
RECITATION 3: LOGISTIC REGRESSION & MLE/MAP
10-301/10-601 Introduction to Machine Learning (Summer 2024)
http://www.cs.cmu.edu/˜hchai2/courses/10601

1 Gradient Descent for Linear Regression
Consider the following dataset:

x(1) x(2) x(3) x(4) x(5)

x1 1.0 2.0 3.0 4.0 5.0
x2 -2.0 -5.0 -6.0 -8.0 -11.0
y 2.0 4.0 7.0 8.0 11.0

1. Suppose we want to implement gradient descent using a stepsize of η = 0.1. Assuming w has been
initialized to [0, 0, 0]T , let’s perform one iteration of gradient descent: What is the gradient of the ob-
jective function ℓ(w) with respect to w: ∇wℓ(w)?

Your answer:

Solution

dℓ(w)

dwk
=

1

5

5∑
i=1

−2x
(i)
k (y(i) −

2∑
j=0

wjx
(i)
j)

∇wℓ(w) =



dℓ(w)

dw0

dℓ(w)

dw1

dℓ(w)

dw2



=



1

5

5∑
i=1

−2x
(i)
0 (y(i) −

2∑
j=0

wjx
(i)
j)

1

5

5∑
i=1

−2x
(i)
1 (y(i) −

2∑
j=0

wjx
(i)
j)

1

5

5∑
i=1

−2x
(i)
2 (y(i) −

2∑
j=0

wjx
(i)
j)



1

http://www.cs.cmu.edu/~hchai2/courses/10601

2. How do we carry out the update rule?

Your answer:

Solution Given the initial value

w =

00
0


we follow the update rule:

w(k+1) = w(k) − η︸︷︷︸
“Cross-validated”

∇w|w=w(k)ℓ(w)

where k = 0 here

1

5

5∑
i=1

−2x
(i)
0 (y(i) −

2∑
j=0

wjx
(i)
j) =

−2

5
· (2 + 4 + 7 + 8 + 11) = −12.8

1

5

5∑
i=1

−2x
(i)
1 (y(i) −

2∑
j=0

wjx
(i)
j) =

−2

5
· (2 + 8 + 21 + 32 + 55) = −47.2

1

5

5∑
i=1

−2x
(i)
2 (y(i) −

2∑
j=0

wjx
(i)
j) =

−2

5
· (−4− 20− 42− 64− 121) = 100.4

→ w(1) = w(0) − α∇w|w=w(0)ℓ(w)

=

0
0
0

− 0.1

−12.8
−47.2
100.4


=

 1.28
4.72
−10.4


3. How could we pick which value of η to use if we weren’t given the step size?

Your answer:

Solution Cross-validation or use a held-out validation dataset

Page 2

2 Logistic Regression
2.1 MLE/MAP
As a reminder, in MLE, we have

ŵMLE = argmax
w

p(D|w)

= argmin
w

− log (p(D|w))

For MAP, we have

ŵMAP = argmax
w

p(w|D)

= argmax
w

p(D|w)p(w)
Normalizing Constant

= argmax
w

p(D|w)p(w)

= argmin
w

− log (p(D|w)p(w))

1. Suppose you are an avid BTS stan who monitors the social media accounts of each of the members.
Suppose you wish to find the probability that a BTS member will post at any time of day. Over three
days you look on Instagram and find the following number of new posts:

x = [3, 4, 1]

A fellow stan tells you that this comes from a Poisson distribution:

p(x|w) = e−wwx

x!

Also, you are told that w ∼ Gamma(2, 2) — that is, its pdf is:

p(w) =
1

4
we−

w
2 , w > 0

Page 3

(a) Calculate ŵMLE . (Example from https://en.wikipedia.org/wiki/Conjugate_prior)

Solution

Note:

p(D|w) = e−ww3

3!

e−ww4

4!

e−ww1

1!

