10-701: Introduction to Machine Learning Lecture 13 – Attention & Transformers

Henry Chai

2/28/24

Front Matter

- Announcements
 - HW3 released 2/19, due 2/28 (today!) at 11:59 PM
 - HW4 released 2/28 (today!), due 3/15 (after break) at 11:59 PM
 - Project details will be released 3/1 (Friday)
 - You must work in groups of 2 or 3 on the project
- Recommended Readings
 - Zhang, Lipton, Li & Smola, <u>Chapters 9 & 10</u>

Henry Chai - 2/28/24

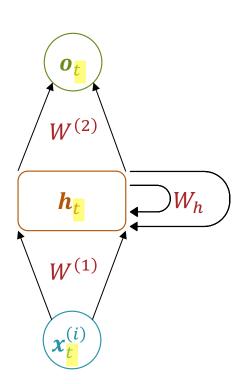
Recurrent Neural Networks

- Neural networks are frequently applied to inputs with some inherent temporal or sequential structure (e.g., text or video) of variable length
- Idea: use the information from previous parts of the input to inform subsequent predictions
- Insight: the hidden layers learn a useful representation (relative to the task)
- Approach: incorporate the output from earlier hidden layers into later ones.

Henry Chai - 2/28/24

Recurrent Neural Networks

$$\boldsymbol{h}_t = \left[1, \theta\left(W^{(1)}\boldsymbol{x}_t^{(i)} + W_h \boldsymbol{h}_{t-1}\right)\right]^T$$
 and $\boldsymbol{o}_t = \hat{y}_t^{(i)} = \theta\left(W^{(2)}\boldsymbol{h}_t\right)$



 Training dataset consists of (input sequence, label sequence)
 pairs, potentially of varying lengths

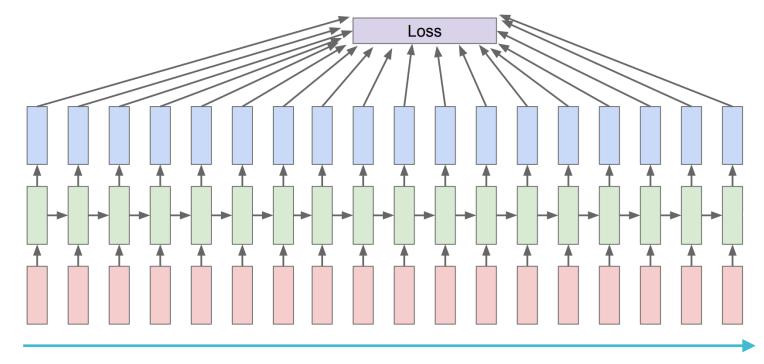
$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(n)}, \mathbf{y}^{(n)} \right) \right\}_{n=1}^{N}$$

$$\mathbf{x}^{(n)} = \left[\mathbf{x}_{1}^{(n)}, \dots, \mathbf{x}_{T_{n}}^{(n)} \right]$$

$$\mathbf{y}^{(n)} = \left[\mathbf{y}_{1}^{(n)}, \dots, \mathbf{y}_{T_{n}}^{(n)} \right]$$

• This model requires an initial value for the hidden representation, $m{h}_0$, typically a vector of all zeros

Training RNNs: Challenges



Forward pass to compute outputs and hidden representations

Backward pass to compute gradients

 Issue: as the sequence length grows, the gradient is more likely to explode or vanish

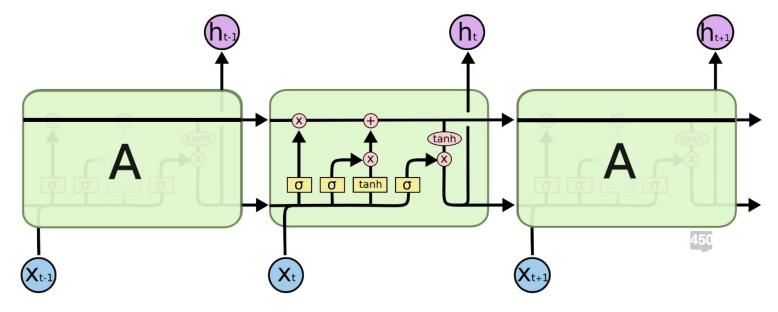
Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

- LSTM networks address the vanishing gradient problem by replacing hidden layers with memory cells
- Each cell still computes a hidden representation but also maintains a separate internal state, C_t
- The flow of information through a cell is manipulated by three gates:
 - An input gate, I_t , that controls how much the state looks like the normal RNN hidden layer
 - An output gate, O_t , that "releases" the hidden representation to later timesteps
 - A forget gate, F_t , that determines if the previous memory cell's state affects the current internal state

Henry Chai - 2/28/24

Long Short-Term Memory (Hochreiter & Schmidhuber, 1997)

- LSTM networks address the vanishing gradient problem by replacing hidden layers with memory cells
- Each cell still computes a hidden representation but also maintains a separate internal state, C_t



• The internal state allows information to move through time without needing to affect the hidden representations!

Applications of LSTMs

2018: OpenAl used LSTM trained by policy gradients to beat humans in the complex video game of Dota 2,^[11] and to control a human-like robot hand that manipulates physical objects with unprecedented dexterity.^{[10][54]}

2019: DeepMind used LSTM trained by policy gradients to excel at the complex video game of Starcraft II.^{[12][54]}

Key Takeaways

- Recurrent neural networks use contextual information to reason about sequential data
 - Can still be learned using backpropagation → backpropagation through time
 - Susceptible to exploding/vanishing gradients for long training sequences
 - LSTMs allow contextual information to reach later timesteps without directly affecting intermediate hidden representations

Henry Chai - 2/28/24

Language Models

1. Convert raw text into embeddings

$$\mathbf{x}^{(i)} = \left[\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)}\right]$$

Learn or approximate a joint probability distribution over sequences

$$P(\mathbf{x}^{(i)}) = P(\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)})$$

3. Sample from the implied conditional distribution to generate new sequences

$$P\left(\mathbf{x}_{T_{i}+1} \mid \mathbf{x}_{1}^{(i)}, \dots, \mathbf{x}_{T_{i}}^{(i)}\right) = \frac{P\left(\mathbf{x}_{1}^{(i)}, \dots, \mathbf{x}_{T_{i}}^{(i)}, \mathbf{x}_{T_{i}+1}\right)}{P\left(\mathbf{x}_{1}^{(i)}, \dots, \mathbf{x}_{T_{i}}^{(i)}\right)}$$

Language Models

1. Convert raw text into *embeddings*

$$\mathbf{x}^{(i)} = \left[\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)}\right]$$

Learn or approximate a joint probability distribution over sequences

$$P(\mathbf{x}^{(i)}) = P(\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)})$$

 Use the chain rule of probability: predict the next word based on the previous words in the sequence

$$P(\mathbf{x}^{(i)}) = P\left(\mathbf{x}_{1}^{(i)}\right)$$

$$* P\left(\mathbf{x}_{2}^{(i)} \mid \mathbf{x}_{1}^{(i)}\right)$$

$$\vdots$$

$$* P\left(\mathbf{x}_{T_{i}}^{(i)} \mid \mathbf{x}_{T_{i}-1}^{(i)}, \dots, \mathbf{x}_{1}^{(i)}\right)$$

Language Models

1. Convert raw text into *embeddings*

$$\mathbf{x}^{(i)} = \left[\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)}\right]$$

Learn or approximate a joint probability distribution over sequences

$$P(\mathbf{x}^{(i)}) = P(\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)})$$

Use the chain rule of probability Just throw an RNN at it!

$$P(\mathbf{x}^{(i)}) = P\left(\mathbf{x}_{1}^{(i)}\right)$$

$$* P\left(\mathbf{x}_{2}^{(i)} \mid \mathbf{x}_{1}^{(i)}\right)$$

$$\vdots$$

$$* P\left(\mathbf{x}_{T_{i}}^{(i)} \mid \mathbf{x}_{T_{i}-1}^{(i)}, \dots, \mathbf{x}_{1}^{(i)}\right)$$

RNN Language Models

1. Convert raw text into embeddings

$$\mathbf{x}^{(i)} = \left[\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)}\right]$$

Learn or approximate a joint probability distribution over sequences

$$P(\mathbf{x}^{(i)}) = P(\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_{T_i}^{(i)})$$

Use the chain rule of probability Just throw an RNN at it!

$$P(\mathbf{x}^{(i)}) \approx \mathbf{o}_{1} \left(\mathbf{x}_{1}^{(i)}\right)$$

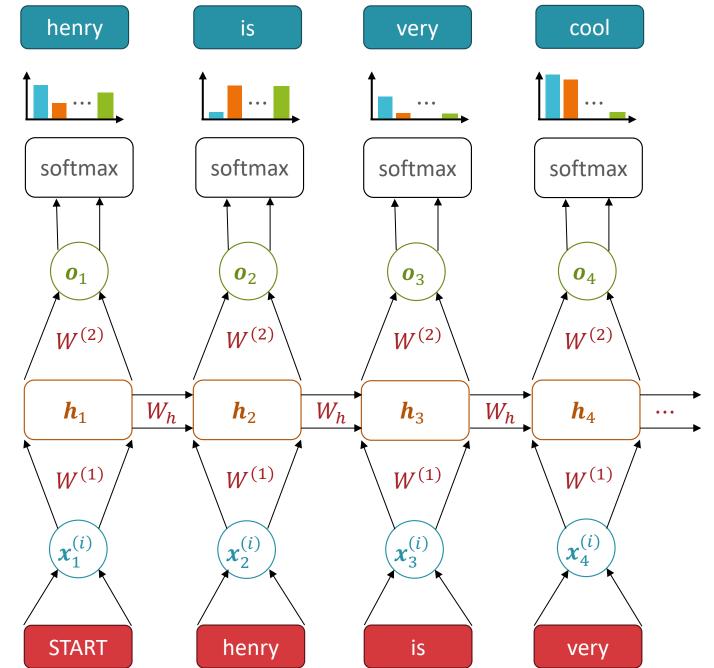
$$* \mathbf{o}_{2} \left(\mathbf{x}_{2}^{(i)}, \mathbf{h}_{1} \left(\mathbf{x}_{1}^{(i)}\right)\right)$$

$$\vdots$$

$$* \mathbf{o}_{T_{i}} \left(\mathbf{x}_{T_{i}}^{(i)}, \mathbf{h}_{T_{i}-1} \left(\mathbf{x}_{T_{i}-1}^{(i)}, \dots, \mathbf{x}_{1}^{(i)}\right)\right)$$

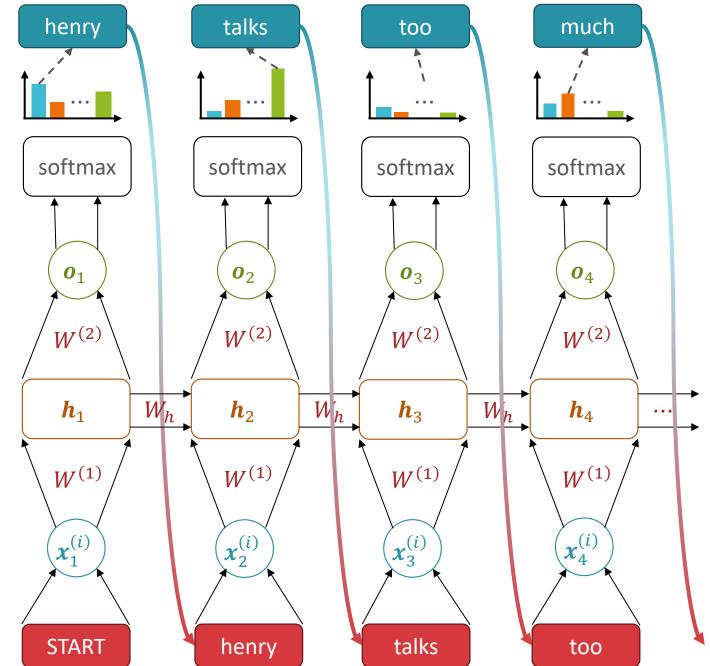
Target sequence (try to predict the next word)

