
RECITATION 7: DEEP LEARNING

10-301/10-601 Introduction to Machine Learning (Summer 2024)
http://www.cs.cmu.edu/˜hchai2/courses/10601

1 PyTorch Basics
1.1 Colab Notebook
See the following Colab Notebook:
https://colab.research.google.com/drive/1gprL1pZ90GDftoNp5qHtu4AAc6boLcwY?
usp=sharing

2 Attention Parameters
Here is the illustration of a self-attention block from lecture:

Figure 1: Self-attention block, illustrated

1

http://www.cs.cmu.edu/~hchai2/courses/10601
https://colab.research.google.com/drive/1gprL1pZ90GDftoNp5qHtu4AAc6boLcwY?usp=sharing
https://colab.research.google.com/drive/1gprL1pZ90GDftoNp5qHtu4AAc6boLcwY?usp=sharing


Let’s define some terms:

• dmodel is the dimension of each input vector xi

• dk is the dimension of the query, key and value vectors.

• h is the number of attention heads

1. What is the shape of the Wq,Wk,Wv matrices (without biases)?

Solution dmodel × dk

2. How many parameters are there in each of the Wq,Wk,Wv matrices (including biases)?

Solution dk ∗ (dmodel + 1)

3. How many parameters are there in total for a multiheaded attention block, as illustrated in
lecture?

Solution 3 ∗ dk ∗ (dmodel + 1) ∗ h
= 3 ∗ dmodel ∗ (dmodel + 1)

4. Where else in the transformer are there additional parameters?

Solution Fully connected layers, embedding layer to produce input vectors, normalization
layers, positional embeddings.

5. What is the big-O relationship between the number of parameters for a multiheaded attention
block and the length of each input vector?

Solution O(d2model)

Page 2



3 Convolutional Neural Networks
3.1 Concepts

1. What are filters?

• Filters (also called kernels) are feature extractors in the form of a small matrix used in
convolutional neural layers. They usually have a width, height, depth, stride, padding,
channels (output) associated with them.

2. What are convolutions?

• We sweep the filter around the input tensor and take element-wise product sums based
on factors such as filter size, stride, padding. These output product-sums form a new
tensor, which is the output of a convolutional layer.

3. How do we calculate the output shape of a convolution?

• Given input width Win, kernel width KW , padding P , and stride S, the output width
Wout can be calculated as:

Wout = ⌊Win −Kw + 2× P

S
⌋+ 1

.

• Output height can be calculated similarly.

4. What are some benefits of CNNs over fully connected (also called dense) layers?

• Good for image-related machine learning (learns the kernels that do feature engineer-
ing)

• Pseudo translational invariance

• Parameter efficient

5. How does the number of channels vary through convolutional networks?

• Each convolution filter will have as many channels as the input, and there will be as
many filters as there are output channels.

• Pooling and activations often maintain the number of channels.

Page 3



3.2 Dance Dance Convolution
Consider the following 4 x 4 image and 2x2 filter below.

1 3 -2 4

0 8 6 5

2 1 -9 0

4 -1 3 7

1 2

-2 -1

1. Assume that there is no padding and stride = 1. What are the dimensions of the output, and
what is the value in the bottom right corner of the output image? Solution output is 3x3, and
the bottom right value is −9 + 0− 6− 7 = −22.

2. Now assume that we having padding = 1. Given that, what are the new dimensions of the
output, and the new value in the bottom right corner? Solution output is now 5x5, and bottom
right value is 7 + 0 + 0 + 0 = 7.

3.3 Parameters
Suppose that we want to classify images that belong to one of ten possible classes (i.e. [cat,
dog, bird, turtle, ..., horse]). The images come in RGB format (one channel for
each color), and are downsampled to dimension 128x128.

Figure 2 illustrates one such image from the MS-COCO dataset1.

