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10-701: Introduction to 
Machine Learning
Lecture 11 - Convolutional 
Neural Networks



Front Matter

� Announcements

� HW3 released 2/19, due 2/28 at 11:59 PM

� Project details will be released 3/1 (next Friday)

� You must work in groups of 2 or 3 on the project

� Recommended Readings
� Zhang, Lipton, Li & Smola, Chapter 7
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https://d2l.ai/chapter_convolutional-neural-networks/index.html


Recall: 
Stochastic 
Gradient 
Descent 
for Learning

� Input: ! = # ! , % !
!"#
$ , & %

� Initialize all weights ' %
# , … ,' %

&  to small, random numbers 
and set ) = 0 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For + ∈ shuf1le 1, … ,5
� For 6 = 1,… , 7

� Compute 8 ' = ∇( ! ℓ ) ' *
# , … ,' *

&  (???)

� Update ' ' : ' *+#
' = ' *

' − &%8 '

� Increment ): ) = ) + 1	

� Output: ' *
# , … ,' *

&
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Back-
propagation
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� Input: ' # , … ,' &  and # ) , % )

� Run forward propagation with # ) 	to get > # , … , > &

� (Optional) Compute ℓ ) = ? & − % ) ,

� Initialize: @ & = 2 ?#& − % )

� For 6 = 7 − 1,… , 1

� Compute @ ' = ' '+# -@ '+# ⊙ 1− > ' ⊙> '

� Compute 8 ' = @ ' > '.# -

� Output: 8 # , … , 8 & , the gradients of ℓ ) 	w.r.t ' # , … ,' &



Recall: 
Gradient 
Descent

� Iterative method for minimizing functions
� Requires the gradient to exist everywhere
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Non-convexity

� Gradient descent is not guaranteed to find a global 
minimum on non-convex surfaces
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Stochastic 
Gradient 
Descent 
for Learning

� Input: ! = # ! , % !
!"#
$ , & %

� Initialize all weights ' %
# , … ,' %

&  to small, random numbers 
and set ) = 0 (???)

� While TERMINATION CRITERION is not satisfied (???)

� For + ∈ shuf1le 1, … ,5
� For 6 = 1,… , 7

� Compute 8 ' = ∇( ! ℓ ) ' *
# , … ,' *

&  (???)

� Update ' ' : ' *+#
' = ' *

' − &%8 '

� Increment ): ) = ) + 1	

� Output: ' *
# , … ,' *

&
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Mini-batch
Stochastic
Gradient 
Descent 
for Learning
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� Input: ! = # ! , % !
!"#
$ , &/0% , C

1. Initialize all weights ' %
# , … ,' %

&  to small, random         
numbers and set ) = 0 8.#' = 0 ∗' ' 	∀	6 = 1,… , 7

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample C data points from !, # 1 , % 1
1"#
0

b. Compute the gradient w.r.t. the sampled batch,

8 ' = 1
CF1"#

0
∇( ! ℓ 1 ' *

# , … ,' *
& ∀	6

c. Update ' ' : '*+#' ← '* ' − &/0% 8 ' 	∀	6
d. Increment ): ) ← ) + 1	

� Output: '* # , … ,'* &



Mini-batch
Stochastic
Gradient 
Descent with 
Momentum for 
Learning
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� Input: ! = # ! , % !
!"#
$ , &/0% , C, decay parameter H

1. Initialize all weights ' %
# , … ,' %

&  to small, random         
numbers and set ) = 0, 8.#' = 0⊙' ' 	∀	6 = 1,… , 7

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample C data points from !, # 1 , % 1
1"#
0

b. Compute the gradient w.r.t. the sampled batch,

8* ' =
1
CF1"#

0
∇( ! ℓ 1 ' *

# , … ,' *
& ∀	6

c. Update ' ' : '*+#' ← '* ' − &/0% H8*.#' + 8* ' ∀	6
d. Increment ): ) ← ) + 1	

� Output: '* # , … ,'* &
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Learning
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Learning
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Learning



Mini-batch
Stochastic 
Gradient 
Descent with 
Root Mean 
Square 
Propagation 
(RMSProp)
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� Input: ! = # ! , % !
!"#
$ , &/0% , C, decay parameter H

1. Initialize all weights ' %
# , … ,' %

&  to small, random         
numbers and set ) = 0, I.#' = 0⊙' ' 	∀	6 = 1,… , 7

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample C data points from !, # 1 , % 1
1"#
0

b. Compute the gradient w.r.t. the sampled batch,

8* ' =
1
CF1"#

0
∇( ! ℓ 1 ' *

# , … ,' *
& ∀	6

c. Update the scaling factor: I* = HI*.# + 1 − H 8*⊙8*
d. Update ' ' : '*+#' ← '* ' 	−

