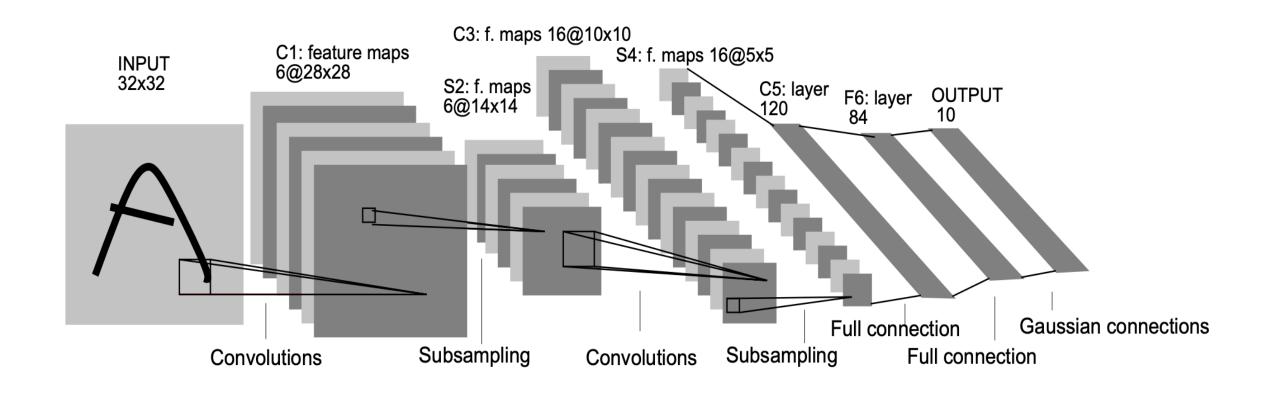
10-701: Introduction to Machine Learning Lecture 12 – RNNs

Front Matter

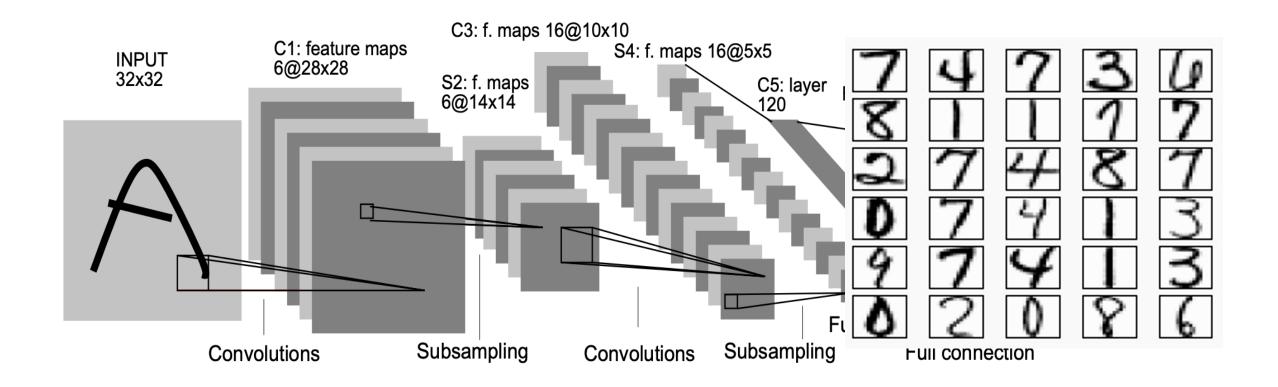
- Announcements
 - HW3 released 2/19, due 2/28 (Wednesday) at 11:59 PM
 - HW4 released 2/28 (Wednesday), due 3/15 (after break)
 at 11:59 PM
 - Project details will be released 3/1 (Friday)
 - You must work in groups of 2 or 3 on the project
- Recommended Readings
 - Zhang, Lipton, Li & Smola, <u>Chapters 9 & 10</u>

Recall: Convolutional Neural Networks

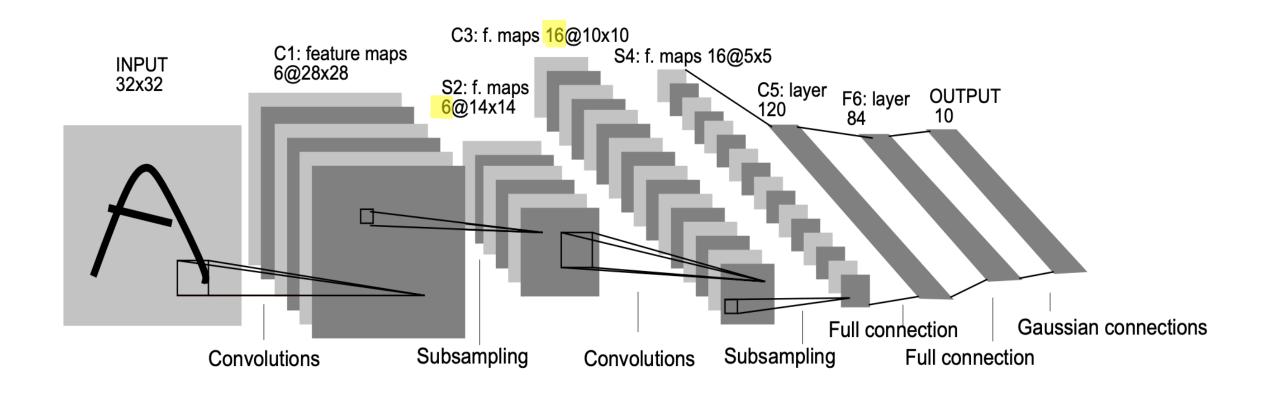
- Neural networks are frequently applied to inputs with some inherent spatial structure, e.g., images
- Idea: use the first few layers to identify relevant macrofeatures, e.g., edges
- Insight: for spatially-structured inputs, many useful macro-features are shift or location-invariant, e.g., an edge in the upper left corner of a picture looks like an edge in the center
- Strategy: learn a *filter* for macro-feature detection in a small window and apply it over the entire image



LeNet (LeCun et al., 1998)

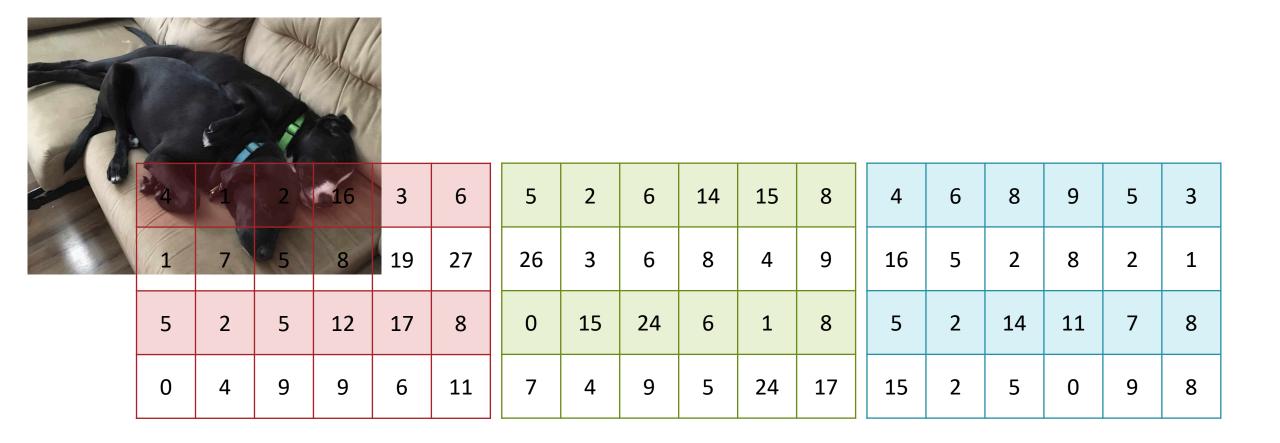


- One of the earliest, most famous deep learning models achieved remarkable performance at handwritten digit recognition (< 1% test error rate on MNIST)
- Used sigmoid (or logistic) activation functions between layers and mean-pooling, both of which are pretty uncommon in modern architectures



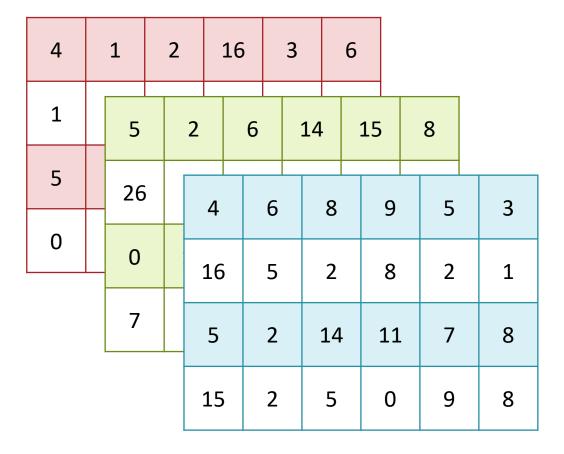
Wait how did we go from 6 to 16?

Channels



- An image can be represented as the sum of red, green and blue pixel intensities
- Each color corresponds to a *channel*

Example: $3 \times 4 \times 6$ tensor

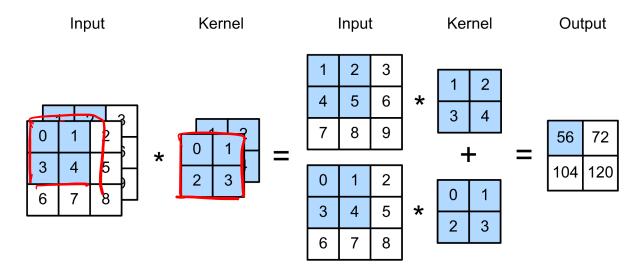


• An image can be represented as a *tensor* or multidimensional array

Convolutions on Multiple Input Channels

Henry Chai - 2/26/24

• Given multiple input channels, we can specify a filter for each one and sum the results to get a 2-D output tensor