RNN Language Models: Training



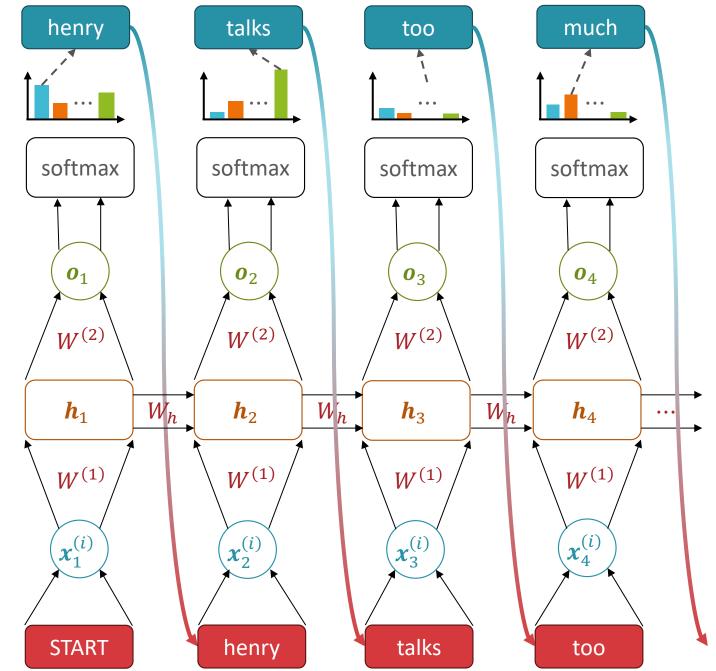
Generated sequence (use each token as the input to the next timestep)

RNN
Language
Models:
Sampling



Generated sequence (use each token as the input to the next timestep)

Aside: Sampling from these distributions to get the next word is not always the best thing to do



Input sequence

RNN Language Models: Pros & Cons

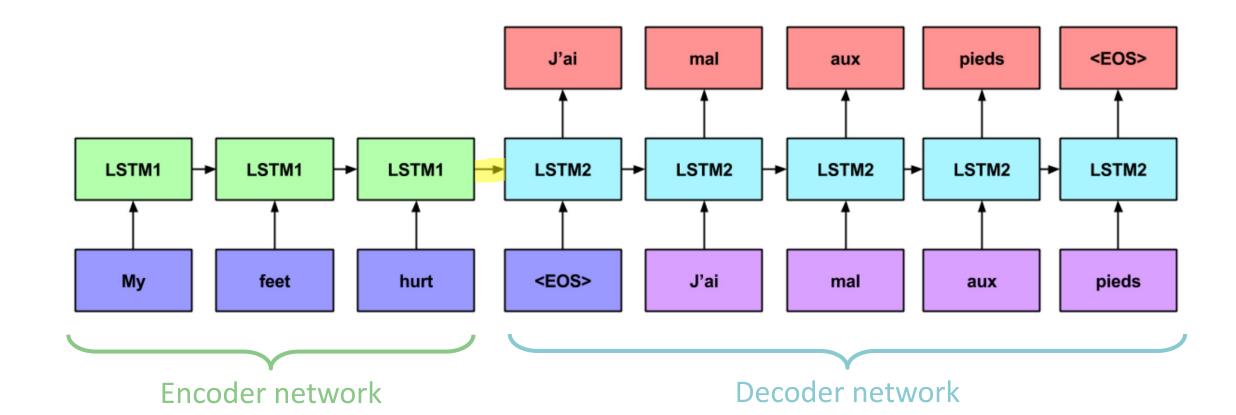
Pros:

- Can handle arbitrary sequence lengths without having to increase model size (i.e., # of learnable parameters)
- Trainable via backpropagation
- Cons
 - Vanishing/exploding gradients
 - Can be addressed by LSTMs
 - Does not consider information from later timesteps
 - Can be addressed by bidirectional RNNs
 - Computation is inherently sequential
 - "You can't cram the meaning of a whole %&!\$#
 sentence into a single \$&!#* vector!" Ray Mooney,
 UT Austin

RNN Language Models: Pros & Cons

Pros:

- Can handle arbitrary sequence lengths without having to increase model size (i.e., # of learnable parameters)
- Trainable via backpropagation
- Cons
 - Vanishing/exploding gradients
 - Can be addressed by LSTMs
 - Does not consider information from later timesteps
 - Can be addressed by bidirectional RNNs
 - Computation is inherently sequential
 - The entire sequence up to some timestep is represented using just one vector (or two vectors in an LSTM)



Encoder-Decoder Architectures (Sutskever et al., 2014)

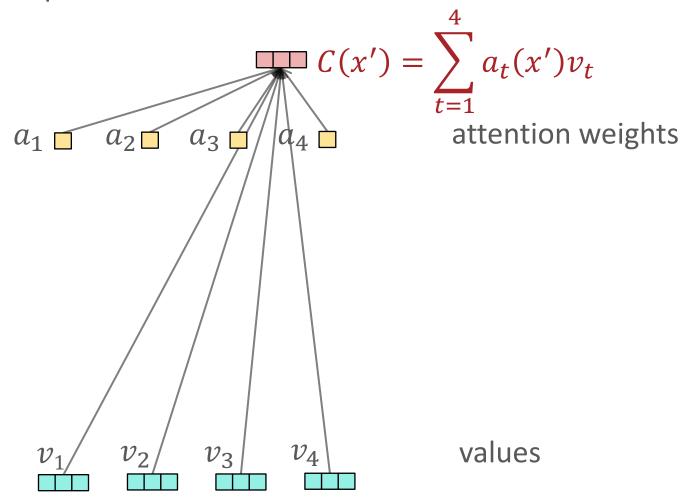
• Approach: compute a representation of the input sequence for each token x^\prime in the decoder

• Idea: allow the decoder to learn which tokens in the input to "pay attention to" i.e., put more weight on