ŵMLE = argmin
w

− log (p(D|w))

= argmin
w

− log (
e−ww3

3!

e−ww4

4!

e−ww1

1!
)

= argmin
w

− log e−3ww8 + log 144

Setting the derivative equal to zero yields

0 = 3− 8

w

=⇒ wMLE =
8

3
= 2.667

(b) Calculate ŵMAP . (Example from https://en.wikipedia.org/wiki/Conjugate_prior)

Page 4

https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Conjugate_prior

Solution

Note:

p(D|w) = e−ww3

3!

e−ww4

4!

e−ww1

1!

ŵMAP = argmin
w

− log (p(D|w)p(w))

= argmin
w

− log (
e−ww3

3!

e−ww4

4!

e−ww1

1!

1

Γ(2)22
w(2−1)e

−w
2)

= argmin
w

− log e−3ww8w(2−1)e
−w
2

= argmin
w

− log e
−3w−w

β w8+α−1

= argmin
w

−((−3w − w

2
) + (8 + 2− 1) log(w))

Setting the derivative equal to zero yields

0 = −3− 1

2
+

(7 + 2)

w

=⇒ wMAP =
7 + 2

3 + 1
2

= 2.57142857143

Page 5

2.2 Logistic Regression: Toy Example
Let’s go through a toy problem.

Y X1 X2 X3

1 1 2 1
1 1 1 -1
0 1 -2 1

1. What is ℓ(w) of above data given initial w =

−2
2
1

?

Solution ℓ(w) = −1
N

∑
yi log(σ(wTx)) + (1− yi) log(1− σ(wTx))

ℓ(w) = −1
3 [log(σ(3)) + log(σ(−1)) + log(1− σ(−5))] ≈ 0.46

2. Observe that ∂ℓ(i)(w)
∂wj

= x
(i)
j (σ(wTx) − y(i)). Using this information, calculate ∂ℓ(1)(w)

∂w1
, ∂ℓ

(1)(w)
∂w2

and
∂ℓ(1)(w)

∂w3
for first training example. Note that σ(3) ≈ 0.95. Solution

Page 6

∂ℓ(i)(w)

∂wj
= x

(i)
j (σ(wx)− y(i))

∂ℓ(1)(w)

∂w1
= (σ(3)− 1)1 = −0.05

∂ℓ(1)(w)

∂w2
= (σ(3)− 1)2 = −0.10

∂ℓ(1)(w)

∂w3
= (σ(3)− 1)1 = −0.05

3. Calculate ∂ℓ(2)(w)
∂w1

, ∂ℓ
(2)(w)
∂w2

and ∂ℓ(2)(w)
∂w3

for second training example. Note that σ(−1) ≈ 0.25. Solu-

tion

∂ℓ(2)(w)

∂w1
= (σ(−1)− 1)1 = −0.75

∂ℓ(2)(w)

∂w2
= (σ(−1)− 1)1 = −0.75

∂ℓ(2)(w)

∂w3
= (σ(−1)− 1)− 1 = 0.75

4. Assuming we are doing stochastic gradient descent with a learning rate of 1.0, what are the updated
parameters w if we update w using the second training example?

Solution

−2
2
1

− 1

−0.75
−0.75
0.75

 =

−1.25
2.75
0.25



Page 7

5. What is the new ℓ(w) after doing the above update? Would you expect it to decrease or increase?
Solution ℓ(w) = 0.09

It should decrease for logistic classifier to learn.

6. Given a test example where (X1 = 1, X2 = 3, X3 = 4), what will the classifier output following this
update?
Solution wTX = −1.25 ∗ 1 + 2.75 ∗ 3 + 0.25 ∗ 4 = 8

σ(wTX) = σ(8) ≈ 0.999 > 0.5 =⇒ Y = 1

Page 8

3 Programming
3.1 Feature Representation for Sentiment Classification
In many machine learning problems, we will want to find appropriate representations for the inputs
of the algorithm we are developing. In Programming Assignment 3, we will work on using logistic
regression for a sentiment classification task, where our algorithm takes a paragraph of movie review
as the input and outputs a binary value denoting whether the review is positive or not. To build an
appropriate representation for the input (aka. the review text), we consider a representation built using
GloVe1 word embeddings.