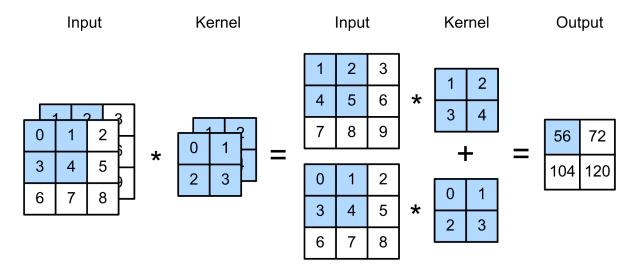
• For c channels and $h \times w$ filters, we have chw + c learnable parameters (each filter has a bias term)

$$\left[(0.0 + 1.1 + 3.2 + 4.3) + b \right]$$

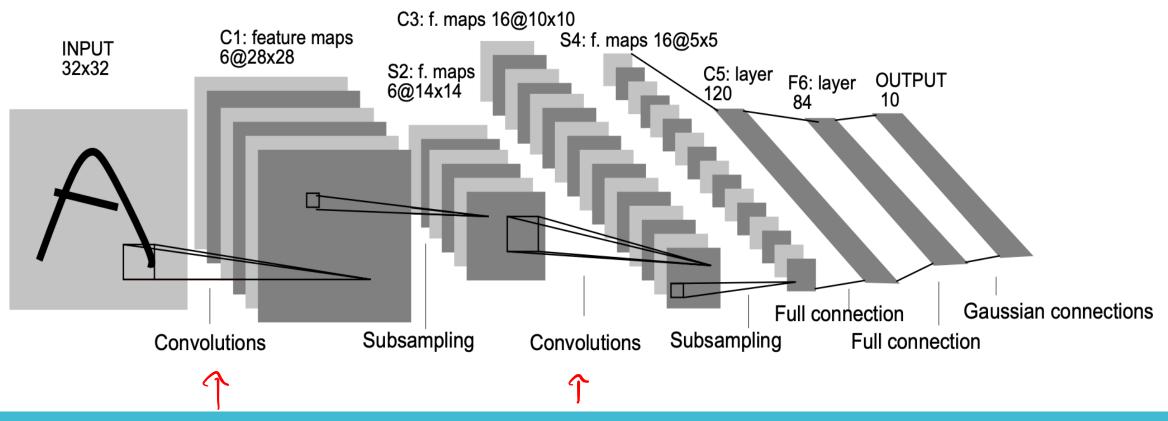
$$\left[(3.0 + 4.1 + 6.2 + 7.3) + 5 \right]$$

Convolutions on Multiple Input Channels

• Given multiple input channels, we can specify a filter for each one and sum the results to get a 2-D output tensor



- Questions:
 - 1. Why might we want a different filter for each input?
 - 2. Why do we combine them together into a single output channel?



 Channels in hidden layers correspond to different macro-features, which we might want to manipulate differently → one filter per channel

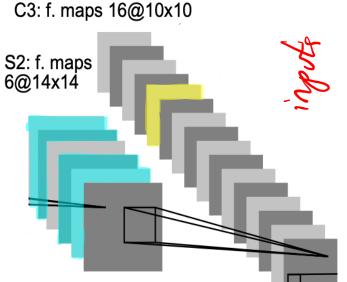
C3: f. maps 16@10x10
S2: f. maps 6@14x14

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				Χ	Χ	Χ			Χ	Χ	Χ	X		Χ	X
1	X	Χ				Χ	Χ	X			X	Χ	\mathbf{X}	X		Χ
2	X	Χ	Χ				X	X	X			Χ	Ξ	X	X	X
3		X	X	X			X	X	X	X			\mathbf{X}		X	X
4			Χ	X	X			X	X	X	X		\mathbf{X}	X		X
5				X	X	X			X	X	X	X		X	X	Χ

TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

- We can combine these macro-features into a new, interesting, "higher-level" feature
 - But we don't always need to combine all of them!
 - Different combinations → multiple output channels
 - Common architecture: more output channels and smaller outputs in deeper layers



	_							•								
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	Χ				Χ	Χ	Χ			Χ	Χ	Χ	X		Χ	Χ
1	X	X				X	X	X			X	X	X	X		Χ
2	X	X	X				X	X	X			X		X	X	Χ
3		X	X	X			X	X	X	X			X		X	Χ
4			X	X	X			X	X	X	X		\mathbf{X}	X		Χ
5				X	X	X			X	X	X	X		X	X	Χ

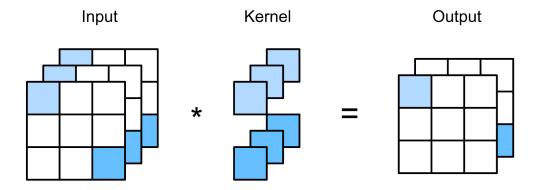
TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

Okay, but what if our layers become too big in the channel dimension?

