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10-701: Introduction to 
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Lecture 13 – Attention & 
Transformers



Front Matter

� Announcements

� HW3 released 2/19, due 2/28 (today!) at 11:59 PM

� HW4 released 2/28 (today!), due 3/15 (after break) at 
11:59 PM

� Project details will be released 3/1 (Friday)

� You must work in groups of 2 or 3 on the project

� Recommended Readings

� Zhang, Lipton, Li & Smola, Chapters 9 & 10
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https://d2l.ai/chapter_recurrent-neural-networks/index.html


Recurrent 
Neural 
Networks

� Neural networks are frequently applied to inputs with 

some inherent temporal or sequential structure  
(e.g., text or video) of variable length

� Idea: use the information from previous parts of the 
input to inform subsequent predictions

� Insight: the hidden layers learn a useful representation 
(relative to the task)

� Approach: incorporate the output from earlier hidden 
layers into later ones. 
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Recurrent 
Neural 
Networks
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𝒙!
"

𝒉!

𝒐!

𝑊 #

𝑊 $

𝑊%

𝒉! = 1, 𝜃 𝑊 # 𝒙!
" +𝑊%𝒉!&#

'
 and 𝒐! = *𝑦!

" = 𝜃 𝑊 $ 𝒉!  

� Training dataset consists of 

(input sequence, label sequence) 
pairs, potentially of varying lengths

𝒟 = 𝒙 , , 𝒚 ,
,-.
/

𝒙 , = 𝒙.
, , … , 𝒙0!

,

𝒚 , = 𝒚.
, , … , 𝒚0!

,

� This model requires an initial value 

for the hidden representation, 𝒉1, 
typically a vector of all zeros
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Training RNNs:
Challenges

Henry Chai - 2/28/24 Source: http://cs231n.stanford.edu/slides/2023/lecture_8.pdf  

Backward pass to compute gradients

� Issue: as the sequence length grows, the gradient is 

more likely to explode or vanish 

Forward pass to compute outputs and hidden representations

5
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Long 
Short-Term 
Memory  
(Hochreiter & 
Schmidhuber, 
1997)  

� LSTM networks address the vanishing gradient problem 

by replacing hidden layers with memory cells 

� Each cell still computes a hidden representation but 
also maintains a separate internal state, 𝐶2

� The flow of information through a cell is manipulated by 
three gates:

� An input gate, 𝐼2, that controls how much the state 
looks like the normal RNN hidden layer

� An output gate, 𝑂2, that “releases” the hidden 
representation to later timesteps

� A forget gate, 𝐹2, that determines if the previous 

memory cell’s state affects the current internal state
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� LSTM networks address the vanishing gradient problem 

by replacing hidden layers with memory cells 

� Each cell still computes a hidden representation but 
also maintains a separate internal state, 𝐶2

� The flow of information through a cell is manipulated by 
three gates:

� An input gate, 𝐼2, that controls how much the state 
looks like the normal RNN hidden layer

� An output gate, 𝑂2, that “releases” the hidden 

� The internal state allows information to move through time 
without needing to affect the hidden representations!

Long 
Short-Term 
Memory  
(Hochreiter & 
Schmidhuber, 
1997)  

Henry Chai - 2/28/24 Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 7
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Applications of 
LSTMs

Henry Chai - 2/28/24 Source: https://en.wikipedia.org/wiki/Long_short-term_memory 8

https://en.wikipedia.org/wiki/Long_short-term_memory


Key Takeaways

� Recurrent neural networks use contextual information 

to reason about sequential data

� Can still be learned using backpropagation → 
backpropagation through time

� Susceptible to exploding/vanishing gradients for 
long training sequences

� LSTMs allow contextual information to reach later 
timesteps without directly affecting intermediate 

hidden representations
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Language 
Models
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1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution 
over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

3. Sample from the implied conditional distribution to 

generate new sequences

𝑃 𝒙0"4. ∣ 𝒙.
3 , … , 𝒙0"

3 =
𝑃 𝒙.

3 , … , 𝒙0"
3 , 𝒙0"4.

𝑃 𝒙.
3 , … , 𝒙0"

3
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Language 
Models

1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution 

over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

� Use the chain rule of probability: predict the next word 

based on the previous words in the sequence

𝑃 𝒙 3 = 𝑃 𝒙.
3

𝑃 𝒙 3 	 ∗ 𝑃 𝒙5
3 ∣ 𝒙.

3

⋮
𝑃 𝒙 3 	 ∗ 𝑃 𝒙0"

3 ∣ 𝒙0"6.
3 , … , 𝒙.

3
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Language 
Models

1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution 

over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

� Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 3 = 𝑃 𝒙.
3

𝑃 𝒙 3 	 ∗ 𝑃 𝒙5
3 ∣ 𝒙.

