10-701: Introduction to
Machine Learning
Lecture 11 - Convolutional
Neural Networks

Henry Chai
2/23/24

* Announcements

* HW3 released 2/19, due 2/28 at 11:59 PM

* Project details will be released 3/1 (next Friday)

Front Matter

* You must work in groups of 2 or 3 on the project

- Recommended Readings

- Zhang, Lipton, Li & Smola, Chapter 7

Henry Chai - 2/23/24

https://d2l.ai/chapter_convolutional-neural-networks/index.html

* Input: D = {(x("),y("))}:ﬂ,n(”)

* Initialize all weights W((Ol)),) ((OL)) to small, random numbers

andsett =0

Recall: - While TERMINATION CRITERION is not satisfied

Stochastic - For i € shuffle({1, ..., N})
Gradient ‘Forl=1,.. L
Descent
.) — (i) (1) (L)
for Learning Compute GY/ =V, f" (W(t) o Wi)

. .y _ D l
*Incrementt:t=t+1

* Output: W(%), e W(t)

Henry Chai - 2/23/24

“lnput: W, W) and (x®, y®)

- Run forward propagation with x® to get 0V, ..., oM
* (Optional) Compute £ = (o®) — y(i))z

Back- * Initialize: 81 = 2 (09) — y(i))

propagation

*Forl=L-1,..,1
- Compute §® = w@+D" §0+D (1-0® ©oW)

- Compute G® = §Dot-D"

- Qutput: G, ..., 6D the gradients of £ w.rt W@, . w)

Henry Chai - 2/23/24

Recall:
Gradient

Descent

Henry Chai - 2/23/24

* Iterative method for minimizing functions

* Requires the gradient to exist everywhere

- Gradient descent is not guaranteed to find a global
minimum on non-convex surfaces

Non-convexity

Henry Chai - 2/23/24

* Input: D = {(x("),y("))}:ﬂ,n(”)

* Initialize all weights W((Ol)),) ((OL)) to small, random numbers

andsett =0
Stochastic - While TERMINATION CRITERION is not satisfied

Gradient * For i € shuffle({1, ...,N})
Descent “Forl=1,..,L

for Learning |
+ Compute G = v, £V (W((tl)); ...,W((tL)))

- Update W O: W((tlll) = W((tl)) —1oGW

*Incrementt:t=t+1

* Output: W(%), e W((tL))

Henry Chai - 2/23/24

Mini-batch
Stochastic
Gradient

Descent
for Learning

Henry Chai - 2/23/24

* Input: D = {(x("),y(”))}gzl,nl(\%,B

1. Initialize all weights W((Ol)),) ((OL)) to small, random

numbersandsett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}izl

b. Compute the gradient w.r.t. the sampled batch,
B
1
() (b) (1) (L)
G — B z VW(Z)’E (W(t)) wany (t))V l
b=1

c. Update W: Wt(ﬂ — Wt(l) — 771(\/(1)1);G(l) V1
d. Incrementt:t < t+1

* Output: Wt(l), e Wt(L)

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 2/23/24

* Input: D = {(x(”),y("))}zzl,nl(\%, B, decay parameter f8

(1) (L)

1. Initialize all weights W(o) o Wi to small, random

numbers and sett = 0, Gfll) =0OWWOvI=1,..L

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}llj:l

b. Compute the gradient w.r.t. the sampled batch,
B
1
(D _ b (1) (L)
Gt — E z VW(Z)’B() (W(t)) wun) (t))V l
b=1

c. Update WO: thf)l « Wt(l) — n,(\,(,)l)g (,BGt(l_)l + Gt(l)) Vi
d. Incrementt:t < t+1

* Output: Wt(l), e Wt(L)

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 2/23/24

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 2/23/24

Mini-batch
Stochastic
Gradient

Descent with
Momentum for
Learning

Henry Chai - 2/23/24

Mini-batch
Stochastic
Gradient
Descent with

Root Mean
Square
Propagation
(RMSProp)

Henry Chai - 2/23/24

* Input: D = {(x(”),y("))}gzl,n,(\%, B, decay parameter f8

1.

Initialize all weights

W((Ol)), . ((OL)) to small, random

numbers and sett = 0, Sfll) =0O0OWWOvI=1,..L
While TERMINATION CRITERION is not satisfied

d.

b.

Randomly sample B data points from D, {(x(b),y(b))}izl

Compute the gradient w.r.t. the sampled batch,

B
1
D _ b (1) (L)
Gt — E z VW(Z)’B() (W(t)) wun) (t))V l
b=1
Update the scaling factor: S = 8S;_1 + (1 — B)(G; © G;)

Update WO: w0 « w) — \/% O G,

Incrementt:t «t+1

* Output: Wt(l), . Wt(L)

SGD

- - Momentum
Mini-batch wene: NAG
. - Adagrad
Stochastic Adadeita

Gradient 4

Rmsprop

Descent with ";
Root Mean =
Square 4

1.0

Propagation
(RMSProp)

Henry Chai - 2/23/24 Source: https://www.ruder.io/optimizing-gradient-descent/

https://www.ruder.io/optimizing-gradient-descent/

Adam
(Adaptive
Moment

Estimation) =
SGD +
Momentum +
RMSProp

Henry Chai - 2/23/24

* Input: D = {(x("),y("))}:ﬂ,nz(v(z)z)a» B, decay parameters [f; and [5>

1.

Initialize all weights W((Ol)),) ((OL)) to small, random

numbersandsett =0, M_; =S, =00WWVvIi=1,..L
While TERMINATION CRITERION is not satisfied
a. Randomly sample B data points from D, {(x(b),y(b))}izl
b. Compute the gradient (G;), momentum and scaling factor
My = 1My + (1 = B1)G;
St = B2St—1 + (1 = B2)(G: © Gp)

c. Update W®: thf)l « Wt(l) - L O M/ = BD))
\/St/(l—ﬁg)

d. Incrementt:t < t+1

* Output: Wt(l), e Wt(L)

* Run mini-batch gradient descent (with momentum &
adaptive gradients) multiple times, each time starting

Random with a different, random initialization for the weights.

Restarts - Compute the training error of each run at termination
and return the set of weights that achieves the lowest

training error.

Henry Chai - 2/23/24

Random

Restarts

Henry Chai - 2/23/24

Random

Restarts

Henry Chai - 2/23/24

Terminating
Gradient

Descent

Henry Chai - 2/23/24

* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

Terminating
Gradient

Descent
llEa rlyH

Henry Chai - 2/23/24

* For non-convex surfaces, the gradient’s magnitude is
often not a good metric for proximity to a minimum

- Combine multiple termination criteria e.g. only stop if

enough iterations have passed and the improvement in
error is small

- Alternatively, terminate early by using a validation data
set: if the validation error starts to increase, just stop!

* Early stopping asks like regularization by limiting

how much of the hypothesis set is explored

- Minimize fgi()m (W(l), L@ Ac)

=O(WwD w4+ A (WD, . wh
Neural ()+ Aer()

Networks and e.g. L2 regularization
L di-1 g0

W W (l)
Regularization (W, . wit) = Z Z Z

Henry Chai - 2/23/24

* Jitter

* In each iteration of gradient descent, add some

Neural
Networks and
“Strange”

random noise or “jitter” to each training data point

* Instead of computing the gradient w.r.t.
(x(i),y(i)), use (x(i) + e,y(i)) where

Regularization
€ ~ N(0,0°D)

(Bishop, 1995)

- Makes neural networks resilient to input noise

* Has been proven to be equivalent to using a certain

kind of regularizer r for some error metrics

Henry Chai - 2/23/24 Source: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-g5.pdf

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-95.pdf

Neural
Networks and
“Strange”

Regularization
(Srivastava et
al., 2014)

Henry Chai - 2/23/24

* Dropout

* In each iteration of gradient descent, randomly

remove some of the nodes in the network

- Compute the gradient using only the remaining nodes

* The weights on edges going into and out of “dropped

out” nodes are not updated

(a) Standard Neural Net (b) After applying dropout.

