10-701: Introduction to
Machine Learning
Lecture 13 — Attention &
Transformers

Henry Chai
2/28/24

* Announcements

* HW3 released 2/19, due 2/28 (today!) at 11:59 PM

- HW4 released 2/28 (today!), due 3/15 (after break) at
11:59 PM

Front Matter

* Project details will be released 3/1 (Friday)

* You must work in groups of 2 or 3 on the project

- Recommended Readings

- Zhang, Lipton, Li & Smola, Chapters S & 10

Henry Chai - 2/28/24

https://d2l.ai/chapter_recurrent-neural-networks/index.html

Recurrent

Neural
Networks

Henry Chai - 2/28/24

* Neural networks are frequently applied to inputs with

some inherent temporal or sequential structure

(e.g., text or video) of variable length

* Idea: use the information from previous parts of the

input to inform subsequent predictions

* Insight: the hidden layers learn a useful representation

(relative to the task)

* Approach: incorporate the output from earlier hidden

layers into later ones.

he =10 (WOx® + Whht_l)]T and o, = 9V = 6(W@h,)

* Training dataset consists of
Q (input sequence, label sequence)
w®@ pairs, potentially of varying lengths
Recurrent [n JDWO D = {(x®,ym)}"_
Neural o o
Networks W M = 2", X
) y® =y, v

* This model requires an initial value

for the hidden representation, h,

typically a vector of all zeros

Henry Chai - 2/28/24

TrainingRNNs: R T T T T N O N I 2

Challenges ettt

Forward pass to compute outputs and hidden representations
<

Backward pass to compute gradients

* Issue: as the sequence length grows, the gradient is

more likely to explode or vanish

Henry Chai - 2/28/24 Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Long
Short-Term
Memory

(Hochreiter &
Schmidhuber,
1997)

Henry Chai - 2/28/24

* LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

* Each cell still computes a hidden representation but

also maintains a separate internal state, C;

* The flow of information through a cell is manipulated by

three gates:

 An input gate, I, that controls how much the state

looks like the normal RNN hidden layer

- An output gate, O, that “releases” the hidden

representation to later timesteps

- A forget gate, F;, that determines if the previous

memory cell’s state affects the current internal state

* LSTM networks address the vanishing gradient problem

by replacing hidden layers with memory cells

* Each cell still computes a hidden representation but

Long also maintains a separate internal state, C;
Short-Term

Memory .

Hochreiter & "
(Hoch A A
Schmidhuber, "

1997)

* The internal state allows information to move through time

without needing to affect the hidden representations!

Henry Chai - 2/28/24 Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Applications of

LSTM S 2018: OpenAl used LSTM trained by policy gradients to beat humans in the
complex video game of Dota 2,!'"l and to control a human-like robot hand
that manipulates physical objects with unprecedented dexterity.!!01[54]

2019: DeepMind used LSTM trained by policy gradients to excel at the
complex video game of Starcraft |1.[121(54]

Henry Chai - 2/28/24 Source: https://en.wikipedia.org/wiki/Long short-term _memory

https://en.wikipedia.org/wiki/Long_short-term_memory

* Recurrent neural networks use contextual information
to reason about sequential data

* Can still be learned using backpropagation —

backpropagation through time
Key Ta keaways - Susceptible to exploding/vanishing gradients for

long training sequences

* LSTMs allow contextual information to reach later
timesteps without directly affecting intermediate

hidden representations

Henry Chai - 2/28/24

Language

Models

Henry Chai - 2/28/24

Convert raw text into embeddings

x@ = [xgi), . ngl)

——

Learn or approximate a joint probability distribution

over sequences
P(xW)=p (xgi), ,ngl))

Sample from the implied conditional distribution to
generate new sequences

(i) (i)
P (xTi+1 | xgi), ,x,g,ll)) P (il(;c(l); xTi;Z;S-I_l)
1 7 X

10

1. Convert raw text into embeddings

x(@ = [x(l) . gf)

2. Learn or approximate a joint probability distribution

over sequences

P(xWV)=Pp (xgl), . ,ngi))

Language

Models * Use the chain rule of probability: predict the next word

based on the previous words in the sequence
(E) Q ()
f(»c - %T > — P(x; 3
P(X g lxl
: F[XC>IX03X' o)
(i)

Henry Chai - 2/28/24 P(XC(\l)< Ci\ . /)(r) 11

Sl

Language

Models

Henry Chai - 2/28/24

1. Convert raw text into embeddings

x(@ = [x(l) . gf)

2. Learn or approximate a joint probability distribution

over sequences

P(xWV)=Pp (xgl), . ,ngi))

~Use-the-chainrHe-of-probabiity Just throw an RNN at it!

P(x®) = P («)
e (x| 20)

ip(O | £0_,, .., 20)

12

RNN
Language

Models

Henry Chai - 2/28/24

1. Convert raw text into embeddings

x(® = [x(l) . gf)

2. Learn or approximate a joint probability distribution

over sequences

P(xW)=Pp (xgl), . gf))

~Use-the-chainre-ofprobabiity Just throw an RNN at it!

p(x(l)) ~ 01((l))
o (40 (40)

k OT (xg-v), hTi—l (xg-l:) 17 g_l)))

13

predict the next word)

RNN
Language
Models:

Training

Input sequence

Henry Chai - 2/28/24 14

Generated sequence (use each token
as the input to the next timestep)

RNN
Language

Models:

v

Sampling

| Input sequence START
Henry Chai - 2/28/24

v

16

Generated sequence (use each token
as the input to the next timestep)

Aside:
Sampling from
these
distributions to

get the next

word is hot

always the best
thing to do

| Input sequence START
Henry Chai - 2/28/24

)

softmax

—

17

RNN
Language

Models:
Pros & Cons

Henry Chai - 2/28/24

* Pros:

- Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

* Cons
* Vanishing/exploding gradients
* Does not consider information from later timesteps
- Can be addressed by bidirectional RNNs
- Computation is inherently sequential

* "You can't cram the meaning of a whole %&!S#

sentence into a single S&!#* vector!” — Ray Mooney,
UT Austin

18

RNN
Language

Models:
Pros & Cons

Henry Chai - 2/28/24

* Pros:

- Can handle arbitrary sequence lengths without having
to increase model size (i.e., # of learnable parameters)

* Trainable via backpropagation

- Cons

* Vanishing/exploding gradients

* Does not consider information from later timesteps
- Can be addressed by bidirectional RNNs

- Computation is inherently sequential

* The entire sequence up to some timestep is

represented using just one vector (or two vectors in
an LSTM)

19

S

ﬁllﬁl*ﬁﬁ

o= netN coder network

Encoder-Decoder Architectures

(Sutskever et al., 2014)

https://arxiv.org/pdf/1506.00019.pdf

Attention

Henry Chai - 2/28/24

* Approach: compute a representation of the input

sequence for each token x’ in the decoder

* |dea: allow the decoder to learn which tokens in the

input to “pay attention to” i.e., put more weight on

21

Attention

Henry Chai - 2/28/24

* Approach: compute a representation of the input

sequence for each token x' in the decoder e

St
CG) =) alw(xe)

t=1 D MMS

attention weights

a;g azd aszfl/ |44 0

v/ U/ V3 Uy values

22

Attention

Henry Chai - 2/28/24

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

C(x") = Z softmax(st(x’))vt

t=1
attention weights

softmax

51 52 scores
values

23

Attention

Henry Chai - 2/28/24

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

Clx") = z softmax(s(x’, xt))v(xt)

t=1
attention weights

softmax

52 scores
v1 (1) V,(%X2) v3(x3) V4\(x4) values

|||| |||| |||| |||| .
input tokens
____ 24

* Approach: compute a representation of the input

sequence for each token x' in the decoder
4

Clx") = z softmax(s(x’, xQ)zz_(_&_)

Scaled % —
Dot-product / ?/azﬁg j'////c\ﬁj \attentlon weights

Attention softmax -
K 9

IH\M(”(B
query: Ct _ WQY}
keys:): - L\} 7({
values: Vt W,)({

input tokens

scores: -t =

Henry Chai - 2/28/24 (T111] 111 Oty el

Sl q o qqq
LSTM1 STM\ LSTM1 N LSTM2

ﬁﬁﬁﬁﬁﬁﬁ

Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

\'\

\ﬁ.
J/ﬁF m——

LSTM1 STM\ LSTM1 LSTM2
Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

e q qq

LSTM1 STM\ LSTM1 = R LSTMZ
Encoder network Decoder network

Encoder-Decoder Architectures

Wlth Attention

https://arxiv.org/pdf/1506.00019.pdf

[Attention } WHAT IF I 'I'lllll YOU

with ttentlon (Vaswanl et aI ,2017)

https://arxiv.org/pdf/1706.03762.pdf

hq
0 0 I O I
Scaled)
Dot-product b
Self-attention [softmax
51,1L W\SHL
CI1
L] [] I L 1] L[]
k1| 2 3
L1 1] LI L 1] IIII
v| v % %

