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� Supervised Models
� Decision Trees
� KNN
� Naïve Bayes
� Perceptron
� Logistic Regression
� Linear Regression
� Neural Networks
� SVMs

� Unsupervised Learning

� Ensemble Methods

� Graphical Models

� Learning Theory

� Reinforcement Learning

� Deep Learning

� Generative AI 

� Important Concepts
� Feature Engineering 
� Regularization and 

Overfitting
� Experimental Design
� Societal Implications



Defining a 
Machine 
Learning 
Task 
(Mitchell, 97)

� A computer program learns if its performance, P, at 

some task, T, improves with experience, E. 

� Three components

� Task, T

� Performance metric, P

� Experience, E
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Defining a 
Machine 
Learning 
Task: 
Example

� Learning to approve loans/lines of credit

� Three components

� Task, T

Decide whether to extend someone a loan

� Performance metric, P

Number of people who default on their loan

� Experience, E

Interviews with loan officers
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Defining a 
Machine 
Learning 
Task: 
Example

� Learning to approve loans/lines of credit

� Three components

� Task, T

Predict the probability someone defaults on a loan

� Performance metric, P

Amount of money (interest) made

� Experience, E

Historical data on loan defaults
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Defining a 
Machine 
Learning 
Task: 
Example

� Learning to 

� Three components

� Task, T

� Performance metric, P

� Experience, E
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� Learning to diagnose heart disease  
as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task

Henry Chai - 1/17/24

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

features labels
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� Learning to diagnose heart disease  
as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task

Henry Chai - 1/17/24

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

features labels

da
ta

 p
oi

nt
s



� Learning to diagnose heart disease  
as a (supervised) binary classification task

Our first 
Machine 
Learning 
Task
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Family
History

Resting Blood 
Pressure

Cholesterol Risk

Yes Low Normal Low Risk

No Medium Normal Low Risk

No Low Abnormal Medium Risk

Yes Medium Normal High Risk

Yes High Abnormal High Risk

features labels

da
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� Learning to diagnose heart disease  
as a (supervised) bin. . ary regression task

Our first 
Machine 
Learning 
Task
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Family
History

Resting Blood 
Pressure

Cholesterol Medical 
Costs

Yes Low Normal $0
No Medium Normal $20
No Low Abnormal $30
Yes Medium Normal $100
Yes High Abnormal $5000

features targets
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ta
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� A classifier is a function that takes feature values as 
input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset

Our first 
Machine 
Learning 
Classifier
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Yes Low Normal No
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� A classifier is a function that takes feature values as 
input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset (Yes)

Training 
vs. 
Testing
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes
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� A classifier is a function that takes feature values as  
input and outputs a label

� Majority vote classifier: always predict the most   
common label in the training dataset (Yes)

� A test dataset is used to evaluate a classifier’s predictions

� The error rate is the proportion of data points where the 
prediction is wrong

Training 
vs. 
Testing
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

No Low Normal No Yes

No High Abnormal Yes Yes

Yes Medium Abnormal Yes Yeste
st
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� A classifier is a function that takes feature values as  

input and outputs a label

� Majority vote classifier: always predict the most   
common label in the training dataset (Yes)

� A test dataset is used to evaluate a classifier’s predictions

� The test error rate is the proportion of data points in the 
test dataset where the prediction is wrong ( ⁄1 3)

Training 
vs. 
Testing
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te
st
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at
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et Family

History
Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

No Low Normal No Yes

No High Abnormal Yes Yes

Yes Medium Abnormal Yes Yes



A Typical 
(Supervised) 
Machine 
Learning 
Routine

� Step 1 – training

� Input: a labelled training dataset

� Output: a classifier

� Step 2 – testing

� Inputs: a classifier, a test dataset

� Output: predictions for each test data point

� Step 3 – evaluation

� Inputs: predictions from step 2, test dataset labels

� Output: some measure of how good the predictions are; 
usually (but not always) error rate
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� A classifier is a function that takes feature values as 

input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset

� This classifier completely ignores the features…

Our first 
Machine 
Learning 
Classifier
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� A classifier is a function that takes feature values as 

input and outputs a label

� Majority vote classifier: always predict the most 
common label in the training dataset

� The training error rate is ⁄2 5

Our first 
Machine 
Learning 
Classifier
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Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

Yes Low Normal No Yes

No Medium Normal No Yes

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes

features labels
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� A classifier is a function that takes feature values as      

input and outputs a label

� Memorizer: if a set of features exists in the training 
dataset, predict its corresponding label; otherwise, 
predict the majority voteOur second 

Machine 
Learning 
Classifier
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Cholesterol Heart 
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No Medium Normal No
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Yes Medium Normal Yes

Yes High Abnormal Yes



� A classifier is a function that takes feature values as      

input and outputs a label

� Memorizer: if a set of features exists in the training 
dataset, predict its corresponding label; otherwise, 
predict the majority vote

� The training error rate is 0!