Downsampling: 1 × 1 Convolutions

- Convolutional layers can be represented as 4-D tensors of size $c_o \times c_i \times h \times w$ where c_o is the number of output channels and c_i is the number of input channels
- Layers of size $c_o \times c_i \times 1 \times 1$ can condense many input channels into fewer output channels (if $c_o < c_i$)



• Practical note: 1×1 convolutions are typically followed by a nonlinear activation function; otherwise, they could simply be folded into other convolutions

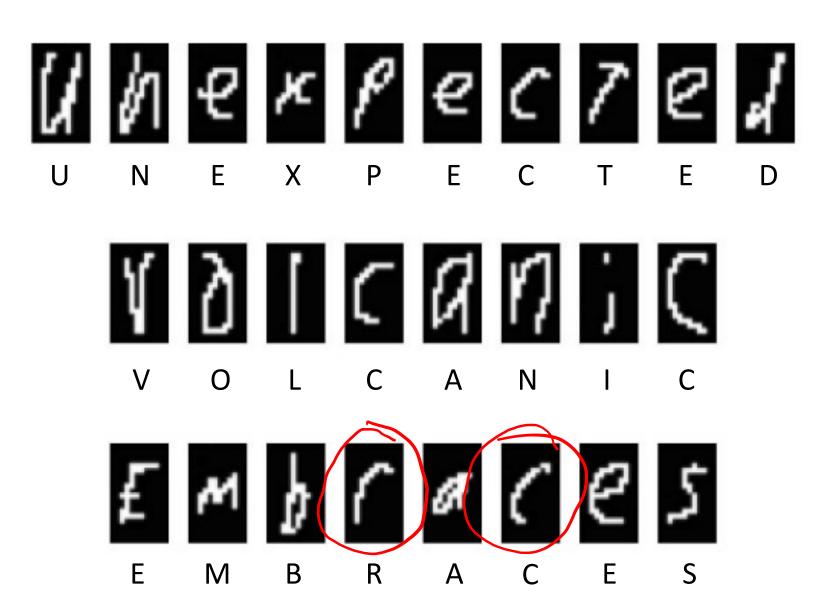
Key Takeaways

- The loss function for neural networks is non-convex!
 - Momentum can help break out of local minima
 - Adaptive gradients help when parameters behave differently w.r.t. step sizes
 - Random restarts can improve the changes of finding better local minima
 - Jitter & dropout act like regularization for neural networks by preventing them fitting the training dataset perfectly
- MLPs and neural networks of sufficient depth are universal approximators

Key Takeaways

- Convolutional neural networks use convolutions to learn macro-features
 - Can be thought of as slight modifications to the fully-connected feed-forward neural network
 - Can still be learned using SGD
 - Padding is used to preserve spatial dimensions while pooling, stride and 1×1 convolutions are used to downsample intermediate representations

Example: Handwriting Recognition



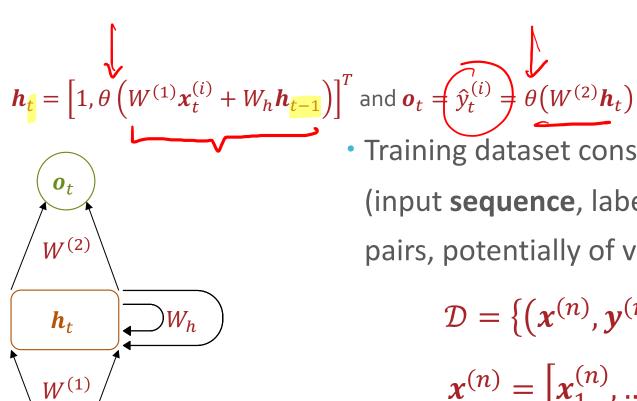
$$\mathbf{y}^{(i)} = \begin{bmatrix} \mathbf{y}_1^{(i)}, \mathbf{y}_2^{(i)}, ..., \mathbf{y}_{T_i}^{(i)} \end{bmatrix}$$
 one to one one to many many to one many to many
$$\mathbf{x}^{(i)} = \begin{bmatrix} \mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)}, ..., \mathbf{x}_{T_i}^{(i)} \end{bmatrix}$$

Sequential Data

Recurrent Neural Networks

- Neural networks are frequently applied to inputs with some inherent temporal or sequential structure (e.g., text or video) of variable length
- Idea: use the information from previous parts of the input to inform subsequent predictions
- Insight: the hidden layers learn a useful representation (relative to the task)
- Approach: incorporate the output from earlier hidden layers into later ones.