3

⋮
𝑃 𝒙 3 	 ∗ 𝑃 𝒙0"

3 ∣ 𝒙0"6.
3 , … , 𝒙.

3
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RNN
Language 
Models
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1. Convert raw text into embeddings

𝒙 3 = 𝒙.
3 , … , 𝒙0"

3

2. Learn or approximate a joint probability distribution 
over sequences

𝑃 𝒙 3 = 𝑃 𝒙.
3 , … , 𝒙0"

3

� Use the chain rule of probability Just throw an RNN at it!

𝑃 𝒙 3 ≈ 𝒐. 𝒙.
3

𝑃 𝒙 3 	 ∗ 𝒐5 𝒙5
3 , 𝒉. 𝒙.

3

⋮

𝑃 𝒙 3 	 ∗ 𝒐0" 𝒙0"
3 , 𝒉0"6. 𝒙0"6.

3 , … , 𝒙.
3



RNN
Language 
Models:
Training
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𝑊 $

𝑊% 𝑊% 𝑊% ⋯

START henry is very

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry is very coolTarget sequence (try to 
predict the next word)

Input sequence



RNN
Language 
Models:
Sampling
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𝑊 $

𝑊% 𝑊% 𝑊% ⋯

START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token 
as the input to the next timestep)

Input sequence



Aside: 
Sampling from 
these 
distributions to 
get the next 
word is not 
always the best 
thing to do
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START henry talks too

softmax softmax softmax softmax

⋯ ⋯ ⋯ ⋯

henry talks too muchGenerated sequence (use each token 
as the input to the next timestep)

Input sequence



RNN
Language 
Models:
Pros & Cons

� Pros:
� Can handle arbitrary sequence lengths without having 

to increase model size (i.e., # of learnable parameters)

� Trainable via backpropagation

� Cons

� Vanishing/exploding gradients

� Does not consider information from later timesteps

� Can be addressed by bidirectional RNNs

� Computation is inherently sequential

� "You can't cram the meaning of a whole %&!$# 
sentence into a single $&!#* vector!” – Ray Mooney, 
UT Austin
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RNN
Language 
Models:
Pros & Cons

� Pros:
� Can handle arbitrary sequence lengths without having 

to increase model size (i.e., # of learnable parameters)

� Trainable via backpropagation

� Cons

� Vanishing/exploding gradients

� Does not consider information from later timesteps

� Can be addressed by bidirectional RNNs

� Computation is inherently sequential

� The entire sequence up to some timestep is 
represented using just one vector (or two vectors in 
an LSTM) 
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Encoder-Decoder Architectures 
(Sutskever et al., 2014)

Henry Chai - 2/28/24 20Source: https://arxiv.org/pdf/1506.00019.pdf 

Encoder network Decoder network

https://arxiv.org/pdf/1506.00019.pdf


Attention
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� Approach: compute a representation of the input 

sequence for each token 𝑥8 in the decoder

� Idea: allow the decoder to learn which tokens in the 
input to “pay attention to” i.e., put more weight on



� Approach: compute a representation of the input 

sequence for each token 𝑥8 in the decoder

Attention

22

𝑣5 𝑣9 𝑣:

𝑎. 𝑎5 𝑎9

values

attention weights𝑎:

𝑣1
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𝐶 𝑥8 =7
2-.

:

𝑎2 𝑥8 𝑣2



� Approach: compute a representation of the input 

sequence for each token 𝑥8 in the decoder

Attention

𝑣5 𝑣9 𝑣:

𝑎. 𝑎5 𝑎9

values

attention weights𝑎:

softmax

𝑠. 𝑠5 𝑠9 𝑠: scores

𝑣1
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𝐶 𝑥8 =7
2-.

:

softmax 𝑠2 𝑥8 𝑣2



Attention

� Approach: compute a representation of the input 

sequence for each token 𝑥8 in the decoder

𝑎. 𝑎5 𝑎9 attention weights𝑎:

softmax

𝑠. 𝑠5 𝑠9 𝑠: scores

𝑥1 𝑥5 𝑥9 𝑥: input tokens
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𝐶 𝑥8 =7
2-.

:

softmax 𝑠 𝑥8, 𝑥2 𝑣 𝑥2

values𝑣. 𝑥. 𝑣5 𝑥5 𝑣9 𝑥9 𝑣: 𝑥:



Scaled 
Dot-product
Attention

� Approach: compute a representation of the input 

sequence for each token 𝑥8 in the decoder

𝑎. 𝑎5 𝑎9 attention weights𝑎:

softmax

𝑠. 𝑠5 𝑠9 𝑠: scores:        𝑠2 =
;#$<

=>?@AB <

input tokens𝑥1 𝑥5 𝑥9 𝑥:

𝑞 𝑥8
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𝑘5 𝑥5 𝑘9 𝑥9 𝑘: 𝑥:𝑘. 𝑥.

𝑣. 𝑥. 𝑣5 𝑥5 𝑣9 𝑥9 𝑣: 𝑥:

𝐶 𝑥8 =7
2-.

:

softmax 𝑠 𝑥8, 𝑥2 𝑣 𝑥2

values:         𝑣2 = 𝑊C𝑥2

keys:         𝑘2 = 𝑊D𝑥2

query:         𝑞 = 𝑤E0𝑥8Attention



Henry Chai - 2/28/24 26Source: https://arxiv.org/pdf/1506.00019.pdf 

Encoder network Decoder network

Attention

Encoder-Decoder Architectures 
with Attention

https://arxiv.org/pdf/1506.00019.pdf
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Encoder network Decoder network

Attention

Encoder-Decoder Architectures 
with Attention

https://arxiv.org/pdf/1506.00019.pdf
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Encoder network Decoder network

Attention

Encoder-Decoder Architectures 
with Attention

https://arxiv.org/pdf/1506.00019.pdf


Encoder-Decoder Architectures 
with Attention (Vaswani et al., 2017)
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Attention

Source: https://arxiv.org/pdf/1706.03762.pdf 

https://arxiv.org/pdf/1706.03762.pdf


Scaled 
Dot-product 
Self-attention

� Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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𝑎.,. 𝑎.,5 𝑎.,9 attention weights𝑎.,:

softmax

𝑠.,. 𝑠.,5 𝑠.,9 𝑠.,:
scores:   𝑠.,F =

;%
$<&

=>?@AB ;%

input tokens𝑥1 𝑥5 𝑥9 𝑥:

ℎ.

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

values:   𝑣2 = 𝑊C𝑥2

keys:     𝑘2 = 𝑊D𝑥2

queries: 𝑞2 = 𝑊E𝑥2

ℎ. =7
F-.

:

softmax 𝑠.,F 𝑣F



Scaled 
Dot-product 
Self-attention

� Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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𝑎5,. 𝑎5,5 𝑎5,9 𝑎5,:

softmax

𝑠5,. 𝑠5,5 𝑠5,9 𝑠5,:

𝑥1 𝑥5 𝑥9 𝑥:

ℎ5

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

attention weights

scores:   𝑠5,F =
;%
$<'

=>?@AB ;%

input tokens
values:   𝑣2 = 𝑊C𝑥2

keys:     𝑘2 = 𝑊D𝑥2

queries: 𝑞2 = 𝑊E𝑥2

ℎ5 =7
F-.

:

softmax 𝑠5,F 𝑣F



Scaled 
Dot-product 
Self-attention: 
Matrix Form

� Approach: compute a representation for each token in 

the input sequence by attending to all the input tokens
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softmax

design matrix: 𝑋 ∈ ℝ/×H𝑥1 𝑥5 𝑥9 𝑥:

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

values:   𝑉 = 𝑋𝑊C ∈ ℝ/×I(

keys:     𝐾 = 𝑋𝑊D ∈ ℝ/×I)

queries: 𝑄 = 𝑋𝑊E ∈ ℝ/×I)

scores:   𝑆 = ED$

I)
	 ∈ ℝ/×/

𝐻 = softmax 𝑆 𝑉 ∈ ℝ/×I(

attention weights



softmax

Multi-head
Scaled 
Dot-product 
Self-attention

� Idea: just like we might want multiple convolutional filters 
in a convolutional layer, we might want multiple attention 
weights to learn different relationships between tokens!
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design matrix: 𝑋𝑥1 𝑥5 𝑥9 𝑥:

values:   𝑉(K) = 𝑋𝑊C
K

keys:     𝐾(K) = 𝑋𝑊D
K

queries: 𝑄(K) = 𝑋𝑊E
K

scores:   𝑆 K = E * D * $

I)
*

𝐻 K = softmax 𝑆 K 𝑉 K

attention weights

softmaxsoftmax



softmax

Key Takeaway: 
All of this 
computation is
 
  1. differentiable   
  2. highly    
       parallelizable! 

� Idea: just like we might want multiple convolutional filters 
in a convolutional layer, we might want multiple attention 
weights to learn different relationships between tokens!
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softmax

design matrix: 𝑋𝑥1 𝑥5 𝑥9 𝑥:

values:   𝑉(K) = 𝑋𝑊C
K

keys:     𝐾(K) = 𝑋𝑊D
K

queries: 𝑄(K) = 𝑋𝑊E
K

softmax
scores:   𝑆 K = E * D * $

I)
*

𝐻 K = softmax 𝑆 K 𝑉 K

attention weights



� Idea: just like we might want multiple convolutional filters 

in a convolutional layer, we might want multiple attention 
weights to learn different relationships between tokens!