11 1] 011 G
X1 X9 X3 X4
Henry Chai - 2/28/24 (T11] I Ol 1T

* Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

4

hi = Z softmax(sl, j)vj

j=1
attention weights

scores:
queries: q; = Wth
keys: ki = Wgx;

values: v, = Wyx,

input tokens

Scaled
Dot-product

Self-attention

Henry Chai - 2/28/24

* Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

4

hy, = Z softmax(sz, j)vj

j=1
attention weights

scores:
queries: q¢ = Wth
keys: k; = Wyx;

values: v, = Wyx;

input tokens

31

Scaled
Dot-product

Self-attention:

Matrix Form

Henry Chai - 2/28/24

|

s

* Approach: compute a representation for each token in

the input sequence by attending to all the input tokens

e e B

H = softmax(S)V
D (3R

| 1 ‘f‘ﬂf))'(é rowf—-&o g
attention weights
3N

[ﬁilfs EL ezij

softmax _,,

R .I_ .I_
queries: Q = XW, € I

C Nxd
kl kz k3 k4_ key5' Wé)E "R
1 i > e E}

ey ity i) CLil]
A

scores:

N”Ak

vy Uy Vs Uy values: V = XWVG.&
O OO OO O-™ N D

—> o OO0 O CEE

XT—X; X3 Xa design matrix: X £ R
WR ¢ HZ'D chk 32

* Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!
Multi-head =y oy oy ey H® = softmax(s™)y®
Scaled
Dot-product

%WLF#%LF#% attention weights

Self-attention E' softmax corec () _ QKD

queries: QM = XWQ(h)

' T T T
™ T o T

I I Ty o
X1 X2 X3 X4
Henry Chai - 2/28/24 (T11] I Ol 1T

keys: KW =% WK(h)

values: V(M = XWV(h)
design matrix: X

* Idea: just like we might want multiple convolutional filters
in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!
Key Takeaway: ey Oy T [H® = softmax(s™)y ™
All of this

'—Gl' T attention weights

softmax o) oWgm’
- - Scores: =
1. differentiable M&.& pa

2. highl ec: 0 = yy ™
psra?;elizablel 7 O W) ’

e U Uern Uern
e U U U values: V() =XWV(h)

X{ X X3 X4 design matrix: X
Henry Chai - 2/28/24 (T11] I Ol 1T

computation is

keys: KM =X WK(h)

* Idea: just like we might want multiple convolutional filters

in a convolutional layer, we might want multiple attention

weights to learn different relationships between tokens!

M u I t i - h e a d Scaled Dot-Product Attention Multi-Head Attention

Scaled
Dot-product

Concat

Self-attention

V K Q

* The outputs from all the attention heads are
concatenated together to get the final representation
H=[H® a?, . HW]

- Common architectural choice: d, = 2/, - |[H| = D

Henry Chai - 2/28/24 Source: https://arxiv.org/pdf/1706.03762.pdf 35

https://arxiv.org/pdf/1706.03762.pdf

||
Add & Norm
‘ Feed |

Forward
7y

N x

Transformers

\

Add & Norm
Multi-Head

Attention

.

Positional
Encoding

D
1
Input
Embedding

1

Henry Chai - 2/28/24 Source: https://arxiv.org/pdf/1706.03762.pdf

36

https://arxiv.org/pdf/1706.03762.pdf

Generated sequence (use each token
as the input to the next timestep)

IILL L.J

softmax softmax
) 5) 5
[) [)
Add & Norm Add & Norm
Feed Feed
Forward Forward
/'y 7y
\ \
Nx l\ix
Add & Norm Add & Norm
Tra n Sfo r m e r Multi-Head Multi-Head
Attention Attention
Language T T
\ \
_ Y, _ y,
Models) |
Positional D Positional D
Encoding x Encading x
Input Input
Embedding Embedding

Input sequence

Henry Chai - 2/28/24 Source: https://arxiv.ora/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