Recurrent Neural **Networks**



Training dataset consists of

(input **sequence**, label **sequence**) pairs, potentially of varying lengths

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)} \right) \right\}_{n=1}^{N}$$

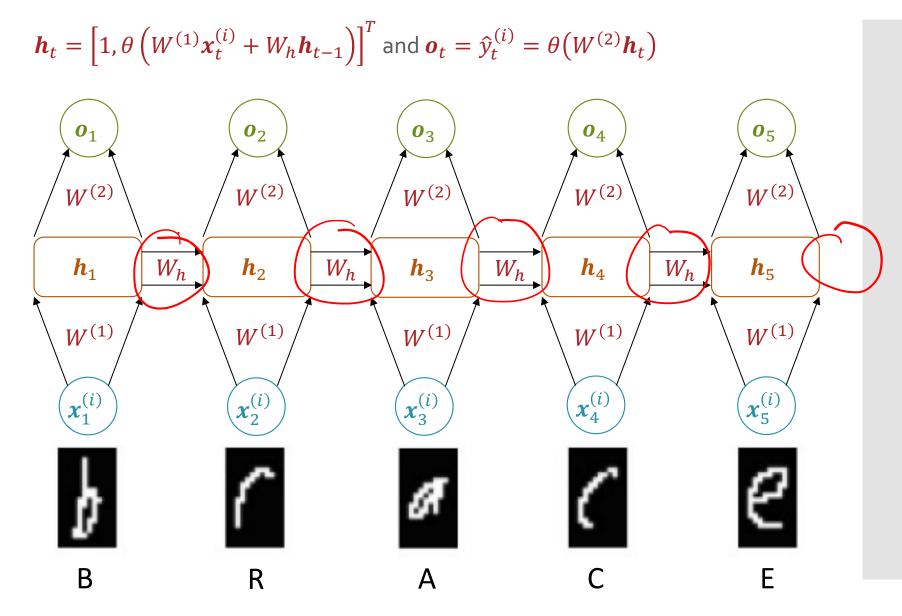
$$\mathbf{x}^{(n)} = \left[\mathbf{x}_{1}^{(n)}, \dots, \mathbf{x}_{T_{n}}^{(n)} \right]$$

$$\mathbf{y}^{(n)} = \left[\mathbf{y}_{1}^{(n)}, \dots, \mathbf{y}_{T_{n}}^{(n)} \right]$$

 This model requires an initial value for the hidden representation, h_0 , typically a vector of all zeros

 $\mathbf{x}_t^{(i)}$

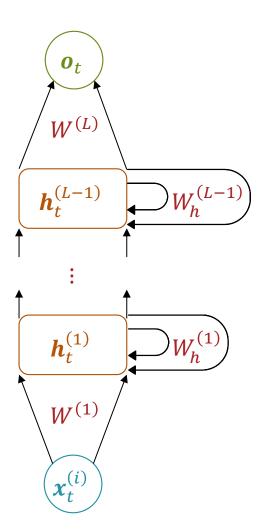
Unrolling Recurrent Neural Networks



$\mathbf{h}_{t}^{(l)} = \left[1, \theta\left(W^{(l)}\mathbf{h}_{t}^{(l-1)} + W_{h}^{(l)}\mathbf{h}_{t-1}^{(l)}\right)\right]^{T}$ and $\mathbf{o}_{t} = \hat{y}_{t}^{(i)} = \theta\left(W^{(L)}\mathbf{h}_{t}^{(L-1)}\right)$ 02 \boldsymbol{o}_1 **0**₃ o_4 **0**₅ Deep $W^{(3)}$ $W^{(3)}$ $W^{(3)}$ $W^{(3)}$ $W^{(3)}$ Recurrent $h_2^{(2)}$ $h_1^{(2)}$ $h_5^{(2)}$ $h_3^{(2)}$ $h_4^{(2)}$ Neural $W^{(2)}$ $W^{(2)}$ $W^{(2)}$ $W^{(2)}$ $W^{(2)}$ **Networks** $h_1^{(1)}$ $h_2^{(1)}$ $h_5^{(1)}$ $h_3^{(1)}$ $h_4^{(1)}$ $W^{(1)}$ $W^{(1)}$ $W^{(1)}$ $W^{(1)}$ $W^{(1)}$ $\mathbf{x}_{5}^{(i)}$ $\mathbf{x}_{2}^{(i)}$ $\mathbf{x}_3^{(i)}$ $\mathbf{x}_{4}^{(i)}$ $\mathbf{x}_1^{(i)}$

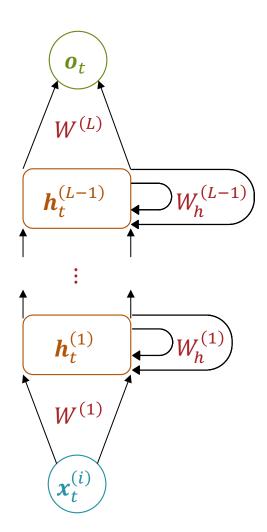
Deep Recurrent Neural Networks

$$\boldsymbol{h}_{t}^{(l)} = \left[1, \theta\left(W^{(l)}\boldsymbol{h}_{t}^{(l-1)} + W_{h}^{(l)}\boldsymbol{h}_{t-1}^{(l)}\right)\right]^{T} \text{ and } \boldsymbol{o}_{t} = \hat{y}_{t}^{(i)} = \theta\left(W^{(L)}\boldsymbol{h}_{t}^{(L-1)}\right)$$