2
3"
⊙8*

e. Increment ): ) ← ) + 1	
� Output: '* # , … ,'* &



Mini-batch
Stochastic 
Gradient 
Descent with 
Root Mean 
Square 
Propagation 
(RMSProp)
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https://www.ruder.io/optimizing-gradient-descent/


Adam 
(Adaptive 
Moment 
Estimation) = 
SGD + 
Momentum + 
RMSProp
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� Input: ! = # ! , % !
!"#
$ , &/0% , C, decay parameters H# and H,

1. Initialize all weights ' %
# , … ,' %

&  to small, random         
numbers and set ) = 0, J.# = I.# = 0⊙' ' 	∀	6 = 1,… , 7

2. While TERMINATION CRITERION is not satisfied
a. Randomly sample C data points from !, # 1 , % 1

1"#
0

b. Compute the gradient (8*), momentum and scaling factor
J* = H#J*.# + 1 − H# 8*

I* = H,I*.# + 1 − H, 8*⊙8*
c. Update ' ' : '*+#' ← '* ' 	−

2
⁄3" #.5#"

⊙ ⁄J* 1 − H#*

d. Increment ): ) ← ) + 1	
� Output: '* # , … ,'* &



Random 
Restarts

� Run mini-batch gradient descent (with momentum & 
adaptive gradients) multiple times, each time starting 
with a different, random initialization for the weights.

� Compute the training error of each run at termination 
and return the set of weights that achieves the lowest 
training error.
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Random 
Restarts

1

2 3
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Random 
Restarts

1

2 3



Terminating 
Gradient 
Descent

� For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum
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Terminating 
Gradient 
Descent
“Early”
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� For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum

� Combine multiple termination criteria e.g. only stop if 
enough iterations have passed and the improvement in 
error is small

� Alternatively, terminate early by using a validation data 
set: if the validation error starts to increase, just stop!

� Early stopping asks like regularization by limiting 
how much of the hypothesis set is explored



Neural 
Networks and 

Regularization

� Minimize ℓ678) ' # , … ,' & , L9

e.g. L2 regularization
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= ℓ ) ' # , … ,' & + L9M ' # , … ,' &

M ' # , … ,' & =F
'"#

&
F
)"%

: !$%

F
;"#

: !

N;,)'
,
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Neural 
Networks and 
“Strange” 
Regularization
(Bishop, 1995)

Source: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-95.pdf

� Jitter

� In each iteration of gradient descent, add some 
random noise or “jitter” to each training data point

� Instead of computing the gradient w.r.t.

# ) , % ) , use # ) + O, % )  where               
O ∼ 5 Q, R,S

� Makes neural networks resilient to input noise

� Has been proven to be equivalent to using a certain 
kind of regularizer M for some error metrics

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/bishop-tikhonov-nc-95.pdf
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Neural 
Networks and 
“Strange” 
Regularization
(Srivastava et 
al., 2014)

Source: http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf 

� Dropout

� In each iteration of gradient descent, randomly 
remove some of the nodes in the network

� Compute the gradient using only the remaining nodes

� The weights on edges going into and out of “dropped 
out” nodes are not updated 

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


� Theorem: any function that can be decomposed into 
perceptrons can be modelled exactly using a 3-layer MLP

� Any smooth decision boundary can be approximated to an 
arbitrary precision using a finite number of perceptrons

MLPs as 
Universal 
Approximators
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� Theorem: any function that can be decomposed into 
perceptrons can be modelled exactly using a 3-layer MLP

� Any smooth decision boundary can be approximated to an 
arbitrary precision using a finite number of perceptrons

� Theorem: Any smooth decision boundary can be 
approximated to an arbitrary precision using a 3-layer MLP

MLPs as 
Universal 
Approximators
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NNs as 
Universal 
Approximators
(Cybenko, 1989 
& Hornik, 1991)
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� Theorem: Any bounded, continuous function can be 
approximated to an arbitrary precision using a 2-layer  
(1 hidden layer) feed-forward NN if the activation 
function, T, is continuous, bounded and non-constant.

� What about unbounded or discontinuous functions?

� Use more layers!

Source: https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
Source: https://doi.org/10.1016/0893-6080%2891%2990009-T 

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=F21A09B7475DFB9487990020839A39D2?doi=10.1.1.441.7873&rep=rep1&type=pdf
https://doi.org/10.1016/0893-6080%2891%2990009-T


NNs as 
Universal 
Approximators
(Cybenko, 1988)
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Source:  G. Cybenko. Continuous valued neural networks with two hidden layers are sufficient. Technical report, Dept. of 
Computer Science, Tufts University, Medford, MA, 1988.

� Theorem: Any function can be approximated to an 
arbitrary precision using a 3-layer (2 hidden layers) 
feed-forward NN if the activation function, T, is 
continuous, bounded and non-constant.



