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10-701: Introduction to 
Machine Learning
Lecture 12 – RNNs



Front Matter

� Announcements

� HW3 released 2/19, due 2/28 (Wednesday) at 11:59 PM

� HW4 released 2/28 (Wednesday), due 3/15 (after break) 
at 11:59 PM

� Project details will be released 3/1 (Friday)

� You must work in groups of 2 or 3 on the project

� Recommended Readings
� Zhang, Lipton, Li & Smola, Chapters 9 & 10
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https://d2l.ai/chapter_recurrent-neural-networks/index.html


Recall: 
Convolutional 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent spatial structure, e.g., images

� Idea: use the first few layers to identify relevant macro-
features, e.g., edges

� Insight: for spatially-structured inputs, many useful 
macro-features are shift or location-invariant, e.g., an 
edge in the upper left corner of a picture looks like an 
edge in the center

� Strategy: learn a filter for macro-feature detection in a 
small window and apply it over the entire image
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LeNet (LeCun et al., 1998)
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• Used sigmoid (or logistic) activation functions between layers and mean-pooling, both 
of which are pretty uncommon in modern architectures 
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• One of the earliest, most famous deep learning models – achieved remarkable 
performance at handwritten digit recognition (< 1% test error rate on MNIST) 
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Wait how did we go from 6 to 16?
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Channels
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• An image can be represented as the sum of red, green and blue pixel intensities
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• Each color corresponds to a channel

4 1 2 16 3 6

1 7 5 8 19 27

5 2 5 12 17 8

0 4 9 9 6 11

5 2 6 14 15 8

26 3 6 8 4 9

0 15 24 6 1 8

7 4 9 5 24 17

4 6 8 9 5 3

16 5 2 8 2 1

5 2 14 11 7 8

15 2 5 0 9 8
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• An image can be represented as a tensor or multidimensional array
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4 1 2 16 3 6

1 7 5 8 19 27

5 2 5 12 17 8

0 4 9 9 6 11

5 2 6 14 15 8

26 3 6 8 4 9

0 15 24 6 1 8

7 4 9 5 24 17

4 6 8 9 5 3

16 5 2 8 2 1

5 2 14 11 7 8

15 2 5 0 9 8

Example: 
3	×	4	×	6 tensor
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� Given multiple input channels, we can specify a filter for 
each one and sum the results to get a 2-D output tensor

�  For & channels and ℎ	×	( filters, we have &ℎ( + & 
learnable parameters (each filter has a bias term)

Convolutions 
on Multiple 
Input Channels
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Convolutions 
on Multiple 
Input Channels

� Given multiple input channels, we can specify a filter for 
each one and sum the results to get a 2-D output tensor

�  Questions:
1. Why might we want a different filter for each input? 

2. Why do we combine them together into a single 
output channel?
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Henry Chai - 2/26/24 Source: http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf 

• Channels in hidden layers correspond to different macro-features, which we might 
want to manipulate differently → one filter per channel
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• We can combine these macro-features into a new, interesting, “higher-level” feature 
• But we don’t always need to combine all of them! 
• Different combinations → multiple output channels
• Common architecture: more output channels and smaller outputs in deeper layers
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Okay, but what if our layers become 
too big in the channel dimension? 
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� Convolutional layers can be represented as 4-D tensors 
of size &!	×	&"	×	ℎ	×	( where &! is the number of 
output channels and &"	is the number of input channels

� Layers of size &!	×	&"	×	1	×	1 can condense many input 
channels into fewer output channels (if &! <	&")

� Practical note: 1	×	1 convolutions are typically followed 
by a nonlinear activation function; otherwise, they could 
simply be folded into other convolutions
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Downsampling: 
1	×	1 
Convolutions

Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 15
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Key Takeaways

� The loss function for neural networks is non-convex!

� Momentum can help break out of local minima

� Adaptive gradients help when parameters behave 
differently w.r.t. step sizes

� Random restarts can improve the changes of finding 
better local minima

� Jitter & dropout act like regularization for neural 
networks by preventing them fitting the training 

dataset perfectly

� MLPs and neural networks of sufficient depth are 
universal approximators
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Key Takeaways

� Convolutional neural networks use convolutions to 
learn macro-features 

� Can be thought of as slight modifications to the 
fully-connected feed-forward neural network

� Can still be learned using SGD

� Padding is used to preserve spatial dimensions 
while pooling, stride and 1	×	1 convolutions are 
used to downsample intermediate representations
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Example: 
Handwriting 
Recognition

Henry Chai - 2/26/24 18

U N E X P E C T E D

C C

C EE

O L A N IV

M B R A S
Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312 
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Sequential Data
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Inputs, - "  

Outputs, . "  

Source: https://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

- " = -#" , -$" , … , -%!
"  

2 " = 2#" , 2$" , … , 2%!
"  

https://karpathy.github.io/2015/05/21/rnn-effectiveness/


Recurrent 
Neural 
Networks

� Neural networks are frequently applied to inputs with 
some inherent temporal or sequential structure  
(e.g., text or video) of variable length

� Idea: use the information from previous parts of the 
input to inform subsequent predictions

� Insight: the hidden layers learn a useful representation 
(relative to the task)

� Approach: incorporate the output from earlier hidden 
layers into later ones. 
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Recurrent 
Neural 
Networks
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� Training dataset consists of 
(input sequence, label sequence) 
pairs, potentially of varying lengths

