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1 Learning Theory
1.1 PAC Learning

Some Important Definitions
Basic notation:

1. • Probability distribution (unknown): X ∼ p∗

• True function (unknown): c∗ : X → Y

• Hypothesis space H and hypothesis h ∈ H : X → Y

• Training dataset D = {x(1), . . . , x(N)}

2. True Error (expected risk)

R(h) = Px∼p∗(x)(c
∗(x) ̸= h(x))

3. Train Error (empirical risk)

R̂(h) = Px∼D(c
∗(x) ̸= h(x))

=
1

N

N∑
i=1

1(c∗(x(i)) ̸= h(x(i)))

=
1

N

N∑
i=1

1(y(i) ̸= h(x(i)))

The PAC criterion is that we produce a high accuracy hypothesis with high probability. More formally,

P (∀h ∈ H, ≤ ) ≥

Sample Complexity is the minimum number of training examples N such that the PAC criterion is
satisfied for a given ϵ and δ

Sample Complexity for 4 Cases: See Figure 1. Note that

• Realizable means c∗ ∈ H

• Agnostic means c∗ may or may not be in H
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Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space H, denoted VC(H) or dV C(H), is the maximum number of
points such that there exists at least one arrangement of these points and a hypothesis h ∈ H that is
consistent with any labelling of this arrangement of points.

To show that VC(H) = n:

•

•

Questions

1. For the following examples, write whether or not there exists a dataset with the given properties
that can be shattered by a linear classifier.

• 2 points in 1D

• 3 points in 1D

• 3 points in 2D

• 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?
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2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points x1, x2, x3 ∈ R2 that
specify 3 out of the four corners), where all points within the rectangle must equal 1 and all points
outside must equal -1

(a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?

Figure 2

(b) What about the configurations of 5 points in figure 3?

Figure 3

3. Let x1, x2, ..., xn be n random variables that represent binary literals (x ∈ {0, 1}n). Let the hy-
pothesis class Hn denote the conjunctions of no more than n literals in which each variable occurs
at most once. Assume that c∗ ∈ Hn.

Example: For n = 4, (x1 ∧ x2 ∧ x4), (x1 ∧ ¬x3) ∈ H4

Find the minimum number of examples required to learn h ∈ H10 which guarantees at least 99%
accuracy with at least 98% confidence.
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2 Ensemble Methods
The idea of ensemble methods is to build a model for prediction by combining the strengths of a group
of simpler models. We’ll cover two examples of ensemble methods: random forests and AdaBoost.

2.1 Random Forests
1. What are some downsides of decision trees, and how can we explain this in the context of the

bias-variance tradeoff?

Random Forests = Sample Bagging + Split-Feature Randomization

2. What is sample bagging?

3. What is split-feature randomization?

4. How do these techniques affect the bias and variance of an individual tree?

5. How do these techniques affect the bias and variance of an ensemble of trees?
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6. For each data point x(i), define t(−i) to be the set of decision trees that x(i) was not used to
train. Use each tree in t(−i) to make a prediction for x(i), and use these predictions to make an
aggregated prediction t(−i)(x(i)) (i.e. for classification take the majority vote). Then, we can
define the out-of-bag error as follows:

EOOB =
1

N

N∑
i=1

1
(
t(−i)(x(i)) ̸= y(i)

)

Why can we use EOOB for hyperparameter optimization even though it was calculated using
training points we used to learn the decision trees with?

7. Random Forest Example: Suppose we train a random forest with two decision trees on the
following dataset, using the provided bootstrap samples. Assume that for ties, we predict Y = 1.

All X0 X1 X2 X3 Y

1 1 0 0 0 1
2 0 0 1 0 1
3 0 0 0 1 1
4 0 0 0 0 0
5 0 1 0 1 1

Sample 1 X0 X1 X2 X3 Y

1 1 0 0 0 1
4 0 0 0 0 0
5 0 1 0 1 1

Sample 2 X0 X1 X2 X3 Y

3 0 0 0 1 1
4 0 0 0 0 0
5 0 1 0 1 1

(a) Suppose we train our first tree on Sample 1 and the split feature randomization chooses
{X1, X2} for the feature candidates at the root. What feature will we split on at the root?

(b) Suppose we then recurse on the left child (with feature value 0) of the root and split feature
randomization chooses {X0, X2} for the feature indices. What feature will we split on?

(c) Suppose we train our second tree on Sample 2 and the split feature randomization chooses
{X2, X3} for the feature candidates at the root. What feature will we split on at the root?

(d) What is the training error of the ensemble?

(e) What is the out of bag error of the ensemble?
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2.2 AdaBoost
2.2.1 AdaBoost Definitions

• T : The number of iterations used to train AdaBoost.

• N : The number of training samples.

• S = {(x(1), y(1)), · · · , (x(N), y(N))}: The training samples with binary labels (y(i) ∈ {−1,+1}).

• ω
(i)
t : The weight assigned to training example i at time t. Note that

∑
i ω

(i)
t = 1.

• ht: The weak learner constructed at time t (a function X → {−1,+1}).

• ϵt: The weighted (by ωt) error of ht.

• Zt = 2
√
ϵt(1− ϵt): The normalization factor for the distribution update at time t.

• αt =
1
2 ln((1− ϵt)/ϵt): The weight assigned to the learner ht in the composite hypothesis.

• Ht(x) =
(∑t

t′=1 αt′ht′(x)
)
/
(∑t

t′=1 αt′
)
: The majority vote of the weak learners, rescaled based

on the total weights.

• gt(x) = sign(Ht(x)): The voting classifier decision function.

2.2.2 AdaBoost Weighting

AdaBoost relies on building an ensemble of weak learners, assigning them weights based on their errors
during training.

1. Assume we are in the binary classification setting. What happens to the weight αt =
1

2
ln

(
1− ϵt
ϵt

)
of classifier ht if its error ϵt > 0.5? Why is this useful?

Note that if we can find weak learners ht with ϵt < 0.5 for all t, training error will decrease
exponentially fast in the total number of iterations T .

2. AdaBoost also assigns weights ω(i)
t for each data point. Explain in broad terms how the weights

assigned to examples get updated in each iteration.
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2.2.3 The Margin

In the following question, we will examine the generalization error of AdaBoost using a concept known
as the classification margin.

For a binary classification task, assume that we use a probabilistic classifier that provides a probability
distribution over the possible labels (i.e. p(y|x) for y ∈ {+1,−1}). The classifier output is the label
with highest probability. We define the classification margin for an input as the signed difference
between the probability assigned to the correct label and the incorrect label pcorrect − pincorrect, which
takes on values in the range [−1, 1].

1. Let margint(x, y) represent the margin for our AdaBoost classifier at iteration t on the sample
(x, y). Write a single inequality in terms of margint(x, y) that is true if and only if the classifier
makes a mistake on the input (x, y) (i.e., provide a bound on the margin in the case the classifier
is incorrect). Assume the classifier makes a mistake on ties.

2. For a given input and label (x(i), y(i)), write margint(x
(i), y(i)) in terms of x(i), y(i), and ft.

Page 7



2.2.4 Weak Learners

We always talk using AdaBoost with “weak” learners; why can’t we ensemble together “stronger”
learners? Let’s take a look at bounds on the test error of AdaBoost, fixing the number of samples N and
number of training iterations T , but allowing variation in the hypothesis class of weak learners H.

Let d be the VC-dimension of the hypothesis class. Consider the following bounds on the error of the
ensemble gT with respect to d:

Bound 1 (PAC Learning) : True Error ≤ Train Error +O

(√
T log T

√
d

√
logN

N

)

Bound 2 (Margin Analysis) : True Error ≤ P̂S [marginT ≤ θ] +O

1

θ

√
d

√
log2N

N


1. What happens to our bounds on true error if we increase the VC dimension of the weak learner

hypothesis space?

2. What concept does this connection between classifier complexity and error relate to?

Page 8


	Learning Theory
	PAC Learning

	Ensemble Methods
	Random Forests
	AdaBoost
	AdaBoost Definitions
	AdaBoost Weighting
	The Margin
	Weak Learners