Figure 2: Image of a horse from the MS-COCO dataset, downsampled to 128x128

We construct a Convolutional Neural Network that has the following structure: the input is first
max-pooled with a 2x2 filter with stride 2 and 3 output channels. The results are then sent to a
convolutional layer that uses a 17x17 filter of stride 1 and 12 output channels. Those values are

1https://cocodataset.org/

Page 4



then passed through a max-pool with a 3x3 filter with stride 3 and also 12 output channels. The
result is then flattened and passed through a fully connected layer (ReLU activation) with 128
hidden units followed by a fully connected layer (softmax activation) with 10 hidden units. We say
that the final 10 hidden units thus represent the categorical probability for each of the ten classes.
With enough labeled data, we can simply use some optimizer like SGD to train this model through
backprogation.

Note: By default, please assume we have bias terms in all neural network layers unless explicitly
stated otherwise.

1. Fill the table below with channels and dimensions of the tensors before and after every neural
net operation.

Layer / Operation Shape
Input 3@128× 128
maxpool-1 (a)
conv (b)
maxpool-2 (c)
flatten (d)
fully-connected-1 (e)
ReLU (f)
fully-connected-2 (g)
softmax (h)

Solution
Layer / Operation Shape

Input 3@128× 128
maxpool-1 3@64× 64

conv 12@48× 48
maxpool-2 12@16× 16

flatten 3072
fully-connected-1 128

ReLU 128
fully-connected-2 10

softmax 10

2. Draw a diagram that illustrates the above table.

Solution

Page 5



Figure 3: Full CNN structure, illustrated

3. How many parameters are in this network for the convolutional components?

Solution

Nconv = (3× 12× 17× 17 + 12)

= 10416

4. How many parameters are in this network for the fully connected (also called dense) compo-
nents?

Solution

Nfc = (3072× 128 + 128) + (128 ∗ 10 + 10)

= 393344 + 1290

= 394634

Page 6



5. From these parameter calculations, what can you say about convolutional layers and fully
connected layers in terms of parameter efficiency2? Why do you think this is the case?

Solution

Ntotal = 10416 + 394634

= 405050

NconvNtotal = 2.57%

NfcNtotal = 97.43%

Convolutional layers are much more parameter efficient, mainly because we are reusing the
convolutional filter repeatedly for each convolutional layer (we only need to train one kernel
per channel per layer). In comparison, the fully connected layer requires all nodes between
two layers to be fully connected.

2the ratio between the number of parameters from some layer type and the total number of parameters.

Page 7



4 Recurrent Neural Networks
4.1 Sample RNN

Where the layers and their corresponding weights are given below:

xt ∈ R3 Whx ∈ R4×3

ht ∈ R4 Wyh ∈ R2×4

yt, ŷt ∈ R2 Whh ∈ R4×4

ŷt = σ(ot)

ot = Wyhht

ht = ψ(zt)

zt = Whhht−1 +Whxxt

Where σ and ψ are activations.

1. Redraw the above diagram in a compact form such that we don’t need to unroll it across several
timesteps.

Solution

Page 8



4.2 Concepts
1. What are recurrent neural networks?

• A recurrent neural network (RNN) can be characterized by connections between nodes
creating a cycle 3. Outputs from some nodes can affect subsequent computations. This
allows it to exhibit temporal dynamic behavior.

• the recurrent nature makes them useful when the input is sequential (or temporal).

2. How do they use both inputs and previous outputs?

• Hidden nodes have two sets of weights, one to process input from the current timestep,
and one to process their own outputs from the previous timestep.

3. How do we optimize RNNs?

• Applying chain rule to the ’unrolled’ RNN (as above) is no different than a regular
feed forward neural network aside from the fact that the same parameters are repeated
throughout the network at each timestep.

• Called as backpropagation through time (BPTT).

3Article linked here.

Page 9

https://en.wikipedia.org/wiki/Recurrent_neural_network

	PyTorch Basics
	Colab Notebook

	Attention Parameters
	Convolutional Neural Networks
	Concepts
	Dance Dance Convolution
	Parameters

	Recurrent Neural Networks
	Sample RNN
	Concepts