In this section, consider a scenario where we are interested in representing the following text:

a hot dog is not a sandwich because it is not square (1)

We consider the following dictionary (denoted below as Vocab) as the set of vocabulary that we will
consider. Note that the vocabulary dictionary might not contain all words in the text shown above.

dictionary = {
"the": 0,
"square": 1,
"hot": 2,
"is": 3,
"not": 4,
"a": 5,
"happy": 6,
"sandwich": 7

}

1You can read more about GloVe in the original research paper. You can also check out this explainer on Word2Vec, which is
a similar technique for obtaining word embeddings.

Page 9

https://nlp.stanford.edu/pubs/glove.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://towardsdatascience.com/word2vec-research-paper-explained-205cb7eecc30

1. Word Embedding Based Representation

1. Word embeddings are reduced dimension vector representations (features) of words. Given a single
word in the dictionary, word embeddings can convert it to a vector of fixed dimension. In Program-
ming Assignment 3, we will provide a dictionary file specifying pre-computed mappings between
every word in Vocab and their corresponding word embeddings. To facilitate better understand-
ing towards word embeddings, we produce a plot showing the spatial relationship between several
sample words from the vocabulary used in Programming Assignment 3, with their corresponding
word embeddings (reduced to 2D vectors from 300D vectors using a technique called PCA we will
learn about later in this course!):

0.2 0.4 0.6 0.8 1.0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

innocent
amazingly

dream­like

better

superb

delightful

filthymess

kidnapping
stolen

murderers

Figure 1: Visualization of word embeddings. We select a few positive words (shown in green)
and a few negative words (shown in red). To make the plot, we map the high-dimensional word
representations of these words to 2D space using PCA and then visualize them in the scatter plot
above.

Please comment on your observations and findings based on this plot.

Solution Closer-related words are located closer in the representation space, while farther-related
words are located farther from each other.

Page 10

2. Now, we much translate these word embeddings to sentence embeddings (a vector representing the
sentence as a whole). One approach to building a sentence embedding is to average out the vector
representation of every word in the sentence that is in the dictionary. For example, given text “a
hot dog flies like a sandwich”, we can find the sentence embedding for this text by
taking the average of the vector representation of the words “a”, “hot”, “a”, and “sandwich”.

Now suppose we have the following word embedding dictionary for building sentence embeddings
(this is a toy example used for illustrative purposes; actual word embeddings will have higher
dimensions than this example):

dictionary = {
"the": [0.2, 0.3],
"square": [0.8, 0.9],
"hot": [0.1, -0.2],
"is": [0.1, 0.1],
"not": [-0.2, -0.3],
"a": [0.0, 0.0],
"happy": [0.4, 0.4],
"sandwich": [0.2, -0.3]

}

Write the word embedding based representation of the sample text define above, repeated here for
convenience:

a hot dog is not a sandwich because it is not square (2)

Solution

ϕ2(x) =
1

9

(
f(square) + f(hot) + 2 · f(is) + 2 · f(not) + 2 · f(a) + f(sandwich)

)
=

[
0.1 0.0

]T
.

Page 11

3.2 Gradient Descent and Stochastic Gradient Descent
Now we will compare two different optimization methods using pseudocode. Consider a model with
parameter w ∈ RM being trained with a design matrix X ∈ RN×M and labels y ∈ RN . Say we update
w using the objective function ℓ(w|X,y) = 1

N

∑N
i=1 ℓ

(i)(w|x(i), y(i)) ∈ R. Recall that an epoch refers
to one complete cycle through the dataset.

