
RECITATION 1: DECISION TREES
10-301/10-601 Introduction to Machine Learning (Summer 2024)
http://www.cs.cmu.edu/˜hchai2/courses/10601

Released: May 16th, 2023
HW Due Date: May 23rd, 2023

TAs: Alex, Doris, Zhifei, Zoe, and Neural the Narwhal

1 Decision Trees
1.1 Information Theory and Tree Terminology

1. Calculate the entropy of tossing a fair coin.

H(X)

1

Work

This is the average surprisal from each flip.
H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))
= −1

2 log2(
1
2)−

1
2 log2(

1
2) = 1

2. Calculate the entropy of tossing a coin that lands only on tails. Note: 0 · log2(0) = 0.

H(X)

0

Work

H(X) = −p(heads) log2(p(heads))− p(tails) log2(p(tails))
= −0 ∗ log2(0)− 1 log2(1) = 0
In other words we are never surprised by any flip. It’s always tails.

1

http://www.cs.cmu.edu/~hchai2/courses/10601

3. In your own words, what is the definition of the depth of a tree?

Answer

The depth of a tree is the length (number of edges) of the longest path from a root to a leaf.

4. In your own words, what is the definition of the depth of a node?

Answer

The depth of a node is the number of edges between the root and the given node.

5. What is the depth of the tree below? What is the depth of node X4 in the tree below?

X1

X2

X4

no yes

X5

no yes

X3

X6

no yes

X7

no yes

yes

ye
s

ye
s no

no

ye
s no

yes

ye
s

ye
s no

no
ye

s no

Answer

The depth of the tree is 3 and the depth of node X4 is 2.

Page 2

1.2 Example Tree
The following dataset D consists of 8 examples, each with 3 attributes, (A,B,C), and a label, Y .

A B C Y

1 2 0 1
0 1 0 0
0 0 1 0
0 2 0 1
1 1 0 1
1 0 1 0
1 2 1 0
1 1 0 1

Use the data above to answer the following questions.

• All calculations should be done without rounding! After you have finished all of your calculations,
write your rounded solutions in the boxes below.

• Unless otherwise noted, numeric solutions should include 4 digits of precision (e.g. 0.1234).

• Note that the dataset contains duplicate rows; treat each of these as their own example, do not
remove duplicate rows.

1. What is the entropy of Y in bits, H(Y)? In this and subsequent questions, when we request the units
in bits, this simply means that you need to use log base 2 in your calculations.1 (Please include one
number rounded to the fourth decimal place, e.g. 0.1234)

H(Y)

1

Work

H(Y) = −1
2 log2

1
2 − 1

2 log2
1
2 = 1

1If instead you used log base e, the units would be nats; log base 10 gives bats.

Page 3

2. What is the mutual information of Y and A in bits, I(Y ;A)? (Please include one number rounded to
the fourth decimal place, e.g. 0.1234)

I(Y ;A)

0.0488

Work

I(Y ;A) = H(Y)−H(Y |A)
= H(Y)− [38(−

2
3 log2

2
3 − 1

3 log2
1
3) +

5
8(−

2
5 log2

2
5 − 3

5 log2
3
5)]

= 1− 0.951205 = 0.048795 ≈ 0.0488

3. What is the mutual information of Y and B in bits, I(Y ;B)? (Please include one number rounded to
the fourth decimal place, e.g. 0.1234)

I(Y ;B)

0.3113

Work

I(Y ;B) = H(Y)−H(Y |B)
= H(Y) − [28(−1 log2 1) +

3
8(−

2
3 log2

2
3 − 1

3 log2
1
3) +

3
8(−

1
3 log2

1
3 −

2
3 log2

2
3)]

= 1− 0.688722 = 0.311278 ≈ 0.3113

4. What is the mutual information of Y and C in bits, I(Y ;C)? (Please include one number rounded to
the fourth decimal place, e.g. 0.1234)

I(Y ;C)

0.5488

Work

I(Y ;C) = H(Y)−H(Y |C)
= H(Y)− [58(−

1
5 log2

1
5 − 4

5 log2
4
5) +

3
8(−1 log2 1)]

= 1− 0.451205 = 0.548795 ≈ 0.5488

Page 4

5. Select one: Consider the dataset given above. Which attribute (A, B, or C) would a decision tree
algorithm pick first to branch on, if its splitting criterion is mutual information?