Attention

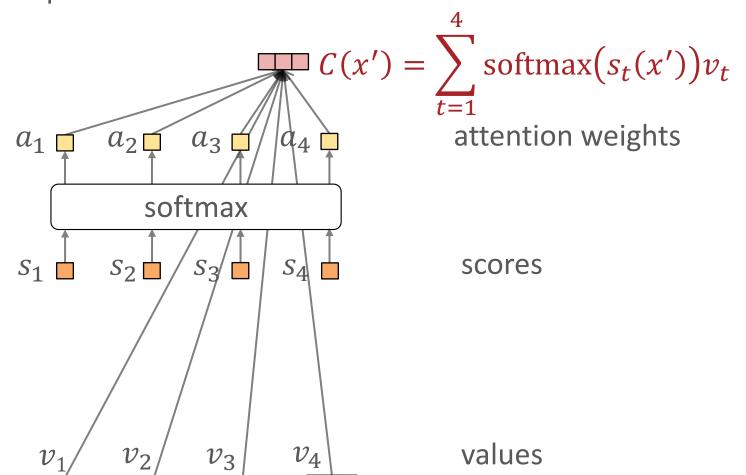
Henry Chai - 2/28/24 20

• Approach: compute a representation of the input sequence for each token x' in the decoder



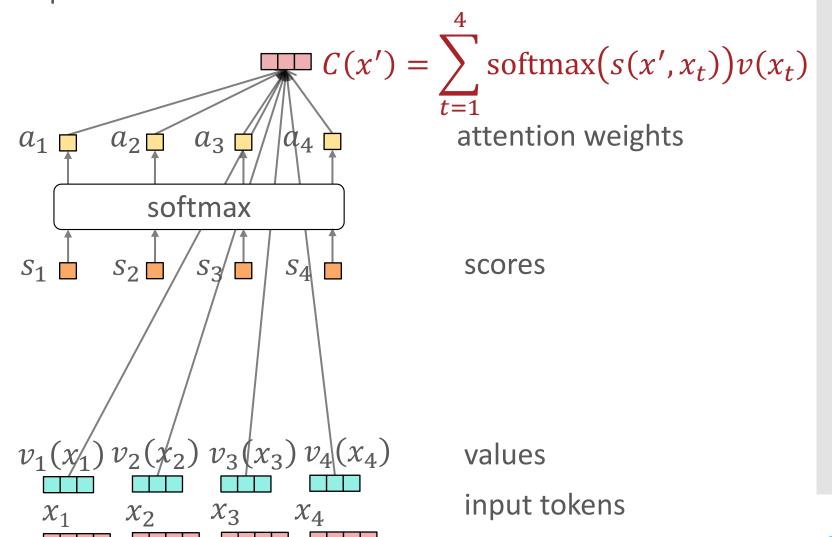
Henry Chai - 2/28/24 21

• Approach: compute a representation of the input sequence for each token x' in the decoder



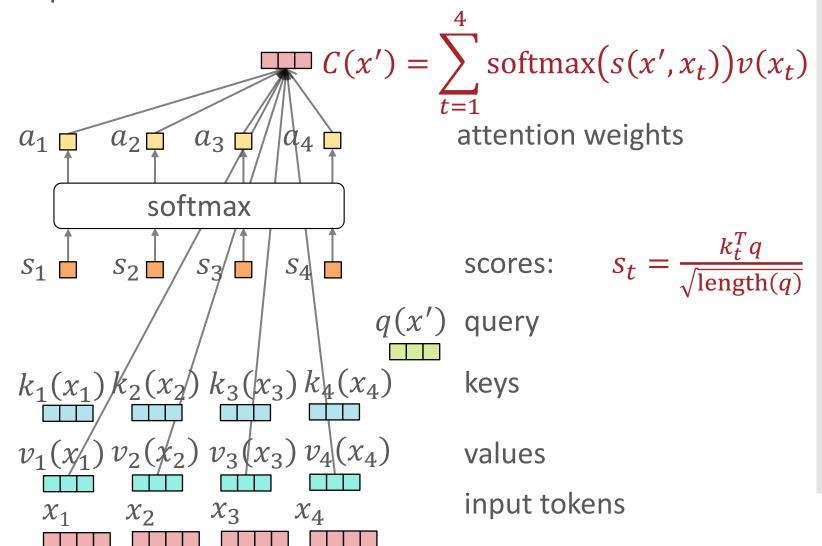
Henry Chai - 2/28/24

• Approach: compute a representation of the input sequence for each token x' in the decoder