But why do we only pass information forward? What if later time steps have useful information as well?

$$\mathbf{h}_{t}^{(l)} = \left[1, \theta\left(W^{(l)}\mathbf{h}_{t}^{(l-1)} + W_{h}^{(l)}\mathbf{h}_{t-1}^{(l)}\right)\right]^{T} \text{ and } \mathbf{o}_{t} = \hat{y}_{t}^{(i)} = \theta\left(W^{(L)}\mathbf{h}_{t}^{(L-1)}\right)$$



But why do we only pass information forward? What if later time steps have useful information as well?

$$h_{t} = \begin{bmatrix} 1, \theta \left(W^{(1)} x_{t}^{(i)} + W_{h} h_{t-1} \right) \end{bmatrix}^{T} \text{ and } o_{t} = \hat{y}_{t}^{(i)} = \theta \left(W^{(2)} h_{t} \right)$$

$$0_{1} \qquad 0_{2} \qquad 0_{3} \qquad 0_{4} \qquad 0_{5}$$

$$W^{(2)} \qquad W^{(2)} \qquad W^{(2)} \qquad W^{(2)}$$

$$h_{1} \qquad W_{h} \qquad h_{2} \qquad W_{h} \qquad h_{3} \qquad W_{h} \qquad h_{4} \qquad W_{h} \qquad h_{5}$$

$$W^{(1)} \qquad W^{(1)} \qquad W^{(1)} \qquad W^{(1)} \qquad W^{(1)}$$

$$x_{1}^{(i)} \qquad x_{2}^{(i)} \qquad x_{3}^{(i)} \qquad x_{4}^{(i)} \qquad x_{5}^{(i)}$$

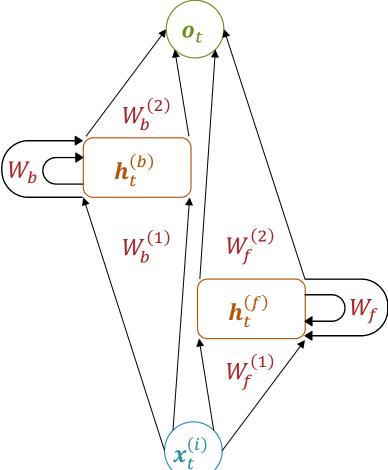
$$B \qquad B \qquad B \qquad A \qquad ???? \qquad E$$

But why do we only pass information forward? What if later time steps have useful information as well?

or V or K ...

Bidirectional Recurrent Neural Networks

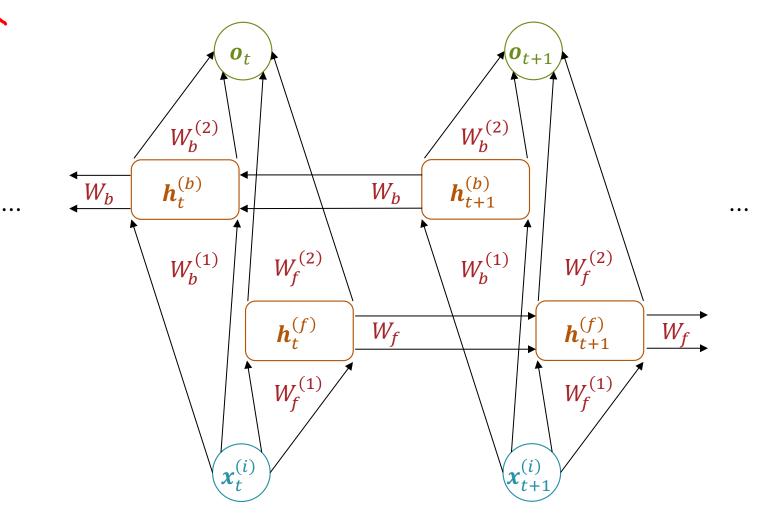
$$\boldsymbol{h}_t^{(f)} = \left[1, \theta\left(W_f^{(1)}\boldsymbol{x}_t^{(i)} + W_f\boldsymbol{h}_{t-1}\right)\right]^T \text{and } \boldsymbol{h}_t^{(b)} = \left[1, \theta\left(W_b^{(1)}\boldsymbol{x}_t^{(i)} + W_b\boldsymbol{h}_{t+1}\right)\right]^T$$



 $o_t = \hat{y}_t^{(i)} = \theta \left(W_f^{(2)} h_t^{(f)} + W_b^{(2)} h_t^{(b)} \right)$

$$o_t = \hat{y}_t^{(i)} = \theta \left(W_f^{(2)} h_t^{(f)} + W_b^{(2)} h_t^{(b)} \right)$$