1. Complete the pseudocode for gradient descent.

def dℓ(w, X, y, i):
(omitted) # Returns ∂ℓ(i)(w|x(i), y(i))/∂w
You may call this function in your pseudocode.

def GD(w, X, y, learning_rate):
for epoch in range(num_epoch):

Complete this section with the update rule
return w # return the updated w

Solution grad = zeros(M)
for i in range(N):

grad += dℓ(w, X, y, i)
w -= learning rate * grad / N

2. Complete the pseudocode for stochastic gradient descent that samples without replacement.

def dℓ(w, X, y, i):
(omitted) # Returns ∂ℓ(i)(w|x(i), y(i))/∂w
You may call this function in your pseudocode.

def SGD(w, X, y, learning_rate):
for epoch in range(num_epoch):

indices = shuffle(range(len(X)))
for i in indices:

Complete this section with the update rule
return w # return the updated w

Solution w -= learning rate * dℓ(w,X, y, i)

Page 12

3.3 The Need For Speed: Vectorization and Numpy
Performing mathematical operations on vectors and matrices is ubiquitous in most machine learning
algorithms. Whether it’s a simple similarity measure that works by calculating the dot product be-
tween two vectors, or deep neural networks, they all involve repeated matrix operations. This makes it
imperative that our underlying code design to perform matrix operations is efficient.

3.3.1 The Perils of Python

While Python is widely the language of choice for machine learning researchers across the globe (thanks
to the speed of development and code readability it offers and the support it enjoys from the open-source
community), Python as a high-level language on average is much slower than a lower level language like
C++. To combat this, libraries like numpy and scipy implement most of the back-end operations they
perform in C/C++, while providing wrappers in Python to be able to call underlying C code seamlessly
from a Python script.

3.3.2 Speed Comparison: Numpy and Python

We highly recommend you to use numpy extensively in this course, it will be difficult to pass the
programming portion of Programming Assignment 3 without writing most of your matrix operations in
numpy. In this section, we’ll see why.

Consider you have two vectors a, b ∈ Rn. To see how similar they are, as measured by the cosine angle
between them, you want to compute their dot product. This translates to the following operation:

a · b = a1b1 + a2b2 + ...+ anbn

When translated to code, notice how the dot product in NumPy is a whopping 100x faster than the native
Python!

from timeit import timeit
import numpy as np
import array

VECTOR_SIZE = int(1e8)

NumPy arrays
a = np.random.rand(VECTOR_SIZE)
b = np.random.rand(VECTOR_SIZE)

Python arrays
aArr = array.array(’d’, a)
bArr = array.array(’d’, b)

def test_np():
return np.dot(a, b)

faster than multiprocessing, python lists, or numpy arrays with
python loops

faster than using a range and indexing

Page 13

def test_py_arr():
return sum(x * y for x, y in zip(aArr, bArr))

def time_dot_product(f):
return timeit(f, setup=f, number=5) / 5

if __name__ == "__main__":
print(f"NumPy = {time_dot_product(test_np):.2f}") # 0.05s
print(f"Python on an array =

{time_dot_product(test_py_arr):.2f}") # 5.45s

3.3.3 Useful Numpy Operations

Some operations in numpy that you will find really useful in your assignments are:

• np.matmul: Matrix multiplication of two matrices

• np.unique: Returns unique elements along an axis.

• np.hstack: Stack two arrays horizontally (column-wise)

• np.expand dims: Convert a row vector of size n into a matrix of size n ∗ 1 or 1 ∗ n

• np.log, np.sum, np.exp, and so on...

You can read C vs. Python for more details, and you can also read these two tutorials (beginner, inter-
mediate) from the official numpy website. For instance, understanding broadcasting is recommended.
It will help you debug the shape errors you might face in all future homeworks.

Page 14

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://numpy.org/doc/stable/reference/generated/numpy.unique.html
https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html
https://towardsdatascience.com/how-fast-is-c-compared-to-python-978f18f474c7
https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/basics.html
https://numpy.org/doc/stable/user/basics.html

	Gradient Descent for Linear Regression
	Logistic Regression
	MLE/MAP
	Logistic Regression: Toy Example

	Programming
	Feature Representation for Sentiment Classification
	Gradient Descent and Stochastic Gradient Descent
	The Need For Speed: Vectorization and Numpy
	The Perils of Python
	Speed Comparison: Numpy and Python
	Useful Numpy Operations