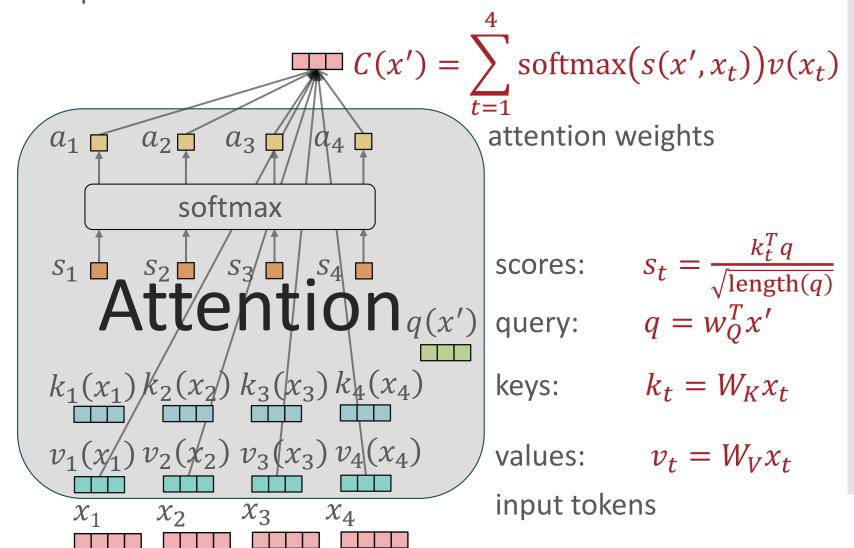
Scaled Dot-product Attention

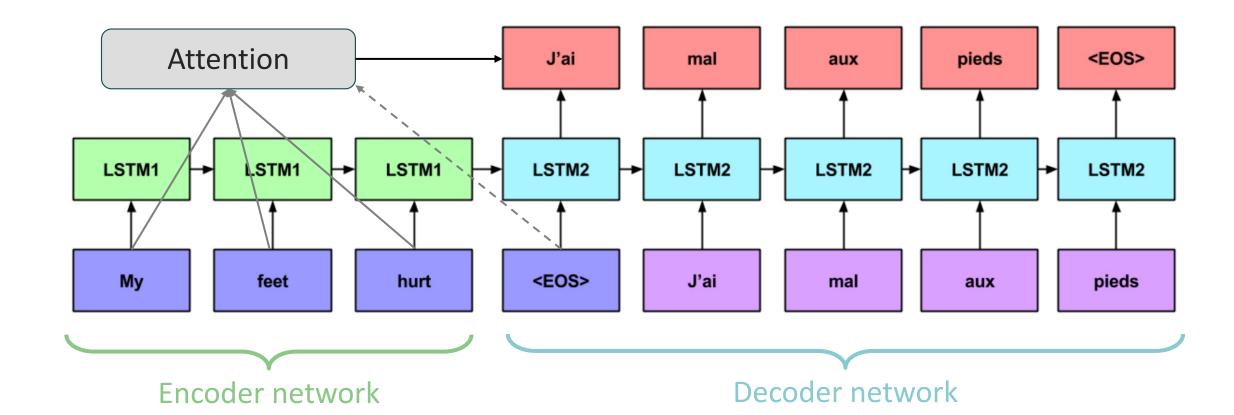
• Approach: compute a representation of the input sequence for each token x' in the decoder



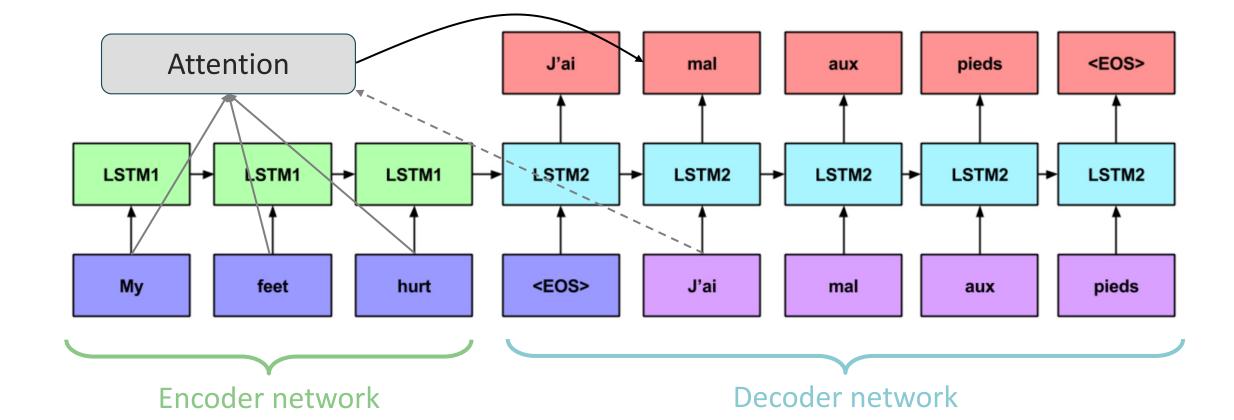
Scaled Dot-product Attention

• Approach: compute a representation of the input sequence for each token x' in the decoder

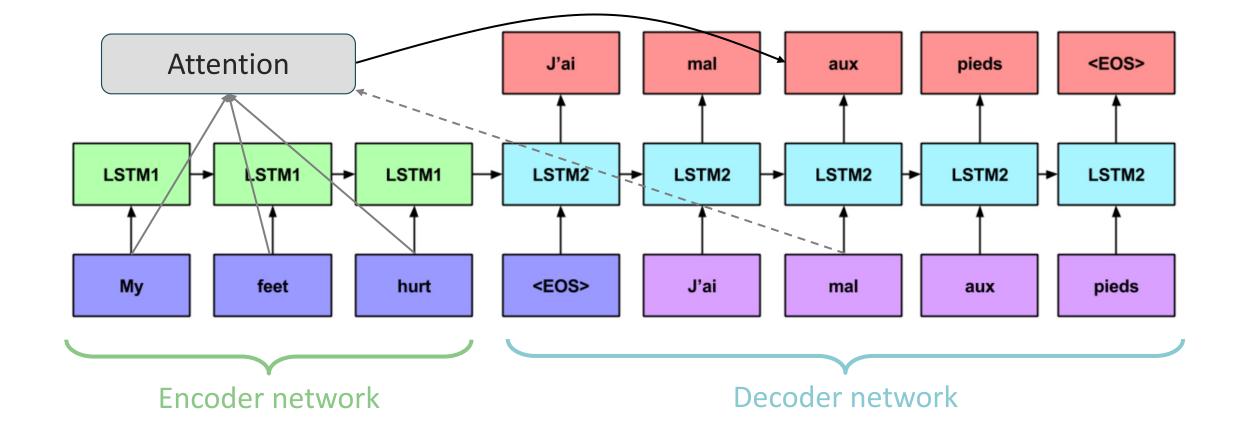




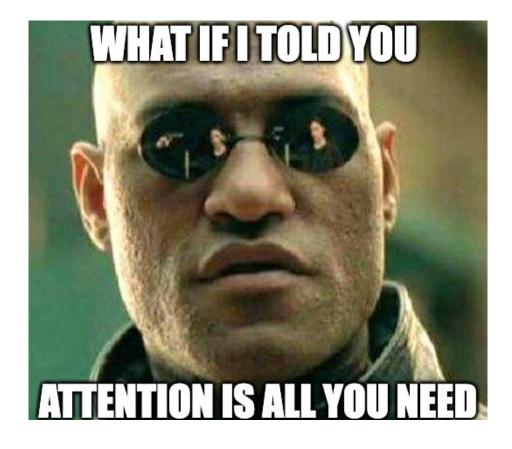
Encoder-Decoder Architectures with Attention



