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* Announcements

* HW3 released 2/19, due 2/28 (Wednesday) at 11:59 PM

* HW4 released 2/28 (Wednesday), due 3/15 (after break)
at 11:59 PM

Front Matter

* Project details will be released 3/1 (Friday)

* You must work in groups of 2 or 3 on the project

- Recommended Readings

- Zhang, Lipton, Li & Smola, Chapters S & 10
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https://d2l.ai/chapter_recurrent-neural-networks/index.html

Recall:
Convolutional

Neural
Networks
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* Neural networks are frequently applied to inputs with
some inherent spatial structure, e.g., images

* Idea: use the first few layers to identify relevant macro-

features, e.g., edges

* Insight: for spatially-structured inputs, many useful
macro-features are shift or location-invariant, e.g., an
edge in the upper left corner of a picture looks like an
edge in the center

- Strategy: learn a filter for macro-feature detection in a
small window and apply it over the entire image
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LeNet (LeCun et al., 1998)
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One of the earliest, most famous deep learning models — achieved remarkable

performance at handwritten digit recognition (< 1% test error rate on MINIST)

Used sigmoid (or logistic) activation functions between layers and mean-pooling, both

of which are pretty uncommon in modern architectures

Henry Chai - 2/26/24 Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf
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Wait how did we go from 6 to 167
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* Animage can be represented as the sum of red, green and blue pixel intensities

e Each color corresponds to a channel
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* Animage can be represented as a tensor or multidimensional array
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* Given multiple input channels, we can specify a filter for

each one and sum the results to get a 2-D output tensor

Input Kernel Input Kernel Output
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* For ¢ channels and h X w filters, we have chw + ¢

learnable parameters (each filter has a bias term)
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Henry Chai - 2/26/24 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 10
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* Given multiple input channels, we can specify a filter for

each one and sum the results to get a 2-D output tensor

L 112
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* Questions:

1. Why might we want a different filter for each input?

2. Why do we combine them together into a single

output channel?

Henry Chai - 2/26/24 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html 11
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Channels in hidden layers correspond to different macro-features, which we might

want to manipulate differently — one filter per channel

Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf
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C3: f. maps 16@10x10 T X% B B
1 (X X X X X X X X X X

S2: f. maps 2 X X X X X X X X X X
6@14x14 3 X X X X X X X X XX
4 X X X X X X X X X X

5 X X X X X X X X X X

TABLE I

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

* We can combine these macro-features into a new, interesting, “higher-level” feature
* But we don’t always need to combine all of them!

 Different combinations — multiple output channels

 Common architecture: more output channels and smaller outputs in deeper layers

Henry Chai - 2/26/24 Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf
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C3: f. maps 16@10x10 T X% B B
1[X X X X X X X X X X

S2: f. maps § 2 X X X X X X X X X X
6@14x14 & 3 X X X X X X X X X X
-S 4 X X X X X X X X X X

5 X X X X X X X X X X

TABLE 1

EACH COLUMN INDICATES WHICH FEATURE MAP IN S2 ARE COMBINED
BY THE UNITS IN A PARTICULAR FEATURE MAP OF C3.

Okay, but what if our layers become

too big in the channel dimension?

Henry Chai - 2/26/24 Source: http://vision.stanford.edu/cs5q8 springoz/papers/Lecung8.pdf
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- Convolutional layers can be represented as 4-D tensors
of size ¢, X ¢; X h X w where ¢, is the number of

output channels and ¢; is the number of input channels

* Layers of size ¢, X ¢; X 1 X 1 can condense many input

Downsampling; channels into fewer output channels (if ¢, < ¢;)

1 X 1 Input Kernel Output

Convolutions

* Practical note: 1 X 1 convolutions are typically followed

by a nonlinear activation function; otherwise, they could

simply be folded into other convolutions

Henry Chai - 2/26/24 Source: http://preview.d2l.ai/d2l-en/master/chapter_convolutional-neural-networks/channels.html
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* The loss function for neural networks is non-convex!