Deep Learning

� From Wikipedia’s page on Deep Learning…

� Deep learning = more than one layer

Henry Chai - 2/23/24 Source: https://en.wikipedia.org/wiki/Deep_learning

https://en.wikipedia.org/wiki/Deep_learning


Deep Learning
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First layer: computes the 
perceptrons’ predictions

Second layer: combines 
lower-level components



Convolutional 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful 
macro-features are shift or location-invariant, e.g., an 
edge in the upper left corner of a picture looks like an 
edge in the center

� Strategy: learn a filter for macro-feature detection in a 
small window and apply it over the entire image
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Convolutional 
Filters

� Images can be represented as matrices: each element 
corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0
1 -4 1
0 1 0

∗



Convolutional 
Filters

� Images can be represented as matrices: each element 
corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

Henry Chai - 2/23/24

=

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 1 + 1 ∗ −4
+ 2 ∗ 1 + 0 ∗ 0 + 2 ∗ 1 + 4 ∗ 0 = 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0
1 -4 1
0 1 0

∗
0



Convolutional 
Filters

� Images can be represented as matrices: each element 
corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0
1 -4 1
0 1 0

∗

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 2 ∗ −4
+ 2 ∗ 1 + 2 ∗ 0 + 4 ∗ 1 + 4 ∗ 0 = −1

0 -1



Convolutional 
Filters

� Images can be represented as matrices: each element 
corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix
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=
0 -1 -1 0
-2 -5 -5 -2
2 -2 -1 3
-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0
1 -4 1
0 1 0

∗



Convolutional 
Filters

Henry Chai - 2/23/24 Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


More 
Filters

Henry Chai - 2/23/24 Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


� Images can be represented as matrices: each element 
corresponds to a pixel and its value is the intensity

� A filter is just a small matrix that is convolved with 
same-sized sections of the image matrix

Convolutional 
Filters

Henry Chai - 2/23/24

0 -1 -1 0
-2 -5 -5 -2
2 -2 -1 3
-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0	|	1	|	0

0	|	1	|	0
1	|	-4	|	1

=
0 1 0
1 -4 1
0 1 0

∗



� Convolutions can be represented by a feed forward neural 
network where:

1. Nodes in the input layer are only connected to 
some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

� Many fewer weights than a fully connected layer!

� Convolution weights are learned using gradient descent/ 
backpropagation, not prespecified

0 -1 -1 0
-2 -5 -5 -2
2 -2 -1 3
-1 0 -5 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

Convolutional 
Filters
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� What if relevant features exist at the border of our image?

� Add zeros around the image to allow for the filter to be 
applied “everywhere” e.g. a padding of 1 with a 3x3 filter 
preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0 0 0 0 0 0 0

Convolutional 
Filters: Padding
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=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1 0
1 -4 1
0 1 0

∗

0 1 2 2 1 0
1 0 -1 -1 0 1
2 -2 -5 -5 -2 2
1 2 -2 -1 3 1
1 -1 0 -5 0 1
0 2 -1 0 2 0



� Only apply the convolution to some subset of the image 
e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1
1 -2∗

-2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1
1 -2∗

-2 -2

� Only apply the convolution to some subset of the image 
e.g., every other column and row = a stride of 2



� Only apply the convolution to some subset of the image 
e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0

0 1
1 -2∗

-2 -2 1



� Only apply the convolution to some subset of the image 
e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=0 1
1 -2∗

-2 -2 1
0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0



� Only apply the convolution to some subset of the image 
e.g., every other column and row = a stride of 2

� Reduces the dimensionality of the input to subsequent 
layers and thus, the number of weights to be learned

� Many relevant macro-features will tend to span large 
portions of the image, so taking strides with the 
convolution tends not to miss out on too much
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Downsampling: 
Stride

=0 1
1 -2∗

-2 -2 1
0 1 1
1 2 0

0 0 0 0 0 0
0 1 2 2 1 0
0 2 4 4 2 0
0 1 3 3 1 0
0 1 2 3 1 0
0 0 1 1 0 0



Downsampling: 
Pooling
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0 -1 -1 0
-2 -5 -5 -2
2 -2 -1 3
-1 0 -5 0

UVW 00 0

� Combine multiple adjacent nodes into a single node
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0 -1 -1 0
-2 -5 -5 -2
2 -2 -1 3
-1 0 -5 0

0 0
2 3

UVW
pooling

Downsampling: 
Pooling

� Combine multiple adjacent nodes into a single node

� Reduces the dimensionality of the input to subsequent 
layers and thus, the number of weights to be learned

� Protects the network from (slightly) noisy inputs



LeNet (LeCun et al., 1998)
Henry Chai - 2/23/24 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf