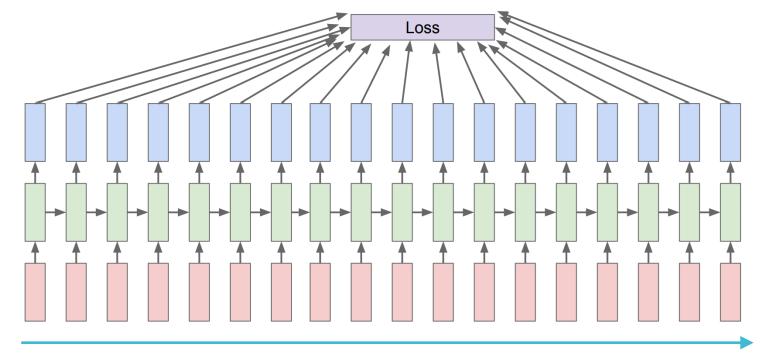
$$\left(\boldsymbol{h}_t^{(f)} = \left[1, \theta \left(W_f^{(1)} \boldsymbol{x}_t^{(i)} + W_f \boldsymbol{h}_{t-1} \right) \right]^T \text{ and } \boldsymbol{h}_t^{(b)} = \left[1, \theta \left(W_b^{(1)} \boldsymbol{x}_t^{(i)} + W_b \boldsymbol{h}_{t+1} \right) \right]^T$$



Training RNNs

- A (deep/bidirectional) RNN simply represents a (somewhat complicated) computation graph
 - Weights are shared between different timesteps, significantly reducing the number of parameters to be learned!
- Can be trained using (stochastic) gradient descent/
 backpropagation → "backpropagation through time"

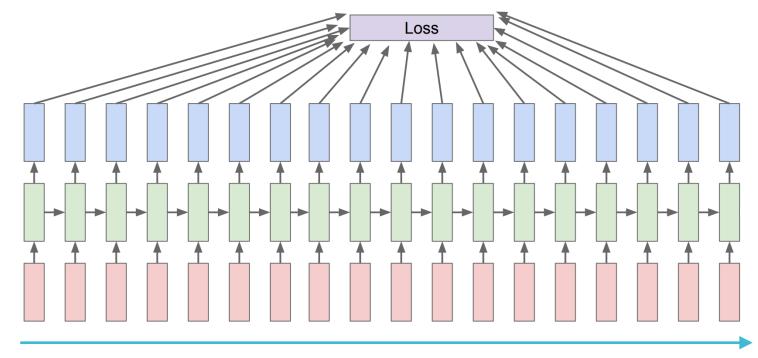
Training RNNs



Forward pass to compute outputs and hidden representations

Backward pass to compute gradients

Training RNNs: Challenges



Forward pass to compute outputs and hidden representations

Backward pass to compute gradients

 Issue: as the sequence length grows, the gradient is more likely to explode or vanish

Recall: Vanishing Gradients

Insight: $s_b^{(l)}$ only affects $\ell^{(i)}$ via $o_b^{(l)}$

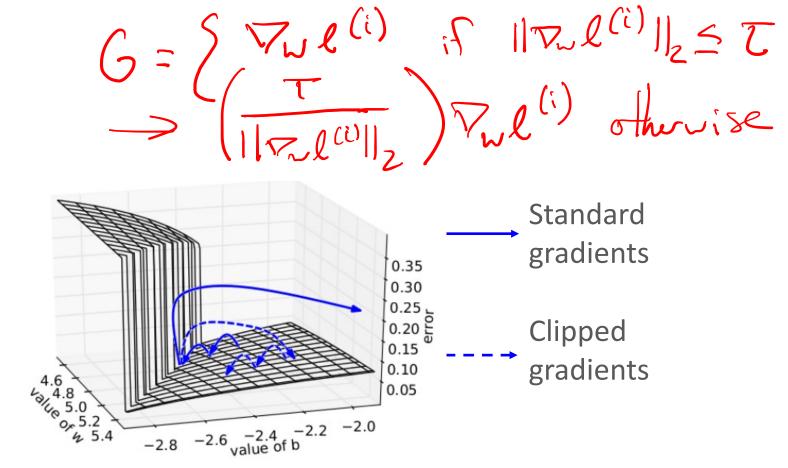
Chain rule:
$$\delta_b^{(l)} = \frac{\partial \ell^{(l)}}{\partial o_b^{(l)}} \left(\frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} \right)$$

$$o_b^{(l)} = \theta \left(s_b^{(l)} \right) \rightarrow \frac{\partial o_b^{(l)}}{\partial s_b^{(l)}} = \frac{\partial \theta \left(s_b^{(l)} \right)}{\partial s_b^{(l)}}$$

