10-301/601: Introduction
to Machine Learning
Lecture 9 — MLE & MAP




* Announcements:

- HW3 released 5/23, due 6/4 (tomorrow) at 11:59 PM
Front Matter * HW4 released 6/4 (tomorrow), due 6/11 at 11:59 PM

- Recommended Readings:

* Mitchell, Estimating Probabilities
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http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

* Previously:

* (Unknown) Target function, c™: X —» Y
* Classifier, h : X - Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning - Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p*
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* Given N independent, identically distribution (iid)

samples D = {x(l), ,x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|6), then the likelihood of D is

dat -
Likelihood L) = | [p(x™16)

* If X is continuous with probability density function (pdf)
f(X|8), then the likelihood of D is

N
L() = 1_[ £(x™)9)
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Log-Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), ,x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|6), then the log-likelihood of D is

N N
£(0) = logl_[p(x(")w) = z logp(x(")|9)
— n=1 n=1

* If X is continuous with probability density function (pdf)
f(X|8), then the log-likelihood of D is

N N
£0) =log| | F(x™16) = > 10gf(x™I6)



Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | —A=05
‘ Example: the 1.25 —-A=1
A=15
exponential 100
L . §0.75 -
distribution -
0.25 -\
0.00 . . . .
0 1 2 3 4 5)

T

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

Maximum
Likelihood * Intuition: assign as much of the (finite) probability mass
I e I O,O to the observed data at the expense of unobserved data
Estimation B
(IV”.E) - Example: the 125} _i:ﬁ _
exponential ' -
distribution =P {X(l) = 0.5,
0.50 x(z) _ 1}
0.25 r
0.00 | :
4 5

Henry Chai - 6/3/24 Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | —A=05 |
¢ Example: the 125 F - =1
A=1.5
exponential 100 '
. Somt - (1) _
distribution ~ 075\ {x = 2,
0.50\ . x(z) — 3}
0.25 | i
0.00%% :
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Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

General
Recipe

for
Machine
Learning
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* Define a model and model parameters

- Write down an objective function

- Optimize the objective w.r.t. the model parameters
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* Define a model and model parameters
Ld“‘ur\ A

_ggmc/; iy 3‘"‘@) ~ A \o,\>

W Fﬂ‘x u{\c\ L’. @aa M.d:'zfs

* Write down an objective function

" Méw«\’ﬁc ‘\Xfw \43——- L.oc)l j: 'LL Ae:l D
£(0) = 22 by o(x71)

* Optimize the objective w.r.t. the model parameters

“Sa ‘gr @ \Q QL:,S(A 'Q(Vl '/21
Gmlm\ derivehes | set @CJ Lo J

solve.



Exponential

Distribution
MILE

Henry Chai- 6/3/24

LIV =
D

- Given N iid samples {x(, ...

N

* The pdf of the exponential distribution is

f(x|1) = e ™™

’FCKCM NE Tr

n=

x(N)} the likelihood is

’?x (n)



Exponential

Distribution
MILE
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* The pdf of the exponential distribution is

f(x|1) = e ™™

- Given N iid samples {x(l) ,x(M}, the log-likelihood is

A (7\\ 03 \eﬁ\xm




* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = d*(1— )™

Bernoulli

Distribution
MILE
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Coin

Flipping
IVILE
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* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|¢p) =_‘B%(1___‘/’
Giea D - ZX“\,.,, LT L v anum

“\.l.c\.
L0 - 21 - o
Z \oj 525 —\- \,oj (L—gﬁ}hx



* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value 0 (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|p) = ¢*(1 —p)'™*

* The partial derivative of the Iog-likel}i\?ood is ( >
Coin C L ()= N, l03 g+ N, Io> ¢
My e 2 M

No ~n_ N
Q}ZN 55 T 1__.73('3 fé \*/ZS

Flipping
IVILE
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m

Given the result of your 5 coin flips, what is the MLE of ¢ for your coin?
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Maximum a
Posteriori

(MAP)
Estimation
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* Insight: sometimes we have prior information we want

to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior

distribution over the parameters

_MLE Ends B - coxros o(p16)
— MA\) Pé @ = Grgmax ?Celj)>
©

.
D) = ?C‘D]@X)@&f@ _ argmex P(DI6) N(O)

- S TP

= 5 PRI
=T e



* Define a model and model parameters g
— 3696 C\‘-gfm,ﬁ 2N je/\( rt’\'\\/t A\Y\’n Lul’loﬂ el
Q G:rw(‘ oNer €C~C\'\ (PNG\/”-QJ-J’_Cr\
- A%%U(\u-— AW\ } SAW\K\&S 9

- Write down an objective function

— MM B ’@0\, \py— (?OYLU‘O(\ O‘é\ D

[MA?CGB = o ( P(>lD) ?(éﬁ): s )
’ : +£ les P10

* Optimize the objective w.r.t. the model parameters

- Solv-c 0 C\o%i““grm
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* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value 0 (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

el —> plx|p) = p*(1— )™
F|ipping * Assume a Beta prfsgr over the parametwhich has pdf
MAP ( | ﬁ) B d)a—l(l _ (p)ﬂ—l

/ gbﬁ;,?‘ B B(a, B)

where B(a, B) = folcl)“‘l(l — ¢)P~1d¢ is a normalizing

constantto ensure the distribution integrates to 1
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Beta

Distribution
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Beta Distribution w/ a=2 and
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Beta

Distribution
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Beta

Distribution
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* Given N iid samples {x, ..., x(™}, the Iog posterior is

IMAP[_Q§'> = \03 p(}é{ ;8>+ Z\DS ?C)( 3\}ZSB

2" (-9 (")
ICE:I(i)Fi)rF])ing % %9783 = g
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- Given N iid samples {x(l), ,x(N)}, the partial derivative of
the log-posterioris

?L”;’*P ) CN(+oL~l\ 7 (Moﬁ—]g"hi
ap o s

Coin

Flipping :
MAP B = N, £ol-1
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* Suppose D consists of ten 1’s or heads (N; = 10) and
two 0’s or tails (N, = 2):

Coin 10 10

Flipping Pure = 10+2 12

MAP: * Using a Beta prior witha = 2and § = 5, then

Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and
two 0’s or tails (N, = 2):

Coin 10 10

Flipping P =042 12

AV VAN 2 * Using a Beta prior with @ = 101 and § = 101, then
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and
two 0’s or tails (N, = 2):

Coin 10 10

Flipping Pure = 10+2 12

AV VAN 2 * Using a Beta prior witha = 1and § = 1, then

Example
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* Probabilistic learning tries to learn a probability

distribution as opposed to a classifier

- Two ways of estimating the parameters of a probability

distribution given samples of a random variable:
- Maximum likelihood estimation — maximize the
Key Ta keaways (log-)likelihood of the observations
* Maximum a posteriori estimation — maximize the
(log-)posterior of the parameters conditioned on the

observations

* Requires a prior distribution, drawn from

background knowledge or domain expertise
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