
RECITATION 9: REINFORCEMENT LEARNING
10-301/10-601 Introduction to Machine Learning (Summer 2024)
http://www.cs.cmu.edu/˜hchai2/courses/10601

1 Introduction to Reinforcement Learning
1.1 Markov Decision Process

A Markov decision process is a tuple (S,A, T,R, γ, s0), where:S is the set of states A is the set
of actions T : S × A × S → [0, 1] is the transition function R : S × A × S → R is the reward
function γ ∈ [0, 1) is the discount factor s0 is the start state

When we play a game, we can model the game using a Markov decision process as follows:

••••••1. We start in some state s0.

2. Choose some action a0 ∈ A.

3. As a result of our choice, the state of the game transitions to some successor state s1. For non-
deterministic transition, we draw the next state according to our transition function. That is to
say,

T (st, at, st+1) = P (St+1 = st+1|St = st, At = at)

4. Then we pick another action a1, and so on.

We can represent it as

s0
a0−→ s1

a1−→ s2
a2−→ s3

a3−→ . . .

Let rt = R(st, at, st+1). Upon visiting a sequence of states s0, s1, s2, s3 . . . with respective actions
a0, a1, a2, . . . the total discounted payoff is given by

r0 + γr1 + γ2r2 + . . .

Note that different sequences of states may have a different payoff value, and the reward is discounted
if attained later.

1.2 Policy and Value Function
A policy is any function π : S → A mapping from the states to the actions. We say that we are
executing some policy π if, whenever we are in state s, we take action a = π(s).

For the optimal policy function π∗ we can compute its value function at state s as:

V π∗
(s) = V ∗(s)

= E
[
R(s0, π

∗(s0), s1) + γR(s1, π
∗(s1), s2) + γ2R(s2, π

∗(s2), s3) · · · | s0 = s, π∗] .
In other words, this is the best possible expected total payoff that can be attained using any policy π.

1

http://www.cs.cmu.edu/~hchai2/courses/10601


This optimal value function can be represented using Bellman’s equations (named Bellman optimality
equation for state value function), i.e.,

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

If R(s, a, s′) = R(s, a) (deterministic transition), then we have the form we saw in class:

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

}
.

The interpretation of Bellman equation is also very intuitive: “how valuable is the current state under a
policy?” Then it naturally follows that the optimal policy π∗ : S → A can be found as

π∗(s) = argmax
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

1.3 Q-Value
We can also define a Q function Q(s, a) that returns the expected discounted future value of taking
action a at state s.

Question: When would we want to use Q(s, a) instead of V (s)?
Answer:

We can take a part of V ∗(s) as Q∗(s, a) so that we have

Q∗(s, a) =
∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′))

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′))︸ ︷︷ ︸
Q∗(s,a)

= max
a∈A

Q∗(s, a).

Then it follows that the optimal policy can be obtained as

π∗(s) = argmax
a∈A

Q∗(s, a).

Page 2



2 Value Iteration

•

Figure 1: The cliff-walking environment

Here, we assume a 4 × 4 grid environment. The reward is 1 for reaching the cell with the red dot, −1
for reaching the shaded cells, and 0 for all other cells. The episode ends if the agent lands in either the
shaded cells or the red-dot cell. The state space (S) is all the cells. The action space (A) is up, down,
left or right. If the agent tries to move out of the grid, it simply goes back to its previous state. The
discount factor, γ, is 0.9.

Bellman optimality equation for state value function:

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′))

We can numerically approximate V ∗ using synchronous value iteration and asynchronous value itera-
tion. The recurrence relation is defined as follows for synchronous value iteration for all s ∈ S:

V (t+1)(s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV (t)(s′)).

Notice the time term (t), hence the name synchronous. For asynchronous value iteration, we use for
all s ∈ S:

V (s) = max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′)).