⃝ A

⃝ B

⃝ C

C, because this has the highest mutual information.

6. Select one: Consider the dataset given above. After making the first split, which attribute would the
algorithm pick to branch on next, if the splitting criterion is mutual information? (Hint: Notice that this
question correctly presupposes that there is exactly one second attribute.)

⃝ A

⃝ B

⃝ C

A, because continuing the calculations for the decision tree shows that A has higher mutual information
with Y when compared to B.

Page 5

1.3 Real-Valued Trees
Consider the following training data. The red ‘−’ marks represent Y = 0 and the blue ‘+’ marks
represent Y = 1.

1. What is the entropy of Y in bits?
Answer

1

2. What is the mutual information if we are splitting on X1 < 5? Show all of your work in the provided
space. (Please include one number rounded to the third decimal place, e.g. 0.123)

Answer

0

Work

1−(24 ∗(−
1
2 ∗log2(

1
2)−

1
2 ∗log2(

1
2))+

2
4 ∗(−

1
2 ∗log2(

1
2)−

1
2 ∗log2(

1
2))) = 0

3. True or False: It is possible to have a decision tree with zero training error for this dataset. Assume
only binary splits and attributes selected with replacement.

⃝ True

⃝ False

True

Page 6

2 Programming
1. In-class coding and explanation of Depth First Traversal in Python.

Link to the code:
https://colab.research.google.com/drive/1dFNwBk_Ddr08DbNCeDGQEz1hT_QLGKc8?
usp=sharing

Pre-order, Inorder and Post-order Tree Traversal

This class represents an individual node
class Node:

def __init__(self, key):
self.left = None
self.right = None
self.val = key

def traversal1(root):
if root is not None:

First recurse on left child
traversal1(root.left)
then recurse on right child
traversal1(root.right)
now print the data of node
print(root.val, end=’\t’)

def traversal2(root):
if root is not None:

First print the data of node
print(root.val, end=’\t’)
Then recurse on left child
traversal2(root.left)
Finally recurse on right child
traversal2(root.right)

def traversal3(root):
if root is not None:

First recurse on left child
traversal3(root.left)
then print the data of node
print(root.val, end=’\t’)
now recurse on right child
traversal3(root.right)

def build_a_tree():
root = Node(1)
root.left = Node(2)
root.right = Node(3)
root.left.left = Node(4)
root.left.right = Node(5)

Page 7

https://colab.research.google.com/drive/1dFNwBk_Ddr08DbNCeDGQEz1hT_QLGKc8?usp=sharing
https://colab.research.google.com/drive/1dFNwBk_Ddr08DbNCeDGQEz1hT_QLGKc8?usp=sharing

return root

if __name__ == ’__main__’:
root = build_a_tree()
print(’traversal1 of the binary tree is: ’)
traversal1(root)
print()
print(’traversal2 of the binary tree is: ’)
traversal2(root)
print()
print(’traversal3 of the binary tree is: ’)
traversal3(root)

Now, identify which traversal function is pre-order, in-order, post-order DFS:

• traversal1() is

• traversal2() is

• traversal3() is

Traversal1 of binary tree is 4 5 2 3 1

Traversal2 of binary tree is: 1 2 4 5 3

Traversal3 of binary tree is 4 2 5 1 3

• traversal1() is Post-Order.

• traversal2() is Pre-Order.

• traversal3() is In-Order.