Source: http://imlr.org/papers/volumel5/srivastavalda/srivastavalda.pdf

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

* Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MILP

MLPs as * Any smooth decision boundary can be approximated to an

Universal arbitrary precision using a finite number of perceptrons

Approximators

Henry Chai - 2/23/24

MLPs as
Universal

Approximators

Henry Chai - 2/23/24

* Theorem: any function that can be decomposed into

perceptrons can be modelled exactly using a 3-layer MLP

- Any smooth decision boundary can be approximated to an

arbitrary precision using a finite number of perceptrons

* Theorem: Any smooth decision boundary can be

approximated to an arbitrary precision using a 3-layer MLP

* Theorem: Any bounded, continuous function can be

NNs as approximated to an arbitrary precision using a 2-layer
Universal (1 hidden layer) feed-forward NN if the activation
Approximators function, 8, is continuous, bounded and non-constant.

(Cybenko, 1989
& Hornik, 1991)

Source: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?d0i=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T

Henry Chai - 2/23/24

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T

NNs as
Universal

Approximators
(Cybenko, 1988)

Henry Chai - 2/23/24

* Theorem: Any function can be approximated to an
arbitrary precision using a 3-layer (2 hidden layers)
feed-forward NN if the activation function, 8, is

continuous, bounded and non-constant.

Source: G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report, Dept. of
Computer Science, Tufts University, Medford, MA, 1988.

* From Wikipedia’s page on Deep Learning...

Definition |edit]

Deep learning is a class of machine learning algorithms

Dee D Learnin g thatl111(PP199-200) ;565 multiple layers to progressively extract higher
level features from the raw input. For example, in image processing,
lower layers may identify edges, while higher layers may identify the
concepts relevant to a human such as digits or letters or faces.

* Deep learning = more than one layer

Henry Chai - 2/23/24 Source: https://en.wikipedia.org/wiki/Deep learning

https://en.wikipedia.org/wiki/Deep_learning

First layer: computes the Second layer: combines
perceptrons’ predictions lower-level components

Deep Learning

h(x)

Henry Chai - 2/23/24

* Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

* Idea: use the first few layers to identify relevant macro-

: features, e.g., edges
Convolutional S EH8

Neural * Insight: for spatially-structured inputs, many useful
macro-features are shift or location-invariant, e.g., an

Networks

edge in the upper left corner of a picture looks like an
edge in the center

- Strategy: learn a filter for macro-feature detection in a
small window and apply it over the entire image

Henry Chai - 2/23/24

- Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololofo]o
Filters 112021
0 0 0 1 0
ol2lalal2]o0
« |1 -4 1
ol1l3l3]1]o0
ol1l213]1]o0 V8
olol1l1]0]o0

Henry Chai - 2/23/24

- Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| ololololo]o
Filters 112021 0
0 0 0 1 0
ol2lalal2]0
* |1 4|1 =
ol1l3l3]1]o0
ol1l213]1]o0 V8
olol1l1]0]o0

0+x0)+O*1D)+O0*x0)+O0*1)+ (1*—4)
+2+«1)+0*x0)+2*x1)+(4=x0)=0

Henry Chai - 2/23/24

- Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

| olololololo
Filters 112121 0 -1

0 0 0 1 0

ol21alal2]o0
* |1 4|1 =

ol1l3l3]1]o0
ol1l213]1]o0 V8

olol1l1]0]o0

0x0)+O*1D)+O0*x0)+(A*x1)+(2*x—4)
+R2+«1D)+@2*0)+4*x1)+4=+x0)=-1

Henry Chai - 2/23/24

- Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

olololo]o]o
Filters ol1l2]2]1]0 T1Ts 0l-1/-1]0
ol2lalal2]0 21-5]-5]-2
*x 1 4|1 =
ol1]3]3l1]o0 212113
0 1
ol1l213]1]o0 0 1lo|-5]0
olol1]1lo0]o0

Henry Chai - 2/23/24

Convolutional
Filters

Henry Chai - 2/23/24

Operation

Kernel w

Image result g(x,y)

0 0 O
Identity 0 1 0
0 0 0
1 0 -1
0 0 O
-1 0 1
0 1 0
Edge detection 1 -4 1
0 1 0

Source: https://en.wikipedia.org/wiki/Kernel (image processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)

Operation Kernel w Image result g(x,y)