Encoder-Decoder Architectures with Attention



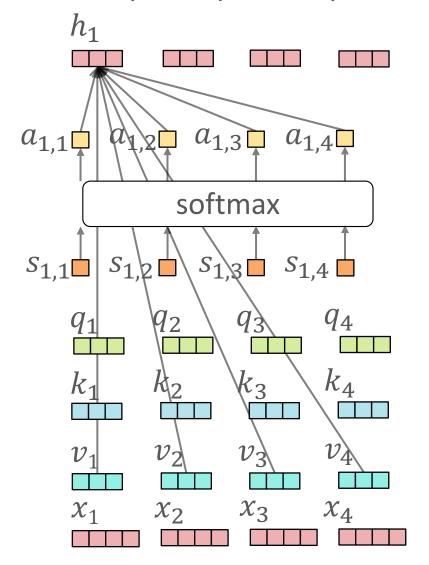
Encoder-Decoder Architectures with Attention



Encoder-Decoder Architectures with Attention (Vaswani et al., 2017)

Scaled Dot-product Self-attention

 Approach: compute a representation for each token in the *input sequence* by attending to all the input tokens



$$h_1 = \sum_{j=1}^{4} \operatorname{softmax}(s_{1,j}) v_j$$

attention weights

scores:
$$s_{1,j} = \frac{k_j^T q_1}{\sqrt{\text{length}(k_j)}}$$

queries: $q_t = W_Q x_t$

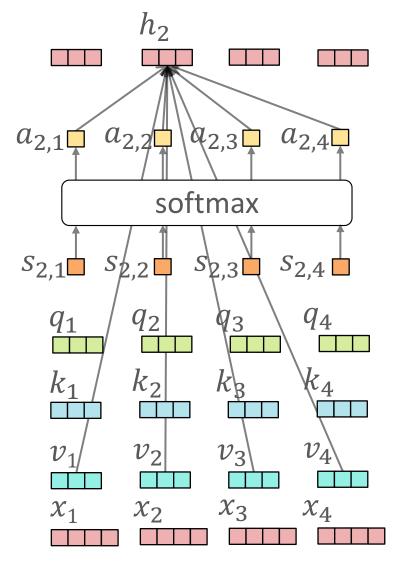
keys: $k_t = W_K x_t$

values: $v_t = W_V x_t$

input tokens

Scaled Dot-product Self-attention

 Approach: compute a representation for each token in the *input sequence* by attending to all the input tokens



$$h_2 = \sum_{j=1}^{n} \operatorname{softmax}(s_{2,j}) v_j$$

attention weights

scores:
$$s_{2,j} = \frac{k_j^T q_2}{\sqrt{\text{length}(k_j)}}$$

queries: $q_t = W_Q x_t$

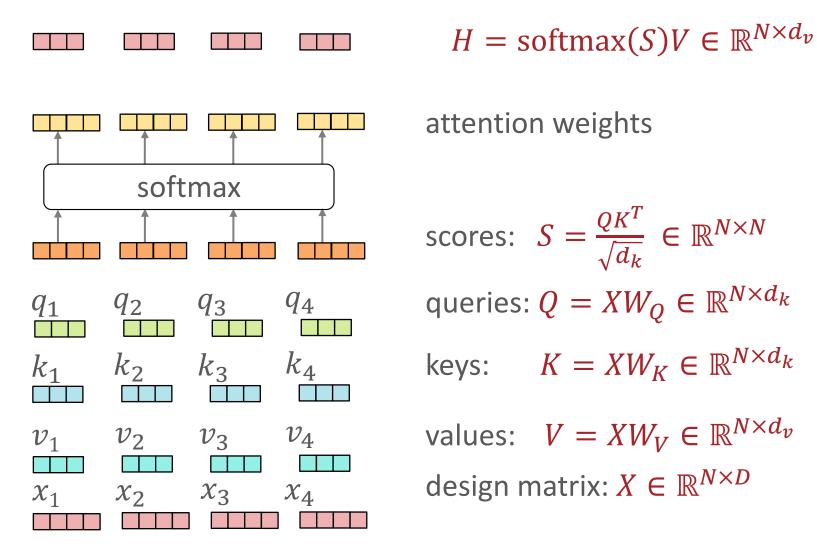
keys: $k_t = W_K x_t$

values: $v_t = W_V x_t$

input tokens

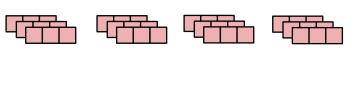
Scaled Dot-product Self-attention: Matrix Form

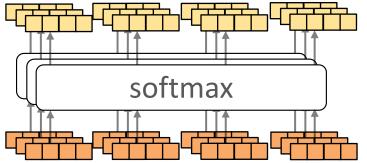
 Approach: compute a representation for each token in the *input sequence* by attending to all the input tokens



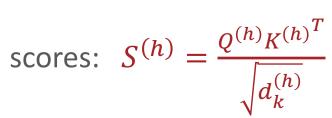
Multi-head Scaled Dot-product Self-attention

• Idea: just like we might want multiple convolutional filters in a convolutional layer, we might want multiple attention weights to learn different relationships between tokens!





attention weights

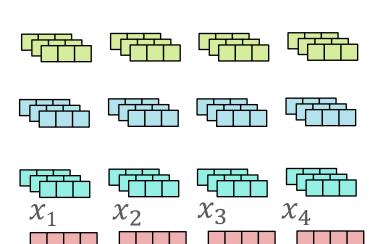


queries:
$$Q^{(h)} = XW_Q^{(h)}$$

keys:
$$K^{(h)} = XW_K^{(h)}$$

values:
$$V^{(h)} = XW_V^{(h)}$$

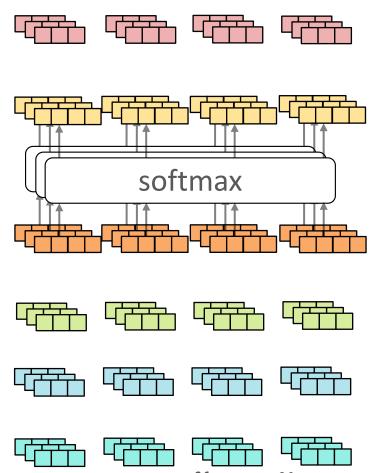
design matrix: X



Key Takeaway: All of this computation is

1. differentiable2. highlyparallelizable!