3 = - 1 , 2 1
12#
3

- 1 = -#1 , … , -%"
1

2 1 = 2#1 , … , 2%"
1

� This model requires an initial value 
for the hidden representation, 44, 
typically a vector of all zeros



Unrolling
Recurrent 
Neural 
Networks
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Deep
Recurrent 
Neural 
Networks
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Deep
Recurrent 
Neural 
Networks
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But why do we 
only pass 
information 
forward? 
What if later 
time steps 
have useful 
information as 
well? 
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But why do we 
only pass 
information 
forward? 
What if later 
time steps 
have useful 
information as 
well? 
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But why do we 
only pass 
information 
forward? 
What if later 
time steps 
have useful 
information as 
well? 
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I or N or S 
or V or K …

EB R A
Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312 
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Bidirectional
Recurrent 
Neural 
Networks
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Unrolling
Bidirectional
Recurrent 
Neural 
Networks
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Training RNNs
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� A (deep/bidirectional) RNN simply represents a 
(somewhat complicated) computation graph 

� Weights are shared between different timesteps, 
significantly reducing the number of parameters to 
be learned!

� Can be trained using (stochastic) gradient descent/ 
backpropagation → “backpropagation through time”



Training RNNs

Henry Chai - 2/26/24 31Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf  

Backward pass to compute gradients

Forward pass to compute outputs and hidden representations

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf


Training RNNs:
Challenges

Henry Chai - 2/26/24 32Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf  

Backward pass to compute gradients

� Issue: as the sequence length grows, the gradient is 
more likely to explode or vanish 

Forward pass to compute outputs and hidden representations

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
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Recall: 
Vanishing 
Gradients

578 =
6ℓ "

6878
6878

6978
Chain rule:

878 = : 978 	→ 6878

6978
=
6: 978

6978

= 1 − tanh 978
$
≤ 1

when : ⋅ = tanh ⋅

Insight: 978 only affects ℓ "  via 878  



Gradient 
Clipping 
(Pascanu et al., 
2013)

� Common strategy to deal with exploding gradients: 
if the magnitude of the gradient ever exceeds some 
threshold, simply scale it down to the threshold

B =
∇9ℓ " 	 if	 ∇9ℓ "

$ ≤ F
F

∇9ℓ "
$
∇9ℓ " 	 otherwise	

Henry Chai - 2/26/24 34Source: https://arxiv.org/pdf/1211.5063.pdf 

Standard 
gradients

Clipped 
gradients

https://arxiv.org/pdf/1211.5063.pdf


Truncated 
Backpropagation 
Through Time

Henry Chai - 2/26/24 35Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf  

Forward pass to compute outputs and hidden representations

Backward pass through 
a subsequence

� Idea: limit the number of time steps to backprop through

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf


Long 
Short-Term 
Memory  
(Hochreiter & 
Schmidhuber, 
1997)  

� LSTM networks address the vanishing gradient problem 
by replacing hidden layers with memory cells 

� Each cell still computes a hidden representation but 
also maintains a separate internal state, L:

� The flow of information through a cell is manipulated by 
three gates:

� An input gate, M:, that controls how much the state 
looks like the normal RNN hidden layer

� An output gate, N:, that “releases” the hidden 
representation to later timesteps

� A forget gate, O:, that determines if the previous 
memory cell’s state affects the current internal state
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Long 
Short-Term 
Memory  
(Hochreiter & 
Schmidhuber, 
1997)  

� LSTM networks address the vanishing gradient problem 
by replacing hidden layers with memory cells 

� Each cell still computes a hidden representation but 
also maintains a separate internal state, L:

� Gates are implemented as sigmoids: a value of 0 would 
be a fully closed gate and 1 would be fully open

� An input gate, M:, that controls how much the state 
looks like the normal RNN hidden layer

� An output gate, N:, that “releases” the hidden 
representation to later timesteps

� A forget gate, O:, that determines if the previous 
memory cell’s state affects the current internal state
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Type	equation	here.

M: = P Q"J-:" +Q"K4:L#
N: = P Q!J-:" +Q!K4:L#
O: = P QMJ-:" +QMK4:L#

L: = O:⊙L:L# + M:⊙: Q # -:" +QK4:L#
4: = L:⊙N:



Long 
Short-Term 
Memory  
(Hochreiter & 
Schmidhuber, 
1997)  

� LSTM networks address the vanishing gradient problem 
by replacing hidden layers with memory cells 

� Each cell still computes a hidden representation but 
also maintains a separate internal state, L:

� The flow of information through a cell is manipulated by 
three gates:

� An input gate, M:, that controls how much the state 
looks like the normal RNN hidden layer

� An output gate, N:, that “releases” the hidden 
representation to later timesteps

� A forget gate, O:, that determines if the previous 
memory cell’s state affects the current internal state
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� LSTM networks address the vanishing gradient problem 
by replacing hidden layers with memory cells 

� Each cell still computes a hidden representation but 
also maintains a separate internal state, L:

� The flow of information through a cell is manipulated by 
three gates:

� An input gate, M:, that controls how much the state 
looks like the normal RNN hidden layer

� An output gate, N:, that “releases” the hidden 

� The internal state allows information to move through time 
without needing to affect the hidden representations!

Long 
Short-Term 
Memory  
(Hochreiter & 
Schmidhuber, 
1997)  
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