1. Find the updated value of each cell after the first round and after the second round of synchronous
value iteration. Assume deterministic transition function.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initial After 1st round After 2nd round

Page 3



2. Starting over, find the update value of each cell after one round of asynchronous value iteration.
Visit each cell in two different orders: (1) bottom right to top left, and (2) top left to bottom right.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initial BR to TL TL to BR

3. What is the policy learned after the one round of asynchronous value iteration when the cells were
visited from bottom right to top left? If there is a tie, pick the action that comes first alphabetically
(i.e., priority: ↓ >← >→ > ↑).

4. Now suppose that the environment is sloped downward towards the cliff, with all the other settings
unchanged. For every action taken, there is a 0.5 probability that the agent will move as intended
and a 0.5 probability that the agent will slip and move 1 cell down instead. Report the values after
two rounds of synchronous value iteration.

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Initial After 1st round After 2nd round

Page 4



3 Q-Learning
Let’s play some football (the real American kind). We will divide the field into eight states (labeled
slightly differently from an official football field for clarity):

FG

S 90 70 50 30 10 TD

Here are some basic rules (slightly different than official football rules, but let’s work with it for the
sake of this example):

• There are two teams. For simplicity, let’s call them Offense and Defense.

• The length of the field is 100 yards; we will set each 20-yard interval on this field as its own state,
in addition to the end zones (S, TD, and FG).

• The drive (or, in reinforcement learning terms, episode) terminates if the ball is moved into the
end zone.

• At each state, the Offense may either run the ball or pass it (always in the direction of TD).

The head coach argues that it is not a good idea to assume a value for the transition probability from one
state to the next. She also argues that since it is not the case that the Offense will always score seven
points when going into the TD state (they can also score six points or eight) it is better to not assume a
reward function. It is also possible to start the drive from anywhere in the field. For all these reasons,
she encourages the offensive coordinators to try Q-learning.

1. The offensive coordinators, now convinced, decide to build a Q-value table that matches the state
and action space. What is the size of this table?

Page 5



2. The offensive coordinators initialize Q(s, a) = 0 ∀s, a. They decide to update it by sampling
random drives from games previously played by the Offense this season (note that this approach
uses experience replay and not a standard MDP since individual plays in a football game are not
independent unlike moves in a grid world). They give you the empty Q-value table for ease:

Q(·,run):

FG

S 90 70 50 30 10 TD

Q(·,pass):

FG

S 90 70 50 30 10 TD

Time to watch some football :) Assume the learning rate α = 0.1 and the discount factor γ = 0.5.
Update the Q-table above for each of the following episodes using the Temporal Difference error
update:

(a) Episode 1, iteration 1: Beginning at the 30 state, Offense runs the ball to 10. Offense
collects zero reward.
Q(30,run) =

(b) Episode 1, iteration 2: Offense passes the ball from the 10 but stays at the 10. Offense
collects zero reward.
Q(10,pass) =

(c) Episode 1, iteration 3: From the 10, Offense passes the ball again and reaches the TD state.
The drive terminates. Offense collects a reward of 7.
Q(10,pass) =

(d) After updating the Q-function for the first episode, the head coach decides to quiz the offen-
sive coordinators. If the Offense is in state 10, what is the best action?
π(10) =

(e) Episode 2, iteration 1: Beginning at the 90 state, the Offense runs the ball, causing a safety
(they enter the S state). The drive terminates. Offense collects -2 reward.
Q(90,run) =

Page 6



(f) After updating the Q-function for the second episode, the head coach decides to quiz the
offensive coordinators again. If the Offense is in state 90, what is the best action to take?
π(90) =

(g) Episode 3, iteration 1: Beginning at 50, the Offense passes the ball but stays at the 50.
Offense collects zero reward.
Q(50,pass) =

(h) Episode 3, iteration 2: Beginning at the 50, the Offense passes the ball to the 30. Offense
collects zero reward.
Q(50,pass) =