• Idea: just like we might want multiple convolutional filters in a convolutional layer, we might want multiple attention weights to learn different relationships between tokens!



$$H^{(h)} = \operatorname{softmax}(S^{(h)})V^{(h)}$$

attention weights

scores:
$$S^{(h)} = \frac{Q^{(h)}K^{(h)}^T}{\sqrt{d_k^{(h)}}}$$

queries:
$$Q^{(h)} = XW_Q^{(h)}$$

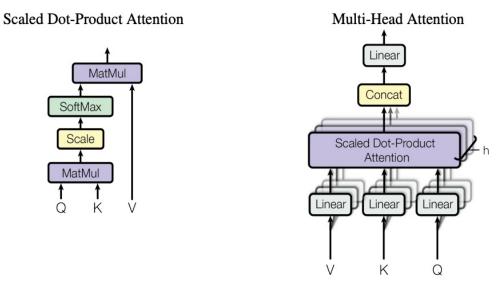
keys:
$$K^{(h)} = XW_K^{(h)}$$

values:
$$V^{(h)} = XW_V^{(h)}$$

design matrix: X

Multi-head Scaled Dot-product Self-attention

• Idea: just like we might want multiple convolutional filters in a convolutional layer, we might want multiple attention weights to learn different relationships between tokens!

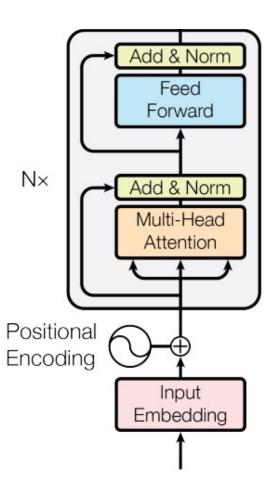


 The outputs from all the attention heads are concatenated together to get the final representation

$$H = [H^{(1)}, H^{(2)}, \dots, H^{(h)}]$$

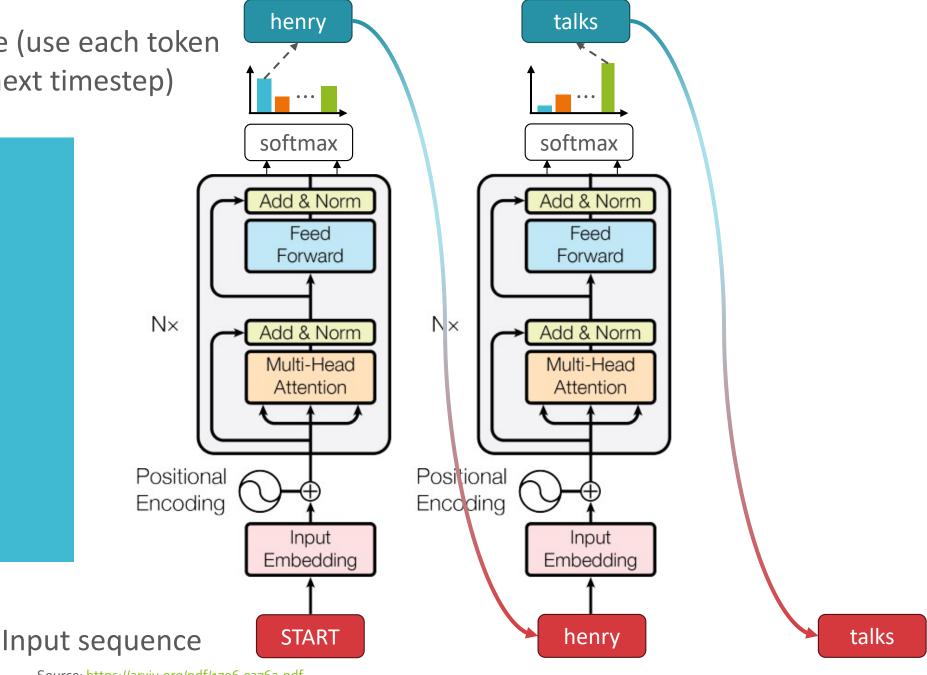
• Common architectural choice: $d_v = D/h \rightarrow |H| = D$

Transformers



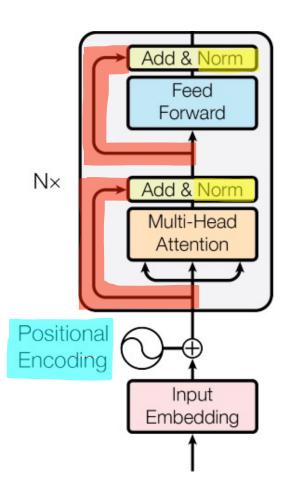
Generated sequence (use each token as the input to the next timestep)

Transformer Language Models



Source: https://arxiv.org/pdf/1706.03762.pdf

Transformers

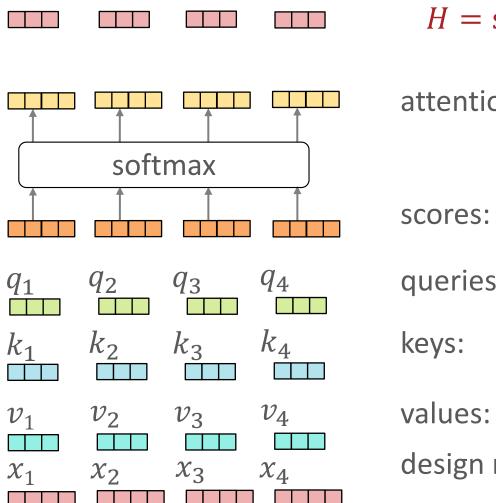


- In addition to multi-head attention, transformer architectures use
 - 1. Positional encodings
 - 2. Layer normalization
 - 3. Residual connections
 - 4. A fully-connected feed-forward network