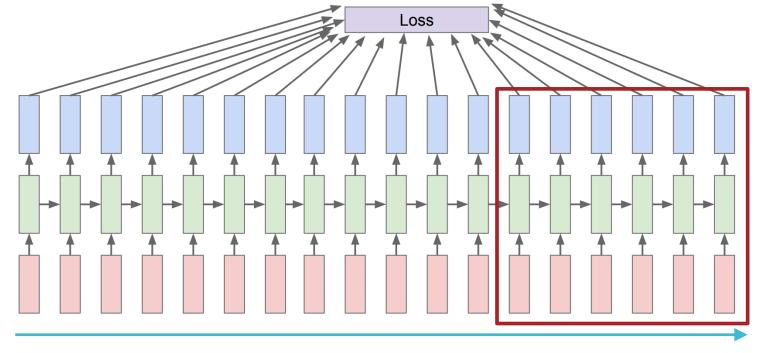
$$= 1 - \left(\tanh \left(s_b^{(l)} \right) \right)^2 \le 1$$
when $\theta(\cdot) = \tanh(\cdot)$

Gradient
Clipping
(Pascanu et al., 2013)

 Common strategy to deal with exploding gradients: if the magnitude of the gradient ever exceeds some threshold, simply scale it down to the threshold



Truncated Backpropagation Through Time



Forward pass to compute outputs and hidden representations

Backward pass through a subsequence

• Idea: limit the number of time steps to backprop through

- LSTM networks address the vanishing gradient problem by replacing hidden layers with memory cells
- Each cell still computes a hidden representation but also maintains a separate internal state, C_t
- The flow of information through a cell is manipulated by three gates:
 - An input gate, I_t , that controls how much the state looks like the normal RNN hidden layer
 - An output gate, O_t , that "releases" the hidden representation to later timesteps
 - A forget gate, F_t , that determines if the previous memory cell's state affects the current internal state

- LSTM networks address the vanishing gradient problem by replacing hidden layers with memory cells
- Each cell still computes a hidden representation but also maintains a separate internal state, Ct
- Gates are implemented as sigmoids: a value of 0 would be a fully closed gate and 1 would be fully open

$$I_{t} = \sigma \left(W_{ix} \boldsymbol{x}_{t}^{(i)} + W_{ih} \boldsymbol{h}_{t-1} \right)$$

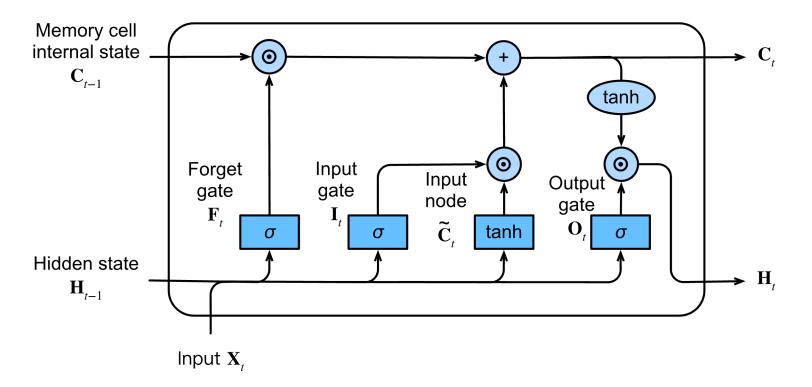
$$O_{t} = \sigma \left(W_{ox} \boldsymbol{x}_{t}^{(i)} + W_{oh} \boldsymbol{h}_{t-1} \right)$$

$$F_{t} = \sigma \left(W_{fx} \boldsymbol{x}_{t}^{(i)} + W_{fh} \boldsymbol{h}_{t-1} \right)$$

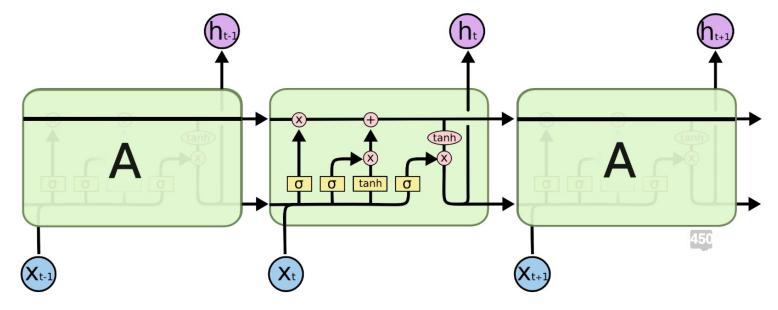
$$C_{t} = F_{t} \odot C_{t-1} + \int_{t} \odot \Theta \left(W_{fx} \boldsymbol{x}_{t}^{(i)} + W_{fh} \boldsymbol{h}_{t-1} \right)$$

$$h \mathcal{A} = C_{t} \odot C_{t}$$
37

- LSTM networks address the vanishing gradient problem by replacing hidden layers with memory cells
- Each cell still computes a hidden representation but also maintains a separate internal state, C_t



- LSTM networks address the vanishing gradient problem by replacing hidden layers with memory cells
- Each cell still computes a hidden representation but also maintains a separate internal state, C_t



 The internal state allows information to move through time without needing to affect the hidden representations!