Our second 
Machine 
Learning 
Classifier

Henry Chai - 1/17/24

Family
History

Resting Blood 
Pressure

Cholesterol Heart 
Disease?

Predictions

Yes Low Normal No No

No Medium Normal No No

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes



� Feature space, 𝒳

� Label space, 𝒴

� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Training dataset: 

𝒟 = 𝒙 ( , 𝑐∗ 𝒙 ( = 𝑦 ( , 𝒙 ) , 𝑦 ) … , 𝒙 * , 𝑦 *

� Data point:

𝒙 + , 𝑦 + = 𝑥(
+ , 𝑥)

+ , … , 𝑥,
+ , 𝑦 +

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

Notation
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� Loss function, ℓ ∶ 𝒴	×	𝒴 → ℝ

� Defines how “bad” predictions, 9𝑦 = ℎ(𝒙), are 
compared to the true labels, 𝑦 = 𝑐∗(𝒙)

� Common choices

1. Squared loss (for regression): ℓ 𝑦, 9𝑦 = 𝑦 − 9𝑦 )

2. Binary or 0-1 loss (for classification):

ℓ 𝑦, 9𝑦 = 𝟙 𝑦 ≠ 9𝑦 = ?1	 if	 𝑦 ≠ 9𝑦	
0	 otherwise

� Error rate:

𝑒𝑟𝑟 ℎ, 𝒟 =
1
𝑁
L
+-(

*

𝟙 𝑦 + ≠ 9𝑦 +

Notation
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� 𝑁 = 5	and	𝐷 = 3

� 𝑥 ) = 𝑥(
) = “No”, 𝑥)

) = “Medium”, 𝑥.
) = “Normal”

Notation: 
Example
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𝑥!
Family
History

𝑥"
Resting Blood 
Pressure

𝑥#
Cholesterol 

𝑦
Heart 
Disease?

1𝑦
Predictions

Yes Low Normal No No

No Medium Normal No No

No Low Abnormal Yes Yes

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes

𝒙 "



� Alright, let’s actually (try to) extract a pattern from the data

� Decision stump: based on a single feature, 𝑥3, predict the 

most common label in the training dataset among all data 

points that have the same value for 𝑥3

Our third 
Machine 
Learning 
Classifier
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History
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Our third 
Machine 
Learning 
Classifier: 
example

� Alright, let’s actually (try to) extract a pattern from the data

� Decision stump on 𝑥(: 

ℎ 𝒙4 = ℎ 𝑥(4 , … , 𝑥,4 = ?? ? ? if 𝑥(4 = “Yes”
? ? ? otherwise

Henry Chai - 1/17/24



𝑥!
Family
History

𝑥"
Resting Blood 
Pressure

𝑥#
Cholesterol 

𝑦
Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

Our third 
Machine 
Learning 
Classifier: 
example

� Alright, let’s actually (try to) extract a pattern from the data

� Decision stump on 𝑥(: 

ℎ 𝒙4 = ℎ 𝑥(4 , … , 𝑥,4 = ?“Yes” if 𝑥(
4 = “Yes”

? ? ? otherwise

Henry Chai - 1/17/24



𝑥!
Family
History

𝑥"
Resting Blood 
Pressure

𝑥#
Cholesterol 

𝑦
Heart 
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

Our third 
Machine 
Learning 
Classifier: 
example

� Alright, let’s actually (try to) extract a pattern from the data

� Decision stump on 𝑥(: 

ℎ 𝒙4 = ℎ 𝑥(4 , … , 𝑥,4 = ?“Yes” if 𝑥(
4 = “Yes”

“No” otherwise
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� Alright, let’s actually (try to) extract a pattern from the data

ℎ 𝒙 = ℎ 𝑥(, … , 𝑥3 = ?“Yes” if 𝑥( = “Yes”
“No” otherwise

𝑥!
Family
History

𝑥"
Resting Blood 
Pressure

𝑥#
Cholesterol 

𝑦
Heart 
Disease?

