
Henry Chai

2/28/24

10-701: Introduction to
Machine Learning
Lecture 13 – Attention &
Transformers

Front Matter

� Announcements

� HW3 released 2/19, due 2/28 (today!) at 11:59 PM

� HW4 released 2/28 (today!), due 3/15 (after break) at
11:59 PM

� Project details will be released 3/1 (Friday)

� You must work in groups of 2 or 3 on the project

� Recommended Readings

� Zhang, Lipton, Li & Smola, Chapters 9 & 10

Henry Chai - 2/28/24 2

https://d2l.ai/chapter_recurrent-neural-networks/index.html

Recurrent
Neural
Networks

� Neural networks are frequently applied to inputs with

some inherent temporal or sequential structure
(e.g., text or video) of variable length

� Idea: use the information from previous parts of the
input to inform subsequent predictions

� Insight: the hidden layers learn a useful representation
(relative to the task)

� Approach: incorporate the output from earlier hidden
layers into later ones.

Henry Chai - 2/28/24 3

Recurrent
Neural
Networks

Henry Chai - 2/28/24

𝒙!
"

𝒉!

𝒐!

𝑊 #

𝑊 $

𝑊%

𝒉! = 1, 𝜃 𝑊 # 𝒙!
" +𝑊%𝒉!&#

'
 and 𝒐! = *𝑦!

" = 𝜃 𝑊 $ 𝒉!

� Training dataset consists of

(input sequence, label sequence)
pairs, potentially of varying lengths

𝒟 = 𝒙 , , 𝒚 ,
,-.
/

𝒙 , = 𝒙.
, , … , 𝒙0!

,

𝒚 , = 𝒚.
, , … , 𝒚0!

,

� This model requires an initial value

for the hidden representation, 𝒉1,
typically a vector of all zeros

4

Training RNNs:
Challenges

Henry Chai - 2/28/24 Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Backward pass to compute gradients

� Issue: as the sequence length grows, the gradient is

more likely to explode or vanish

Forward pass to compute outputs and hidden representations

5

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Long
Short-Term
Memory
(Hochreiter &
Schmidhuber,
1997)

� LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

� Each cell still computes a hidden representation but
also maintains a separate internal state, 𝐶2

� The flow of information through a cell is manipulated by
three gates:

� An input gate, 𝐼2, that controls how much the state
looks like the normal RNN hidden layer

� An output gate, 𝑂2, that “releases” the hidden
representation to later timesteps

� A forget gate, 𝐹2, that determines if the previous

memory cell’s state affects the current internal state
Henry Chai - 2/28/24 6

� LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

� Each cell still computes a hidden representation but
also maintains a separate internal state, 𝐶2

� The flow of information through a cell is manipulated by
three gates:

� An input gate, 𝐼2, that controls how much the state
looks like the normal RNN hidden layer

� An output gate, 𝑂2, that “releases” the hidden

� The internal state allows information to move through time
without needing to affect the hidden representations!

Long
Short-Term
Memory
(Hochreiter &
Schmidhuber,
1997)

Henry Chai - 2/28/24 Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 7

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Applications of
LSTMs

Henry Chai - 2/28/24 Source: https://en.wikipedia.org/wiki/Long_short-term_memory 8

https://en.wikipedia.org/wiki/Long_short-term_memory

Key Takeaways

� Recurrent neural networks use contextual information

to reason about sequential data

� Can still be learned using backpropagation →
backpropagation through time

� Susceptible to exploding/vanishing gradients for
long training sequences

� LSTMs allow contextual information to reach later
timesteps without directly affecting intermediate

hidden representations

Henry Chai - 2/28/24 9

Language
Models

Henry Chai - 2/28/24

1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution
over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

3. Sample from the implied conditional distribution to

generate new sequences

𝑃 𝒙0"4. ∣ 𝒙.
3 , … , 𝒙0"

3 =
𝑃 𝒙.

3 , … , 𝒙0"
3 , 𝒙0"4.

𝑃 𝒙.
3 , … , 𝒙0"

3

10

Language
Models

1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution

over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

� Use the chain rule of probability: predict the next word

based on the previous words in the sequence

𝑃 𝒙 3 = 𝑃 𝒙.
3

𝑃 𝒙 3 	 ∗ 𝑃 𝒙5
3 ∣ 𝒙.

3

⋮
𝑃 𝒙 3 	 ∗ 𝑃 𝒙0"

3 ∣ 𝒙0"6.
3 , … , 𝒙.