0 0 O
Identity 0 1 0
0 0 O
0 -1 0
M O re Sharpen -1 5 -1
. 0 -1 0
Filters
Box blur 1 L
—(1 1 1
(normalized) 9
1 1 1

Henry Chai - 2/23/24 Source: https://en.wikipedia.org/wiki/Kernel (image processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)

- Images can be represented as matrices: each element

corresponds to a pixel and its value is the intensity

- A filter is just a small matrix that is convolved with

same-sized sections of the image matrix

Convolutional

. 0100, 010]
F|Iters ol1l21211lo N ans 0[-1]-1]0
ol214t4(2]0] — 21-5]-5]-2
113|310 — 2 1-21-113
0 10
112131110 1101-510
ol1l1]0]0

Henry Chai - 2/23/24

* Convolutions can be represented by a feed forward neural

network where:

1. Nodes in the input layer are only connected to

some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

Convolutional

Filters

- Many fewer weights than a fully connected layer!

* Convolution weights are learned using gradient descent/

Henry Chai - 2/23/24 backpropagation, not prespecified

- What if relevant features exist at the border of our image?

- Add zeros around the image to allow for the filter to be
applied “everywhere” e.g. a padding of 1 with a 3x3 filter

preserves image size and allows every pixel to be the center

Convolutional olololo]o]o]o]o

- . - 0Ol10JO]JO0O]10101010O0 0 2 | 2 0

Filters: Padding
o101 1212[11010 - 11011-11-11011
010121414 ([21010 21-2|1-5|-5|-21|2

k 1 -4 1 o

Ol1011|313[11010 1 2 |-21-1 1
olol1|2]3]|1|0]0 0[1]0 1|-1lol-5]0]1
Ool0JO0O]1T11101010O0 O121-110 0
010010]0O0]0O0]107]10O0

Henry Chai - 2/23/24

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ojlojo|lOo|0]O

0|1|2|2]1]0 P

024420*01_

S 0/1|3[3]1]0 1|2
Downsamplmg- ol1l2]3]1]0
Stride 0jojtj1jojo

Henry Chai - 2/23/24

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

0/{0[0[0|0O]|O
0|1(2|2]|1]0 PR
024420*01_
S 0[1]3(3][1]0 1 -2
Downsamplmg- ol1l2]3]1]0
Stride 0jojtj1jojo

Henry Chai - 2/23/24

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

olololo]o]lo
ol1l2]2]1]0 1211
01244210 0 1
% —
S ol1(3]3]1]0 12
Downsamplmg- ol1l2]3]1]0
Stride olol1]1]0]o0

Henry Chai - 2/23/24

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololofofo]o
ol1l2121110 5T
ol2lalal2]0 0 1
% = | 0
Downsampling: AEIEAEAENLANE
: PIINg: ol1l213]1]0
Stride olol1l1]0]o0

Henry Chai - 2/23/24

* Only apply the convolution to some subset of the image

e.g., every other column and row = a stride of 2

ololofofo]o
ol1l2121110 5T
ol2lalal2]0 0 1
% —lol1]1
Downsampling: 1115151110} [1]-2 s
: pling: ol1l213]1]0
Stride olol1l1]0]o0

* Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Many relevant macro-features will tend to span large

portions of the image, so taking strides with the

convolution tends not to miss out on too much

Henry Chai - 2/23/24

- Combine multiple adjacent nodes into a single node

0-{-14-1|0
2-5d.5]-2]

B
. 21-2|-1|3
Downsampling: 10|50

Pooling

Henry Chai - 2/23/24

- Combine multiple adjacent nodes into a single node

— T —
pooling 2|3

0(-1|-1|0
-2|1-5|-5|-2 max 010
2 |-21-1|3
-1101(-5]|0

Downsampling:

Poolin
5 * Reduces the dimensionality of the input to subsequent

layers and thus, the number of weights to be learned

* Protects the network from (slightly) noisy inputs

Henry Chai - 2/23/24

C3: f. maps 16@10x10

INPUT g1@ ngitztge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer pp. OUTPUT
6@14x14 120 o aver o

] |
’ ‘ Full conAection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

LeNet (LeCun et al., 1998)

Henry Chai - 2/23/24 Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