� The outputs from all the attention heads are 
concatenated together to get the final representation

𝐻 = 𝐻 . , 𝐻 5 , … , 𝐻 K

� Common architectural choice: 𝑑M = ⁄H K → 𝐻 = 𝐷

Multi-head
Scaled 
Dot-product 
Self-attention

Henry Chai - 2/28/24 35Source: https://arxiv.org/pdf/1706.03762.pdf 

https://arxiv.org/pdf/1706.03762.pdf


Transformers

Henry Chai - 2/28/24 36Source: https://arxiv.org/pdf/1706.03762.pdf 

https://arxiv.org/pdf/1706.03762.pdf


Transformer
Language 
Models

Henry Chai - 2/28/24 37Source: https://arxiv.org/pdf/1706.03762.pdf 

talks

softmax

⋯ ⋯

henry talks

softmax

START

Generated sequence (use each token 
as the input to the next timestep)

Input sequence henry

https://arxiv.org/pdf/1706.03762.pdf


Transformers

Henry Chai - 2/28/24 38Source: https://arxiv.org/pdf/1706.03762.pdf 

� In addition to multi-head 
attention, transformer 
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected 
feed-forward network

https://arxiv.org/pdf/1706.03762.pdf


Scaled 
Dot-product 
Self-attention: 
Matrix Form

� Issue: if all tokens attend to every token in the sequence, 

then how does the model infer the order of tokens?
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softmax

design matrix: 𝑋 ∈ ℝ/×H𝑥1 𝑥5 𝑥9 𝑥:

𝑣1 𝑣5 𝑣9 𝑣:

𝑘. 𝑘5 𝑘9 𝑘:

𝑞. 𝑞5 𝑞9 𝑞:

values:   𝑉 = 𝑋𝑊C ∈ ℝ/×I(

keys:     𝐾 = 𝑋𝑊D ∈ ℝ/×I)

queries: 𝑄 = 𝑋𝑊E ∈ ℝ/×I)

scores:   𝑆 = ED$

I)
	 ∈ ℝ/×/

𝐻 = softmax 𝑆 𝑉 ∈ ℝ/×I(

attention weights



Positional 
Encodings
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� Issue: if all tokens attend to every token in the sequence, 
then how does the model infer the order of tokens?

� Idea: add a position-specific embedding 𝑝2 to the token 
embedding 𝑥2

𝑥28 = 𝑥2 + 𝑝2

� Positional encodings can be

� fixed i.e., some predetermined function of 𝑡 or learned 
alongside the token embeddings

� absolute i.e., only dependent on the token’s location in 
the sequence or relative to the query token’s location



Layer 
Normalization
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� Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified 
so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾5

𝐻8 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 
values in the vector 𝐻



Layer 
Normalization
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� Issue: for certain activation functions, the weights in later 

layers are highly sensitive to changes in the earlier layers

� Small changes to weights in early layers are amplified 
so weights in deeper layers have to deal with massive 

dynamic ranges → slow optimization convergence

� Idea: normalize the output of a layer to always have the 

same (learnable) mean, 𝛽, and variance, 𝛾5

𝐻8 = 𝛾
𝐻 − 𝜇
𝜎

+ 𝛽

where 𝜇 is the mean and 𝜎 is the standard deviation of the 
values in the vector 𝐻

Source: https://arxiv.org/pdf/1607.06450.pdf 

https://arxiv.org/pdf/1607.06450.pdf


Residual 
Connections

� Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 
made performance worse!

� Wait but this is ridiculous: if the later layers aren’t helping, 
couldn’t they just learn the identity transformation???

� Insight: neural network layers actually have a hard time 
learning the identity function

Henry Chai - 2/28/24 43Source: https://arxiv.org/pdf/1512.03385.pdf 

https://arxiv.org/pdf/1512.03385.pdf


Residual 
Connections

� Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻8 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!
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Residual 
Connections

� Observation: early deep neural networks suffered from the 

“degradation” problem where adding more layers actually 
made performance worse!

� Idea: add the input embedding back to the output of a layer

𝐻8 = 𝐻 𝑥 3 + 𝑥 3

� Suppose the target function is 𝑓

� Now instead of having to learn 𝑓 𝑥 3 , the hidden layer 

just needs to learn the residual 𝑟 = 𝑓 𝑥 3 − 𝑥 3

� If 𝑓 is the identity function, then the hidden layer just 

needs to learn 𝑟 = 0, which is easy for a neural network!
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Key Takeaways

� Language models fit joint probability distributions to 

sequences of inputs

� Can be sampled from to generate text 

� Attention allows information to directly pass between 

every pair of tokens

� Attention can be used in conjunction with RNNs/LSTMs

� However, (self-)attention can also be used in isolation

� Transformers consist of multi-head attention layers with 
residual connections, layer normalization and fully-
connected layers
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