3
Henry Chai - 2/28/24 11

Language
Models

1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution

over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

� Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 3 = 𝑃 𝒙.
3

𝑃 𝒙 3 	 ∗ 𝑃 𝒙5
3 ∣ 𝒙.

3

⋮
𝑃 𝒙 3 	 ∗ 𝑃 𝒙0"

3 ∣ 𝒙0"6.
3 , … , 𝒙.

3
Henry Chai - 2/28/24 12

RNN
Language
Models

Henry Chai - 2/28/24 13

1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution
over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

� Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 3 ≈ 𝒐. 𝒙.
3

𝑃 𝒙 3 	 ∗ 𝒐5 𝒙5
3 , 𝒉. 𝒙.

3

⋮

𝑃 𝒙 3 	 ∗ 𝒐0" 𝒙0"
3 , 𝒉0"6. 𝒙0"6.

3 , … , 𝒙.
3

RNN
Language
Models:
Training

Henry Chai - 2/28/24 14

𝒙#
" 𝒙$

" 𝒙(
" 𝒙)

"

𝒉#

𝒐#

𝒉$

𝒐$

𝒉(

𝒐(

𝒉)

𝒐)

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊% 𝑊% 𝑊% ⋯

START henry is very

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry is very coolTarget sequence (try to
predict the next word)

Input sequence

RNN
Language
Models:
Sampling

Henry Chai - 2/28/24 16

𝒙#
" 𝒙$

" 𝒙(
" 𝒙)

"

𝒉#

𝒐#

𝒉$

𝒐$

𝒉(

𝒐(

𝒉)

𝒐)

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊% 𝑊% 𝑊% ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token
as the input to the next timestep)

Input sequence

Aside:
Sampling from
these
distributions to
get the next
word is not
always the best
thing to do

Henry Chai - 2/28/24 17

𝒙#
" 𝒙$

" 𝒙(
" 𝒙)

"

𝒉#

𝒐#

𝒉$

𝒐$

𝒉(

𝒐(

𝒉)

𝒐)

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊 #

𝑊 $

𝑊% 𝑊% 𝑊% ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token
as the input to the next timestep)

Input sequence

RNN
Language
Models:
Pros & Cons

� Pros:
� Can handle arbitrary sequence lengths without having

to increase model size (i.e., # of learnable parameters)

� Trainable via backpropagation

� Cons

� Vanishing/exploding gradients

� Does not consider information from later timesteps

� Can be addressed by bidirectional RNNs

� Computation is inherently sequential

� "You can't cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!” – Ray Mooney,
UT Austin

Henry Chai - 2/28/24 18

RNN
Language
Models:
Pros & Cons

� Pros:
� Can handle arbitrary sequence lengths without having

to increase model size (i.e., # of learnable parameters)

� Trainable via backpropagation

� Cons

� Vanishing/exploding gradients

� Does not consider information from later timesteps

� Can be addressed by bidirectional RNNs

� Computation is inherently sequential

� The entire sequence up to some timestep is
represented using just one vector (or two vectors in
an LSTM)

Henry Chai - 2/28/24 19

Encoder-Decoder Architectures
(Sutskever et al., 2014)

Henry Chai - 2/28/24 20Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

https://arxiv.org/pdf/1506.00019.pdf

Attention

Henry Chai - 2/28/24 21

� Approach: compute a representation of the input

sequence for each token 𝑥8 in the decoder

� Idea: allow the decoder to learn which tokens in the
input to “pay attention to” i.e., put more weight on

� Approach: compute a representation of the input

sequence for each token 𝑥8 in the decoder

Attention

22

𝑣5 𝑣9 𝑣:

𝑎. 𝑎5 𝑎9

values

attention weights𝑎:

𝑣1

Henry Chai - 2/28/24

𝐶 𝑥8 =7
2-.

:

𝑎2 𝑥8 𝑣2

� Approach: compute a representation of the input

sequence for each token 𝑥8 in the decoder

Attention

𝑣5 𝑣9 𝑣:

𝑎. 𝑎5 𝑎9

values

attention weights𝑎:

softmax

𝑠. 𝑠5 𝑠9 𝑠: scores

𝑣1

Henry Chai - 2/28/24 23

𝐶 𝑥8 =7
2-.

:

softmax 𝑠2 𝑥8 𝑣2

Attention

� Approach: compute a representation of the input

sequence for each token 𝑥8 in the decoder

𝑎. 𝑎5 𝑎9 attention weights𝑎:

softmax

𝑠. 𝑠5 𝑠9 𝑠: scores

𝑥1 𝑥5 𝑥9 𝑥: input tokens
Henry Chai - 2/28/24 24

𝐶 𝑥8 =7
2-.