1𝑦
Predictions

Yes Low Normal No Yes

No Medium Normal No No

No Low Abnormal Yes No

Yes Medium Normal Yes Yes

Yes High Abnormal Yes Yes

Our third 
Machine 
Learning 
Classifier: 
example
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𝑥(

“Yes” “No”

“Yes” “No”



Decision 
Stumps: 
Questions

1. How can we pick which feature to split on?

2. Why stop at just one feature?
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Key Takeaways

� Components of a machine learning problem

� Algorithmic bias

� Components of a labelled dataset for supervised learning

� Training vs. test datasets

� Majority vote classifier

� Decision stumps
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Logistics: 
Course 
Website
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https://www.cs.cmu.edu/~hchai2/courses/10701/

https://www.cs.cmu.edu/~hchai2/courses/10701/


Logistics: 
Course 
Syllabus
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https://www.cs.cmu.edu/~hchai2/courses/10701/#Syllabus  

� This whole section is required reading

https://www.cs.cmu.edu/~hchai2/courses/10701/


Logistics: 
Grading
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https://www.cs.cmu.edu/~hchai2/courses/10701/#Syllabus 

� 25% midterm & 25% final

� 25% homework assignments
� First 4 assignments = 5% each
� HW5 and HW6 are = 2.5% each

� 20% project
� You must work on the project in groups of 3 or 4

� 5% participation
� 5% (full credit) for 80% or greater poll participation
� 3% for 65%-80% poll participation.
� 1% for 50%-65% poll participation.
� “Correctness” will not affect your participation grade
� 50% credit for responses after lecture within 48 hours

https://www.cs.cmu.edu/~hchai2/courses/10701/


Logistics: 
Late 
Policy
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https://www.cs.cmu.edu/~hchai2/courses/10701/#Syllabus 

� 6 grace days for use across all homework assignments

� Only 2 grace days may be used per homework

� Late submissions w/o grace days:
� 1 day late = 50% multiplicative penalty
� 2 days late = 25% multiplicative penalty

� No submissions accepted more than 2 days late

� Grace days cannot be applied to project deliverables

https://www.cs.cmu.edu/~hchai2/courses/10701/


Logistics: 
Collaboration 
Policy
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https://www.cs.cmu.edu/~hchai2/courses/10701/#Syllabus 

� Collaboration on homework assignments is encouraged but 
must be documented

� You must always write your own code/answers

� You may not re-use code/previous versions of the 
homework, whether your own or otherwise

� Good approach to collaborating on programming assignments:
1. Collectively sketch pseudocode on an impermanent 

surface, then

2. Disperse, erase all notes and start from scratch

https://www.cs.cmu.edu/~hchai2/courses/10701/


Logistics: 
Technologies

Henry Chai - 1/17/24

https://www.cs.cmu.edu/~hchai2/courses/10701/#Syllabus 

� Piazza, for course discussion: 
https://piazza.com/class/lr0i0sfzjdn2im 

� Gradescope, for submitting homework assignments: 
https://www.gradescope.com/courses/695056 

� Polleverywhere, for in-class participation: 
https://pollev.com/10701polls

� Canvas, for hosting the gradebook and lecture recordings: 
https://canvas.cmu.edu/courses/39031 

https://www.cs.cmu.edu/~hchai2/courses/10701/
https://piazza.com/class/lr0i0sfzjdn2im
https://www.gradescope.com/courses/695056
https://pollev.com/10701polls
https://canvas.cmu.edu/courses/39031


https://www.cs.cmu.edu/~hchai2/courses/10701/#Schedule

Logistics: 
Lecture 
Schedule
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https://www.cs.cmu.edu/~hchai2/courses/10701/


https://www.cs.cmu.edu/~hchai2/courses/10701/#Schedule

Logistics: 
Exam  
Schedule
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⋮

⋮

https://www.cs.cmu.edu/~hchai2/courses/10701/


https://www.cs.cmu.edu/~hchai2/courses/10701/#Recitations

Logistics: 
Recitations
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https://www.cs.cmu.edu/~hchai2/courses/10701/


https://www.cs.cmu.edu/~hchai2/courses/10701/#Homework  

Logistics:
Homework 
Assignments
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https://www.cs.cmu.edu/~hchai2/courses/10701/


https://www.cs.cmu.edu/~hchai2/courses/10701/#Calendar

Logistics: 
Office Hours
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https://www.cs.cmu.edu/~hchai2/courses/10701/