* Momentum can help break out of local minima

- Adaptive gradients help when parameters behave

differently w.r.t. step sizes

- Random restarts can improve the changes of finding
Key Ta keaways better local minima

- Jitter & dropout act like regularization for neural
networks by preventing them fitting the training

dataset perfectly

* MLPs and neural networks of sufficient depth are

universal approximators

Henry Chai - 2/26/24 16



* Convolutional neural networks use convolutions to
learn macro-features

* Can be thought of as slight modifications to the

fully-connected feed-forward neural network

\CAELCEENR

* Can still be learned using SGD

* Padding is used to preserve spatial dimensions
while pooling, stride and 1 X 1 convolutions are

used to downsample intermediate representations

Henry Chai - 2/26/24 17



Source:


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312

one to one one to many many to one

Outputs, y(i)

Inputs, x(®)

Sequential Data

Henry Chai - 2/26/24 Source: https://karpathy.github.io/2015/05/21/rnn-effectiveness
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many to many
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many to many
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* Neural networks are frequently applied to inputs with
some inherent temporal or sequential structure

(e.g., text or video) of variable length

Recurrent * ldea: use the information from previous parts of the
Neural input to inform subsequent predictions

Networks  Insight: the hidden layers learn a useful representation

(relative to the task)

* Approach: incorporate the output from earlier hidden

layers into later ones.

Henry Chai - 2/26/24 20
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* This model requires an initial value

for the hidden representation, h,

typically a vector of all zeros
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Unrolling
Recurrent
Neural

Networks

Henry Chai - 2/26/24

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312

22


https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312

Deep
Recurrent

Neural
Networks
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Deep
Recurrent

Neural
Networks
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O = [1,0 (WORE + wORD,)| and o, = 3 = 6 (WORE)

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312
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Bidirectional
Recurrent

Neural
Networks
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Unrolling
Bidirectional
Recurrent

Neural
Networks
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Training RNNs

Henry Chai - 2/26/24

- A (deep/bidirectional) RNN simply represents a

(somewhat complicated) computation graph

- Weights are shared between different timesteps,
significantly reducing the number of parameters to

be learned!

* Can be trained using (stochastic) gradient descent/

backpropagation — “backpropagation through time”

30
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>

Forward pass to compute outputs and hidden representations
<

Backward pass to compute gradients

Henry Chai - 2/26/24 Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
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TrainingRNNs: R T T T T N O N I 2

Challenges ettt

Forward pass to compute outputs and hidden representations
<

Backward pass to compute gradients

* Issue: as the sequence length grows, the gradient is

more likely to explode or vanish

Henry Chai - 2/26/24 Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
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Recall:

Vanishing
Gradients
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Gradient
Clipping

(Pascanu et al.,
2013)
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2
4 5.4 28 -2.6

Source: https://arxiv.org/pdf/1211.5063.pdf
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- Common strategy to deal with exploding gradients:
if the magnitude of the gradient ever exceeds some

threshold, simply scale it down to the threshold
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Standard
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gradients
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<
Backward pass through

a subsequence

* Idea: limit the number of time steps to backprop through

Henry Chai - 2/26/24 Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf
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Long
Short-Term
Memory

(Hochreiter &
Schmidhuber,
1997)

Henry Chai - 2/26/24

* LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

* Each cell still computes a hidden representation but

also maintains a separate internal state, C;

* The flow of information through a cell is manipulated by

three gates:

 An input gate, I, that controls how much the state

looks like the normal RNN hidden layer

- An output gate, O, that “releases” the hidden

representation to later timesteps

- A forget gate, F;, that determines if the previous

memory cell’s state affects the current internal state

36



Long
Short-Term
Memory

(Hochreiter &
Schmidhuber,
1997)
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* LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

* Each cell still computes a hidden representation but

also maintains a separate internal state, C;

* Gates are implemented as sigmoids: a value of 0 would

be a fully closed gate and 1 would be fully open
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Long
Short-Term
Memory

(Hochreiter &
Schmidhuber,
1997)
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* LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

* Each cell still computes a hidden representation but

also maintains a separate internal state, C;

Memory cell 4
internal state

C

t—1

Hidden state

e UL /

Source: https://d2l.ai/chapter _recurrent-modern/Istm.html
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* LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

* Each cell still computes a hidden representation but

Long also maintains a separate internal state, C;
Short-Term

Memory .

Hochreiter & "
(Hoch A A
Schmidhuber, "

1997)

* The internal state allows information to move through time

without needing to affect the hidden representations!

Henry Chai - 2/26/24 Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 39
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