Henry Chai - 2/28/24 Source: https://arxiv.org/pdf/1706.03762.pdf

Scaled Dot-product Self-attention: Matrix Form

• Issue: if all tokens attend to every token in the sequence, then how does the model infer the order of tokens?



$$H = \operatorname{softmax}(S)V \in \mathbb{R}^{N \times d_v}$$

attention weights

scores:
$$S = \frac{QK^T}{\sqrt{d_k}} \in \mathbb{R}^{N \times N}$$

queries:
$$Q = XW_O \in \mathbb{R}^{N \times d_k}$$

keys:
$$K = XW_K \in \mathbb{R}^{N \times d_k}$$

values:
$$V = XW_V \in \mathbb{R}^{N \times d_v}$$

design matrix:
$$X \in \mathbb{R}^{N \times D}$$

Positional Encodings

- Issue: if all tokens attend to every token in the sequence, then how does the model infer the order of tokens?
- Idea: add a position-specific embedding p_t to the token embedding x_t

$$x_t' = x_t + p_t$$

- Positional encodings can be
 - fixed i.e., some predetermined function of t or learned alongside the token embeddings
 - absolute i.e., only dependent on the token's location in the sequence or relative to the query token's location

Henry Chai - 2/28/24 40

Layer Normalization

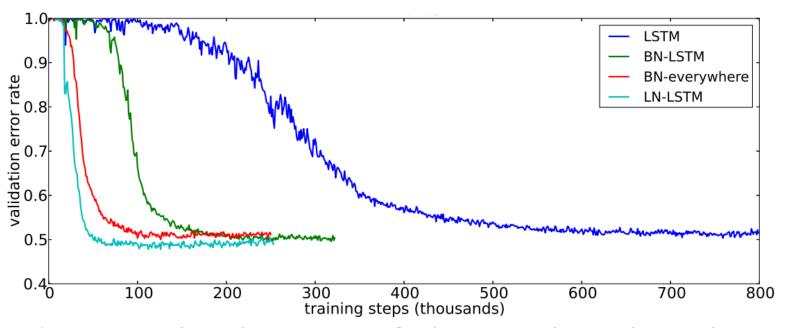
- Issue: for certain activation functions, the weights in later layers are **highly sensitive** to changes in the earlier layers
 - Small changes to weights in early layers are amplified so weights in deeper layers have to deal with massive dynamic ranges → slow optimization convergence
- Idea: normalize the output of a layer to always have the same (learnable) mean, β , and variance, γ^2

$$H' = \gamma \left(\frac{H - \mu}{\sigma} \right) + \beta$$

where μ is the mean and σ is the standard deviation of the values in the vector H

Henry Chai - 2/28/24 41

Layer Normalization



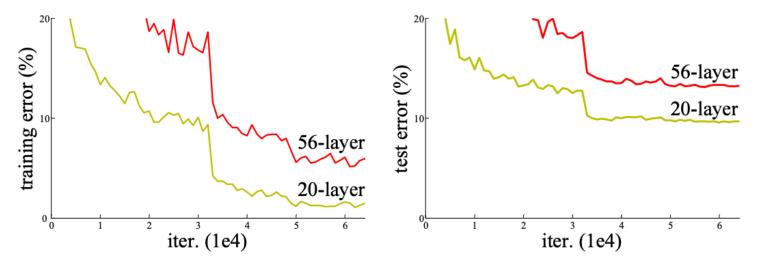
• Idea: normalize the output of a layer to always have the same (learnable) mean, β , and variance, γ^2

$$H' = \gamma \left(\frac{H - \mu}{\sigma} \right) + \beta$$

where μ is the mean and σ is the standard deviation of the values in the vector H

Residual Connections

 Observation: early deep neural networks suffered from the "degradation" problem where adding more layers actually made performance worse!



- Wait but this is ridiculous: if the later layers aren't helping,
 couldn't they just learn the identity transformation???
- Insight: neural network layers actually have a hard time learning the identity function

Source: https://arxiv.org/pdf/1512.03385.pdf

Residual Connections

- Observation: early deep neural networks suffered from the "degradation" problem where adding more layers actually made performance worse!
- Idea: add the input embedding back to the output of a layer

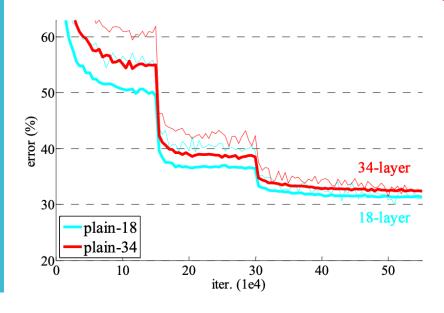
$$H' = H(x^{(i)}) + x^{(i)}$$

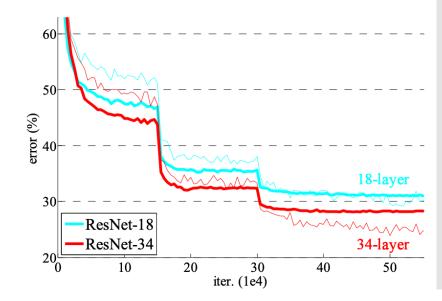
- Suppose the target function is f
 - Now instead of having to learn $f(x^{(i)})$, the hidden layer just needs to learn the residual $r = f(x^{(i)}) x^{(i)}$
 - If f is the identity function, then the hidden layer just needs to learn r = 0, which is easy for a neural network!

Residual Connections

- Observation: early deep neural networks suffered from the "degradation" problem where adding more layers actually made performance worse!
- Idea: add the input embedding back to the output of a layer

$$H' = H(x^{(i)}) + x^{(i)}$$





Key Takeaways

- Language models fit joint probability distributions to sequences of inputs
 - Can be sampled from to generate text
- Attention allows information to directly pass between every pair of tokens
 - Attention can be used in conjunction with RNNs/LSTMs
 - However, (self-)attention can also be used in isolation
- Transformers consist of multi-head attention layers with residual connections, layer normalization and fullyconnected layers

Henry Chai - 2/28/24 46