(i) Episode 3, iteration 3: Beginning at the 30, the Offense runs the ball to the 10. Offense
collects zero reward.
Q(30,run) =

(j) Episode 3, iteration 4: Beginning at the 10, the Offense runs the ball and ends the drive
after entering the FG state. Offense collects a reward of 3 points.
Q(10,run) =

(k) After updating the Q-function for the third episode, the head coach decides to quiz the of-
fensive coordinators for the last time. If the Offense is in state 10, what is the best action to
take?
π(10) =

Page 7



4 Deep Q-Learning
In Mountain Car, you control a car that starts at the bottom of a valley. Your goal is to reach the flag at
the top right, as seen in Figure 2. However, your car is under-powered and can not climb up the hill by
itself. Instead you must learn to leverage gravity and momentum to make your way to the flag. It would
also be good to get to this flag as fast as possible.

Figure 2: Mountain Car environment. The car starts at some point in the valley. The goal is to get to the top
right flag.

The state of the environment is represented by two variables, position and velocity. position
can be between −1.2 and 0.6 inclusive and velocity can be between −0.07 and 0.07 inclusive.
These are just measurements along the horizontal axis.

The actions that you may take at any state are {0, 1, 2} which respectively correspond to (0) pushing
the car left, (1) doing nothing, and (2) pushing the car right. Note that we need Q-learning since we do
not have the transition function.

1. Approximate Q-learning involves using a function that estimates Q values given state and action
pairs. Consider using the following linear approximation:

Q(s, a;w0,w1,w2) = wT
a s+ ba =


wT

0 s+ b0 if a = 0

wT
1 s+ b1 if a = 1

wT
2 s+ b2 if a = 2

Let s = [0.5, 0.5]T , w0 = [−1,−10]T , w1 = [0, 1]T , w2 = [2, 10]T , b0 = b1 = b2 = 0.5. What
are the Q values for all actions performed at state s?

2. We try a naı̈ve state representation for Q-learning. What are the disadvantages with the following
state representation when using Q-learning with linear approximation?

s =

[
position
velocity

]

Page 8



Position

Velocity

−1.2 −0.84−0.48−0.12 0.24 0.6
−0.07

−0.04

−0.01

0.01

0.04

0.07

•
•

(a) A discretization of the state space of Mountain Car

Position

Velocity

−1.2 −0.84−0.48−0.12 0.24 0.6
−0.07

−0.04

−0.01

0.01

0.04

0.07

•
•

(b) A tiling of the state space of Mountain Car

Figure 3: State representations for the states of Mountain Car

3. For the Mountain Car environment, we know that position and velocity are both bounded.
What we can do is draw a grid over the possible position-velocity combinations as seen in
Figure 3a. We then enumerate the grid from bottom left to top right, row by row. Then we map all
states that fall into a grid square with the corresponding one-hot encoding of the grid number. For
efficiency reasons we will just use the index that is non-zero. For example the green point would
be mapped to {6}. This is called a discretization of the state space. Is there any downside to this
approach?

4. In addition to 2D discretization, we can draw two grids over the state space, each offset slightly
from each other as in Figure 3b. The grids are indexed in row major order left to right and then
bottom to top, then blue grid to red grid. For example, the top right blue grid is 24 while the bottom
left red grid is 25. The new state is a “two-hot” encoding marking which blue and red grid the point
falls within. What are the two indices, one for each grid that map the green point?

5. Suppose we decrease the size of the grid squares in Figure 3a to match the precision of the tiling
in Figure 3b. Compare the dimensionality of states under this new grid scheme versus the tiling
scheme in Figure 3b. That is, what are the sizes of the vectors of each state representation? What
is the advantage of tiling over this single grid discretization?

Page 9


	Introduction to Reinforcement Learning
	Markov Decision Process
	Policy and Value Function
	Q-Value

	Value Iteration
	Q-Learning
	Deep Q-Learning