* In addition to multi-head

I
Add & Norm
Feed

attention, transformer

| architectures use

1. Positional encodings

Add & Norm

Multi-Head
Attention

Transformers

Layer normalization

3. Residual connections

Positional

Encoding 4. A fully-connected

Input feed-forward network

Embedding

1

Henry Chai - 2/28/24 Source: https://arxiv.org/pdf/1706.03762.pdf 38

https://arxiv.org/pdf/1706.03762.pdf

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

OO OO OO0 OO0 H = softmax(S)V € RN*%
Scaled
Dot-product 10 (I (I IO attention weights
Self-attention: | softmax .
: . ¢ _ 9K NXN
Matrix Form e i e J— scores: §=-== ER™
q1 492 queries: Q = XW, € RV*%
L[] L[] |||| ||||
kq k, ks k4 keys: K =XWy € RNXdp
LI L[] L[] L[]
Vi, V2 V3 Uy values: V = XW,, € RV*dv
L[] L[] LI L[] . . NXD
X1 Xy X3 Xy design matrix: X € R

Henry Chai - 2/28/24 [TT1] CIr17 T CITT] 39

* Issue: if all tokens attend to every token in the sequence,

then how does the model infer the order of tokens?

* Idea: add a position-specific embedding p; to the token
embedding x;

I __
Xt = Xt + D¢

Positional
* Positional encodings can be

Encodings

- fixed i.e., some predetermined function of t or learned

alongside the token embeddings

* absolute i.e., only dependent on the token’s location in

the sequence or relative to the query token’s location

Henry Chai - 2/28/24 40

Layer

Normalization

Henry Chai - 2/28/24

* Issue: for certain activation functions, the weights in later
layers are highly sensitive to changes in the earlier layers

- Small changes to weights in early layers are amplified

so weights in deeper layers have to deal with massive

dynamic ranges — slow optimization convergence

* Idea: normalize the output of a layer to always have the

same (learnable) mean, 3, and variance, ¥ 2

H’=\)}(H_“ <

)+

0}

where p is the mean and o is the standard deviation of the

values in the vector H

41

Layer

Normalization

Henry Chai - 2/28/24

=
(=)

LSTM
BN-LSTM

BN-everywhere
LN-LSTM

o
L2

O
o)

o
Sk

validation error rate
o
~l

o
wn

o
S

100 200 300 400 500 600 700 800
training steps (thousands)

* Idea: normalize the output of a layer to always have the

same (learnable) mean, 3, and variance, ¥ 2
H —_
H =y (_H) +

0}

where p is the mean and o is the standard deviation of the

values in the vector H

Source: https://arxiv.org/pdf/1607.06450.pdf

42

https://arxiv.org/pdf/1607.06450.pdf

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

56-layer

20-layer

made performance worse!

[
(=]
1

201

—
(=]
T
—
(=
T

Residual

56-layer

training error (%)
test error (%)

Connections

20-layer

(=]
(=]
—

I I 1 L
2 5 6 0 1 2

3 r 3 7
iter. (le4) iter. (1e4)

- Wait but this is ridiculous: if the later layers aren’t helping,

couldn’t they just learn the identity transformation???

* Insight: neural network layers actually have a hard time

learning the identity function

Henry Chai - 2/28/24 Source: https://arxiv.org/pdf/1512.03385.pdf

https://arxiv.org/pdf/1512.03385.pdf

Residual

Connections

Henry Chai - 2/28/24

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* Idea: add the input embedding back to the output of a layer

H =H(x®W) +xW

* Suppose the target function is f

* Now instead of having to learn f(x(i)), the hidden layer

just needs to learn the residual r = f(x(i)) — @D

* If f is the identity function, then the hidden layer just

needs to learn r = 0, which is easy for a neural network!

44

* Observation: early deep neural networks suffered from the

“degradation” problem where adding more layers actually

made performance worse!

* Idea: add the input embedding back to the output of a layer

Residual H' = H(x®) + x®
Connections Ao oo

34-layer

p 8-
—plain-18 18-layer ~—ResNet-18
—plain-34 —ResNet-34 34-layer
10 20 30 40 50 200 10 20 30 40 50
iter. (1e4) iter. (1e4)

Henry Chai - 2/28/24 Source: https://arxiv.org/pdf/1512.03385.pdf 45

https://arxiv.org/pdf/1512.03385.pdf

* Language models fit joint probability distributions to
sequences of inputs

* Can be sampled from to generate text

- Attention allows information to directly pass between

every pair of tokens

\CAELCEENR

* Attention can be used in conjunction with RNNs/LSTMs

* However, (self-)attention can also be used in isolation

* Transformers consist of multi-head attention layers with

residual connections, layer normalization and fully-

connected layers

Henry Chai - 2/28/24 46