1

2

4 5

3

Code Output

traversal1 of the binary tree is:

traversal2 of the binary tree is

traversal3 of the binary tree is

Page 8

2.1 Programming: Debugging with Trees
pdb and common commands

• import pdb; pdb.set trace() (breakpoint() also allowed as per PEP 553)

• p variable (print value of variable)

• n (next)

• s (step into subroutine)

• ENTER (repeat previous command)

• q (quit)

• l (list where you are)

• b (breakpoint)

• c (continue)

• r (continue until the end of the subroutine)

• !code (run Python code)

Real Practice
These are some (contrived) examples based on actual bugs previous students had. Link to the code:
https://colab.research.google.com/drive/1dFNwBk_Ddr08DbNCeDGQEz1hT_QLGKc8?
usp=sharing

Buggy Code

Reverse the rows of a 2D array
def reverse_rows(original):

rows = len(original)
cols = len(original[0])

new = [[0] * cols] * rows

for i in range(rows):
for j in range(cols):

new_index = rows - i
new[new_index][j] = original[i][j]

return new

if __name__ == ’__main__’:
a = [[1, 2],

[3, 4],
[5, 6]]

print(reverse_rows(a))

Solution: There are two errors:

Page 9

https://colab.research.google.com/drive/1dFNwBk_Ddr08DbNCeDGQEz1hT_QLGKc8?usp=sharing
https://colab.research.google.com/drive/1dFNwBk_Ddr08DbNCeDGQEz1hT_QLGKc8?usp=sharing

1. new index should be set to rows - i - 1 as it will be out of bounds otherwise

2. Creating a 2d list with new=[[0] * cols] * rows will result in aliasing.

Reverse the rows of a 2D array
def reverse_rows(original):

rows = len(original)
cols = len(original[0])

new = [[0 for _ in cols] for _ in rows]

for i in range(rows):
for j in range(cols):

new_index = rows - i - 1
new[new_index][j] = original[i][j]

return new

if __name__ == ’__main__’:
a = [[1, 2],

[3, 4],
[5, 6]]

print(reverse_rows(a))

Page 10

Buggy Code

import numpy as np

biggest_col takes a binary 2D array and returns the index of the
column with the most non-zero values. In case of a tie, return
the smallest index.
def biggest_col(mat):

num_col = len(mat[0])
max_count = -1
max_index = -1

iterate over the columns of the matrix
for col in range(num_col):

counts the number of nonzero values
count = np.count_nonzero(mat[:, col])
change max if needed
if count >= max_count:

max_count = count
max_index = col

return max_index

Helper function that returns the number of nonzero elements in
mat in column col.
def get_count(mat, col):

num_row = len(mat)
count = 0
for row in range(num_row):

count += (mat[row][col] == 0)
return count

if __name__ == ’__main__’:
Expected answer: column index 2
mat = [[1, 0, 0, 1],

[0, 1, 1, 1],
[1, 0, 0, 0],
[0, 1, 1, 1],
[0, 0, 1, 0]]

assert biggest_col(mat) == 2

Solution: There are two errors:

1. we should be calling get count instead of np.count nonzero (or use an np.array)

2. get count should be checking if the cell is not equal to 0

Page 11

3. count >= max value will pick the largest index

import numpy as np

biggest_col takes a binary 2D array and returns the index of the
column with the most non-zero values. In case of a tie, return
the smallest index.
def biggest_col(mat):

num_col = len(mat[0])
max_count = -1
max_index = -1

iterate over the columns of the matrix
for col in range(num_col):

counts the number of nonzero values
count = get_count(mat, col)
change max if needed
if count > max_count:

max_count = count
max_index = col

return max_index

Helper function that returns the number of nonzero elements in
mat in column col.
def get_count(mat, col):

num_row = len(mat)
count = 0
for row in range(num_row):

count += (mat[row][col] != 0)
return count

if __name__ == ’__main__’:
Expected answer: column index 2
mat = [[1, 0, 0, 1],

[0, 1, 1, 1],
[1, 0, 0, 0],
[0, 1, 1, 1],
[0, 0, 1, 0]]

assert biggest_col(mat) == 2

Page 12

	Decision Trees
	Information Theory and Tree Terminology
	Example Tree
	Real-Valued Trees

	Programming
	Programming: Debugging with Trees

