equal to O al

Exponential Distribution MLE • The pdf of the exponential distribution is $f(x|\lambda) = \lambda e^{-\lambda x}$

• Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the likelihood is $\int_{N} (\lambda) = \prod_{n=1}^{N} f(x^{(n)}|\lambda) = \prod_{n=1}^{N} \lambda e^{-\lambda x^{(n)}}$



- The pdf of the exponential distribution is $f(x|\lambda) = \lambda e^{-\lambda x}$
- Given N iid samples $\{x^{(1)}, \dots, x^{(N)}\}$, the log-likelihood is $l_{D}(\lambda) = \sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}}$ $= \sum_{n=1}^{N} \left(\log \lambda + \log e^{-\lambda x^{(n)}} \right)$ $= N \log \lambda + \sum_{n=1}^{N} (-\lambda x^{(n)})$ $-\sum x^{(n)}$ $\frac{N}{2} - \sum_{x}^{N} x^{(n)} = 0 = \frac{N}{2} = \sum_{x}^{N} x^{(n)} = \frac{N}{2} x^{(n)} =$ *⇒*_

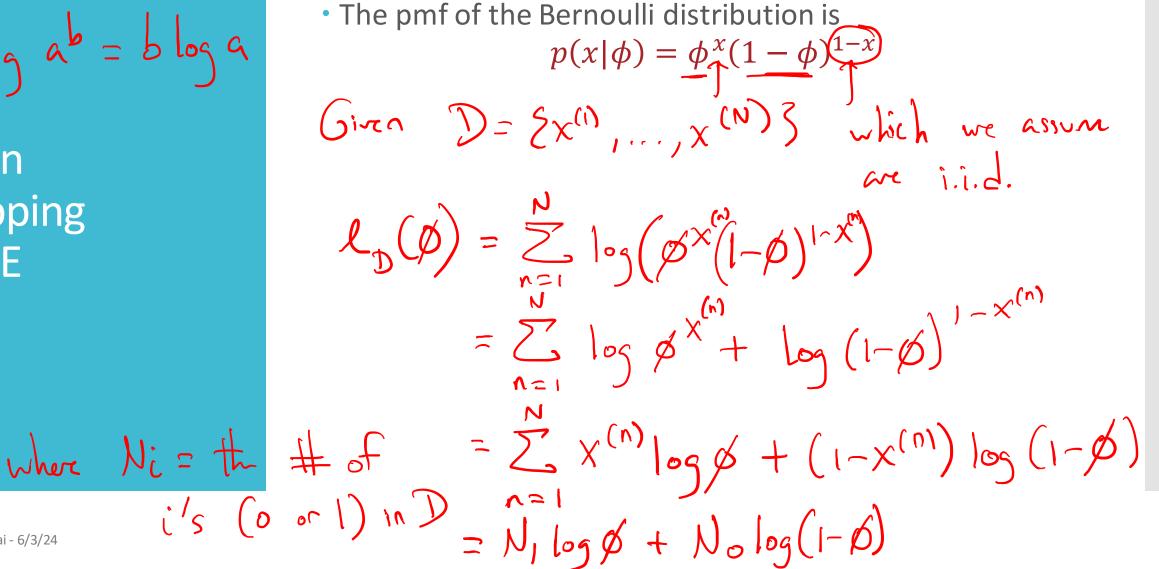
Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 with probability ϕ and value 0 with probability 1ϕ
- The pmf of the Bernoulli distribution is

 $p(x|\phi) = \phi^x (1-\phi)^{1-x}$

Coin Flipping MLE

• A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1 - \phi$



Henry Chai - 6/3/24

Coin Flipping MLE • A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1 - \phi$

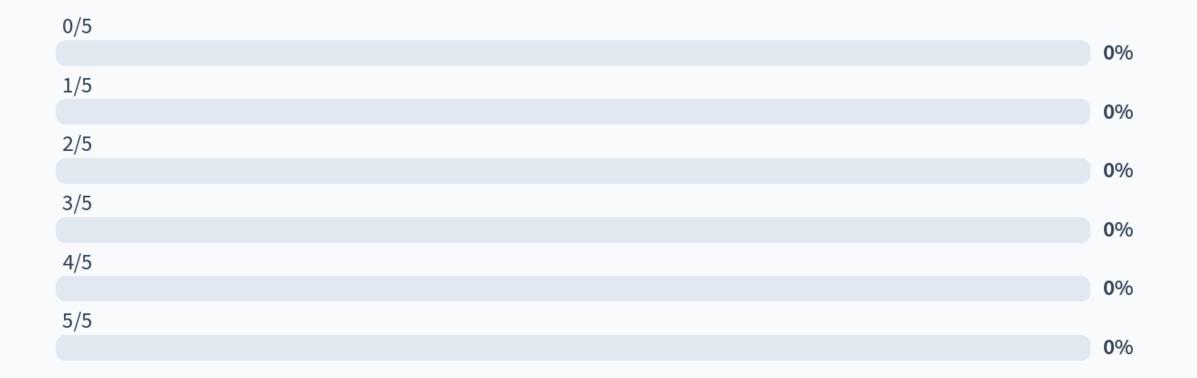
US Ø

10

=> N

- The pmf of the Bernoulli distribution is $p(x|\phi) = \phi^x (1-\phi)^{1-x}$
- The partial derivative of the log-likelihood is

Given the result of your 5 coin flips, what is the MLE of ϕ for your coin?



Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Maximum a Posteriori (MAP) Estimation

- Insight: sometimes we have *prior* information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the *posterior* distribution over the parameters

- MLE Finds $\hat{\Theta} = \operatorname{argmax}_{\Theta} P(\mathcal{P}|\Theta)$ - MAP Finds OMAP = argmax P(OID) = argmax P(DIO) $P(\Theta)$ P(D)Q(Q)Q(Q)

Recipe for MAP Define a model and model parameters
Specifying a generative distribution and
A prior over each parameter
Assume j.j.d. samples D Write down an objective function - maximize the log-posterior of D L (O) = log (P(DIO) P(G)) = log P(G) + 2 109 p(x(n)) () Optimize the objective w.r.t. the model parameters - Solve in clused-form

Coin Flipping MAP

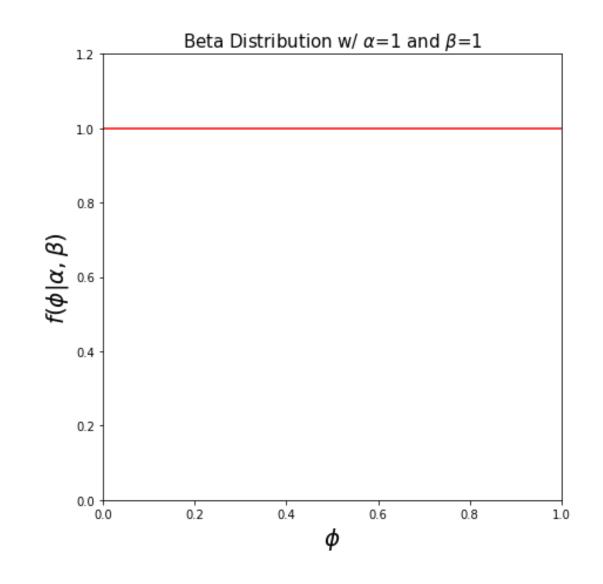
- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability 1ϕ
- The pmf of the Bernoulli distribution is

$$\longrightarrow p(x|\phi) = \phi^x (1-\phi)^{1-x}$$

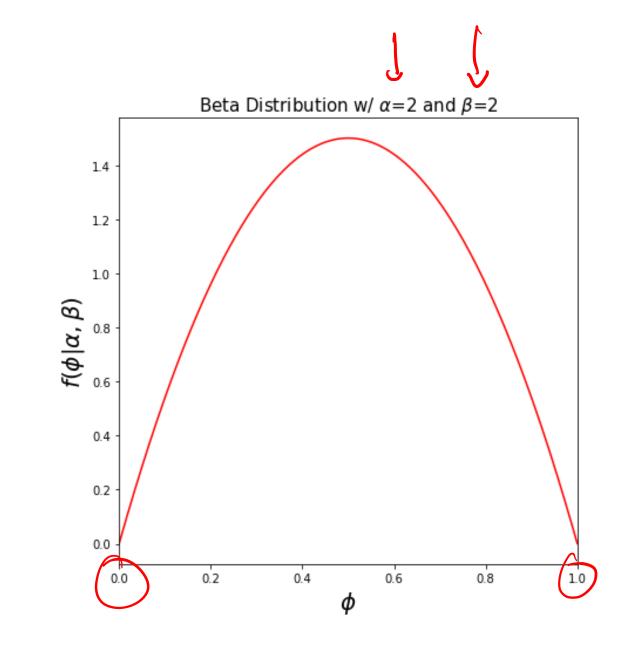
• Assume a Beta prior over the parameter ϕ , which has pdf $f(\phi|\alpha,\beta) = \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{B(\alpha,\beta)}$