:

softmax 𝑠 𝑥8, 𝑥2 𝑣 𝑥2

values𝑣. 𝑥. 𝑣5 𝑥5 𝑣9 𝑥9 𝑣: 𝑥:

Scaled
Dot-product
Attention

� Approach: compute a representation of the input

sequence for each token 𝑥8 in the decoder

𝑎. 𝑎5 𝑎9 attention weights𝑎:

softmax

𝑠. 𝑠5 𝑠9 𝑠: scores: 𝑠2 =
;#$<

=>?@AB <

input tokens𝑥1 𝑥5 𝑥9 𝑥:

𝑞 𝑥8

Henry Chai - 2/28/24 25

𝑘5 𝑥5 𝑘9 𝑥9 𝑘: 𝑥:𝑘. 𝑥.

𝑣. 𝑥. 𝑣5 𝑥5 𝑣9 𝑥9 𝑣: 𝑥:

𝐶 𝑥8 =7
2-.

:

softmax 𝑠 𝑥8, 𝑥2 𝑣 𝑥2

values: 𝑣2 = 𝑊C𝑥2

keys: 𝑘2 = 𝑊D𝑥2

query: 𝑞 = 𝑤E0𝑥8Attention

Henry Chai - 2/28/24 26Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

Attention

Encoder-Decoder Architectures
with Attention

https://arxiv.org/pdf/1506.00019.pdf

Henry Chai - 2/28/24 27Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

Attention

Encoder-Decoder Architectures
with Attention

https://arxiv.org/pdf/1506.00019.pdf

Henry Chai - 2/28/24 28Source: https://arxiv.org/pdf/1506.00019.pdf

Encoder network Decoder network

Attention

Encoder-Decoder Architectures
with Attention

https://arxiv.org/pdf/1506.00019.pdf

Encoder-Decoder Architectures
with Attention (Vaswani et al., 2017)

Henry Chai - 2/28/24 29

Attention

Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product
Self-attention

� Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

Henry Chai - 2/28/24 30

𝑎.,. 𝑎.,5 𝑎.,9 attention weights𝑎.,:

softmax

𝑠.,. 𝑠.,5 𝑠.,9 𝑠.,:
scores: 𝑠.,F =

;%
$<&

=>?@AB ;%

input tokens𝑥1 𝑥5 𝑥9 𝑥:

ℎ.

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

values: 𝑣2 = 𝑊C𝑥2

keys: 𝑘2 = 𝑊D𝑥2

queries: 𝑞2 = 𝑊E𝑥2

ℎ. =7
F-.

:

softmax 𝑠.,F 𝑣F

Scaled
Dot-product
Self-attention

� Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

Henry Chai - 2/28/24 31

𝑎5,. 𝑎5,5 𝑎5,9 𝑎5,:

softmax

𝑠5,. 𝑠5,5 𝑠5,9 𝑠5,:

𝑥1 𝑥5 𝑥9 𝑥:

ℎ5

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

attention weights

scores: 𝑠5,F =
;%
$<'

=>?@AB ;%

input tokens
values: 𝑣2 = 𝑊C𝑥2

keys: 𝑘2 = 𝑊D𝑥2

queries: 𝑞2 = 𝑊E𝑥2

ℎ5 =7
F-.

:

softmax 𝑠5,F 𝑣F

Scaled
Dot-product
Self-attention:
Matrix Form

� Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

Henry Chai - 2/28/24 32

softmax

design matrix: 𝑋 ∈ ℝ/×H𝑥1 𝑥5 𝑥9 𝑥:

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

values: 𝑉 = 𝑋𝑊C ∈ ℝ/×I(

keys: 𝐾 = 𝑋𝑊D ∈ ℝ/×I)

queries: 𝑄 = 𝑋𝑊E ∈ ℝ/×I)

scores: 𝑆 = ED$

I)
	 ∈ ℝ/×/

𝐻 = softmax 𝑆 𝑉 ∈ ℝ/×I(

attention weights

softmax

Multi-head
Scaled
Dot-product
Self-attention

� Idea: just like we might want multiple convolutional filters
in a convolutional layer, we might want multiple attention
weights to learn different relationships between tokens!

Henry Chai - 2/28/24 33

design matrix: 𝑋𝑥1 𝑥5 𝑥9 𝑥:

values: 𝑉(K) = 𝑋𝑊C
K

keys: 𝐾(K) = 𝑋𝑊D
K

queries: 𝑄(K) = 𝑋𝑊E
K

scores: 𝑆 K = E * D * $

I)
*

𝐻 K = softmax 𝑆 K 𝑉 K

attention weights

softmaxsoftmax

softmax

Key Takeaway:
All of this
computation is

 1. differentiable
 2. highly
 parallelizable!

� Idea: just like we might want multiple convolutional filters
in a convolutional layer, we might want multiple attention
weights to learn different relationships between tokens!

Henry Chai - 2/28/24 34

softmax

design matrix: 𝑋𝑥1 𝑥5 𝑥9 𝑥:

values: 𝑉(K) = 𝑋𝑊C
K

keys: 𝐾(K) = 𝑋𝑊D
K

queries: 𝑄(K) = 𝑋𝑊E
K

softmax
scores: 𝑆 K = E * D * $

I)
*

𝐻 K = softmax 𝑆 K 𝑉 K

attention weights

� Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention
weights to learn different relationships between tokens!

� The outputs from all the attention heads are
concatenated together to get the final representation

𝐻 = 𝐻 . , 𝐻 5 , … , 𝐻 K

� Common architectural choice: 𝑑M = ⁄H K → 𝐻 = 𝐷

Multi-head
Scaled
Dot-product
Self-attention

Henry Chai - 2/28/24 35Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Transformers

Henry Chai - 2/28/24 36Source: https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Transformer
Language
Models

Henry Chai - 2/28/24 37Source: https://arxiv.org/pdf/1706.03762.pdf

talks

softmax

⋯ ⋯

henry talks

softmax

START

Generated sequence (use each token
as the input to the next timestep)

Input sequence henry

https://arxiv.org/pdf/1706.03762.pdf

Transformers

Henry Chai - 2/28/24 38Source: https://arxiv.org/pdf/1706.03762.pdf

� In addition to multi-head
attention, transformer
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf

Scaled
Dot-product
Self-attention:
Matrix Form

� Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

Henry Chai - 2/28/24 39

softmax

design matrix: 𝑋 ∈ ℝ/×H𝑥1 𝑥5 𝑥9 𝑥:

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

values: 𝑉 = 𝑋𝑊C ∈ ℝ/×I(

keys: 𝐾 = 𝑋𝑊D ∈ ℝ/×I)

queries: 𝑄 = 𝑋𝑊E ∈ ℝ/×I)

scores: 𝑆 = ED$

I)
	 ∈ ℝ/×/

𝐻 = softmax 𝑆 𝑉 ∈ ℝ/×I(

attention weights

Positional
Encodings

Henry Chai - 2/28/24 40

� Issue: if all tokens attend to every token in the sequence,
then how does the model infer the order of tokens?

� Idea: add a position-specific embedding 𝑝2 to the token
embedding 𝑥2

𝑥28 = 𝑥2 + 𝑝2

� Positional encodings can be

� fixed i.e., some predetermined function of 𝑡 or learned
alongside the token embeddings

� absolute i.e., only dependent on the token’s location in
the sequence or relative to the query token’s location

Layer
Normalization

Henry Chai - 2/28/24 41

� Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified
so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾5

𝐻8 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the
values in the vector 𝐻

Layer
Normalization

Henry Chai - 2/28/24 42

� Issue: for certain activation functions, the weights in later

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified
so weights in deeper layers have to deal with massive

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the

same (learnable) mean, 𝛽, and variance, 𝛾5

𝐻8 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the
values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf

https://arxiv.org/pdf/1607.06450.pdf

Residual
Connections

� Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually
made performance worse!

� Wait but this is ridiculous: if the later layers aren’t helping,
couldn’t they just learn the identity transformation???

� Insight: neural network layers actually have a hard time
learning the identity function

Henry Chai - 2/28/24 43Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Residual
Connections

� Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻8 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

Henry Chai - 2/28/24 44

Residual
Connections

� Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻8 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just

needs to learn 𝑟 = 0, which is easy for a neural network!

Henry Chai - 2/28/24 45Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Key Takeaways

� Language models fit joint probability distributions to

sequences of inputs

� Can be sampled from to generate text

� Attention allows information to directly pass between

every pair of tokens

� Attention can be used in conjunction with RNNs/LSTMs

� However, (self-)attention can also be used in isolation

� Transformers consist of multi-head attention layers with
residual connections, layer normalization and fully-
connected layers

Henry Chai - 2/28/24 46