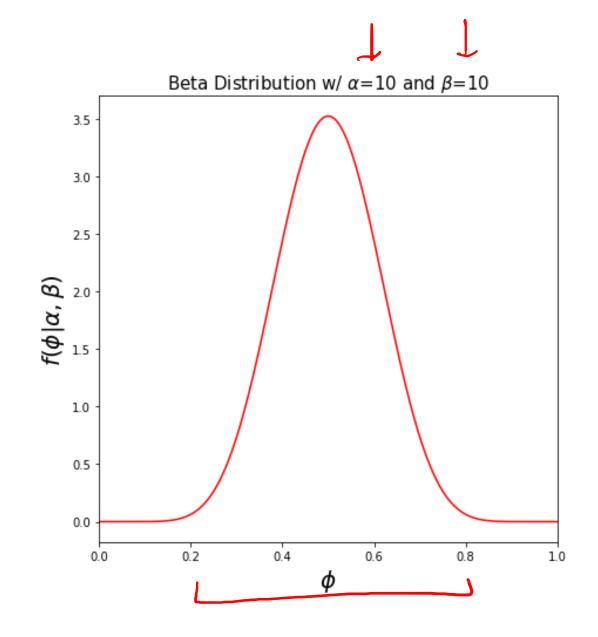
where $B(\alpha,\beta) = \int_0^1 \phi^{\alpha-1} (1-\phi)^{\beta-1} d\phi$ is a normalizing

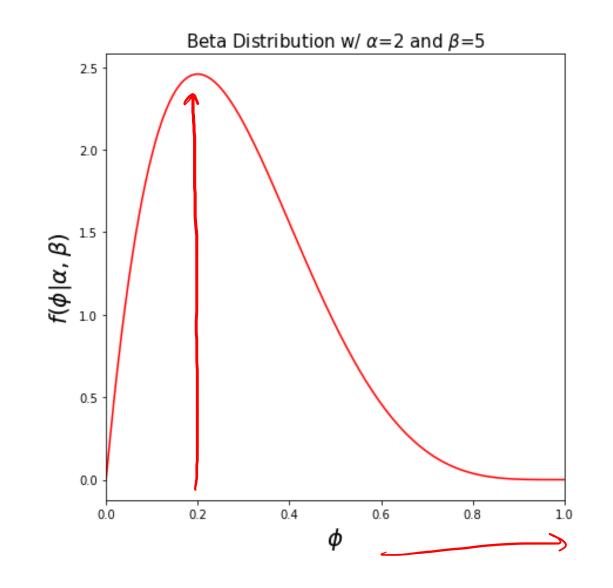
constant to ensure the distribution integrates to 1

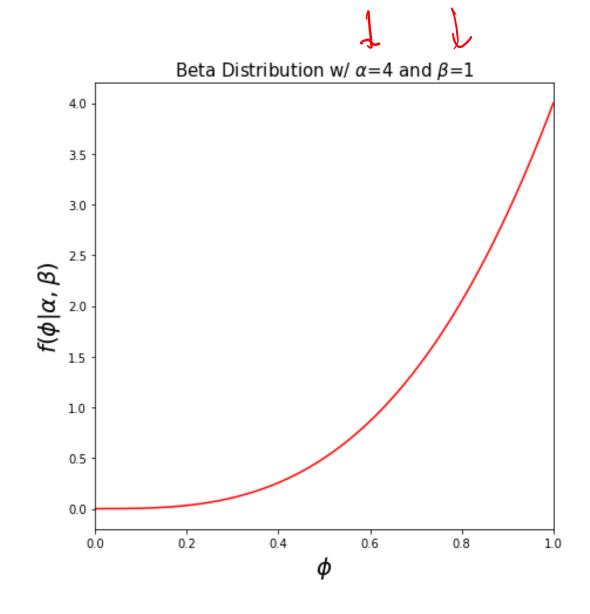


Henry Chai - 6/3/24









Henry Chai - 6/3/24

Coin Flipping MAP

Coin Flipping MAP

• Given N iid samples
$$\{x^{(1)}, ..., x^{(N)}\}$$
, the partial derivative of
the log-posterior is

$$\frac{\partial L_{b}^{MAP}}{\partial \varphi} = \frac{(N_{1} + d - 1)}{\varphi} - \frac{(N_{0} + \beta - 1)}{1 - \varphi}$$

$$\vdots$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

$$\frac{\partial L_{b}}{\partial \varphi} = \frac{N_{1} + d - 1}{(N_{1} + d - 1) + (N_{0} + \beta - 1)}$$

Coin Flipping MAP: Example • Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$): $\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$

• Using a Beta prior with $\alpha = 2$ and $\beta = 5$, then

Coin Flipping MAP: Example • Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$): $\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$

• Using a Beta prior with $\alpha = 101$ and $\beta = 101$, then

Coin Flipping MAP: Example • Suppose \mathcal{D} consists of ten 1's or heads ($N_1 = 10$) and two 0's or tails ($N_0 = 2$): $\phi_{MLE} = \frac{10}{10+2} = \frac{10}{12}$

• Using a Beta prior with $\alpha = 1$ and $\beta = 1$, then

Key Takeaways

- Probabilistic learning tries to learn a probability distribution as opposed to a classifier
- Two ways of estimating the parameters of a probability distribution given samples of a random variable:
 - Maximum likelihood estimation maximize the (log-)likelihood of the observations
 - Maximum a posteriori estimation maximize the (log-)posterior of the parameters conditioned on the observations
 - Requires a prior distribution, drawn from background knowledge or domain expertise