10-701: Introduction toMachine LearningLecture 15:Dimensionality Reduction

Henry Chai

3/13/24

Front Matter

- Announcements
 - HW4 released 2/28, due 3/15 (Friday) at 11:59 PM
 - Midterm exam on 3/19 from 7 9 PM in DH A302
 - If you have a conflict with this date/time fill out the conflict form on Piazza ASAP
 - Final exam date has been announced: Monday, May 6th from 1 – 4 PM
- Recommended Readings
 - Murphy, <u>Chapters 12.2.1 12.2.3</u>
 - Daumé III, <u>Chapter 15: Unsupervised Learning</u>

Midterm Exam Logistics

- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - (Simple) Proofs
 - Short answers
 - Drawing & Interpreting figures
 - Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-/A4-size sheet of notes; you can put *whatever* you want on *both sides*

Midterm Exam Topics

- Covered material: Lectures 1 13
 - Decision Trees
 - *k*-NN
 - Linear Regression
 - MLE/MAP
 - Naïve Bayes
 - Logistic Regression
 - Regularization
 - Neural Networks & Backpropagation
 - CNNs & RNNs
 - Attention & Transformers

Midterm Exam Preparation Review the exam practice problems (released 3/12 on the course website, under the <u>Recitations tab</u>)

- Attend the dedicated exam 1 review recitation (3/15)
- Review HWs 1 4
- Review the key takeaways throughout the lecture slides
- Write your one-page cheat sheet (back and front)

Recipe for *K*-means

- Define a model and model parameters
 - Assume K clusters and use the Euclidean distance
 - Parameters: $\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K$ and $\boldsymbol{z}^{(1)}, \dots, \boldsymbol{z}^{(N)}$
- Write down an objective function $\sum_{i=1}^{N} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{\boldsymbol{z}^{(i)}} \right\|_{2}$

Optimize the objective w.r.t. the model parameters
Use (block) coordinate descent

K-means Algorithm

- Input: $\mathcal{D} = \{ (\mathbf{x}^{(i)}) \}_{i=1}^{N}, K$
- 1. Initialize cluster centers μ_1, \dots, μ_K
- 2. While NOT CONVERGED
 - a. Assign each data point to the cluster with the nearest cluster center:

$$z^{(i)} = \underset{k}{\operatorname{argmin}} \left\| \boldsymbol{x}^{(i)} - \boldsymbol{\mu}_{k} \right\|_{2}$$

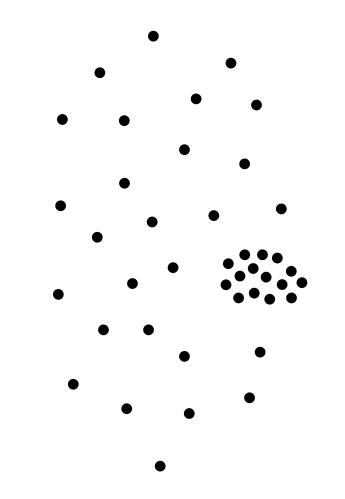
b. Recompute the cluster centers:

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i:z^{(i)}=k} \boldsymbol{x}^{(i)}$$

where N_k is the number of data points in cluster k

• Output: cluster assignments $z^{(1)}, ..., z^{(N)}$

Shortcomings of *K*-means



- Clusters cannot overlap
- Clusters must all be of the same "width"
- Clusters must be linearly separable

Recipe for GMMs

- Define a model and model parameters
 - Assume *K* Gaussian clusters
 - Parameters: $\theta = \{ \mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K \}$

• Write down an objective function • Maximize the log marginal likelihood $\ell(\theta|\mathcal{D}) = \log \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\theta)$

• Optimize the objective w.r.t. the model parameters

Expectation-maximization

Expectation-Maximization for GMMs: Intuition

- Insight: if we knew the cluster assignments, $z^{(i)}$, we could maximize the log complete likelihood instead of the log marginal likelihood
- Idea: replace $\mathbf{z}^{(i)}$ in the log complete likelihood with our "best guess" for $\mathbf{z}^{(i)}$ given the parameters and the data
- Observation: changing the parameters changes our "best guess" and vice versa
- Approach: iterate between updating our "best guess" and updating the parameters

Expectation-Maximization for GMMs

- Iterative algorithm that alternates between two steps
 - Expectation or E-step: for fixed parameters θ , compute the *expected* assignment vectors conditioned on θ and the data set \mathcal{D}

 $E\left[z_{k}^{(i)}|\boldsymbol{x}^{(i)},\theta\right] = p\left(z_{k}^{(i)} = 1 \left| \boldsymbol{x}^{(i)},\theta\right.\right) \forall i \text{ and } k$

- Maximization or M-step: for fixed assignment vectors $\mathbf{z}^{(i)}$, set the parameters θ to maximize the complete log likelihood of the data set \mathcal{D}
- Under the hood: EM performs block-coordinate ascent on a lower bound of the log marginal likelihood

E-Step for GMMs

$$p(z_{k}^{(i)} = 1 | \mathbf{x}^{(i)}, \theta) = \frac{p(z_{k}^{(i)} = 1, \mathbf{x}^{(i)} | \theta)}{p(\mathbf{x}^{(i)} | \theta)}$$
$$= \frac{p(z_{k}^{(i)} = 1, \mathbf{x}^{(i)} | \theta)}{\sum_{j=1}^{K} p(z_{j}^{(i)} = 1, \mathbf{x}^{(i)} | \theta)}$$
$$= \frac{\pi_{k} N(\mathbf{x}^{(i)}; \mu_{k}, \Sigma_{k})}{\sum_{j=1}^{K} \pi_{j} N(\mathbf{x}^{(i)}; \mu_{j}, \Sigma_{j})} \forall i \text{ and } k$$

M-Step for GMMs

Let
$$N_k = \sum_{i=1}^{N} p\left(z_k^{(i)} = 1 | \mathbf{x}^{(i)}, \theta\right)$$

 $\pi_k = \frac{N_k}{N}$
 $\mu_k = \frac{1}{N_k} \sum_{i=1}^{N} p\left(z_k^{(i)} = 1 | \mathbf{x}^{(i)}, \theta\right) \mathbf{x}^{(i)}$
 $\Sigma_k = \frac{1}{N_k} \sum_{i=1}^{N} p\left(z_k^{(i)} = 1 | \mathbf{x}^{(i)}, \theta\right) (\mathbf{x}^{(i)} - \mu_k) (\mathbf{x}^{(i)} - \mu_k)^T$

GMM Algorithm

- Input: $\mathcal{D} = \{ (\mathbf{x}^{(i)}) \}_{i=1}^{N}, K$
- 1. Initialize all parameters $\mu_1, \dots, \mu_K, \Sigma_1, \dots, \Sigma_K, \pi_1, \dots, \pi_K$
- 2. While NOT CONVERGED
 - a. E-step: compute $p(z_k^{(i)} = 1 | \mathbf{x}^{(i)}, \theta) \forall i$ and k
 - b. M-step: update the parameters
- Output: parameters $\mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K, \pi_1, ..., \pi_K$ and assignments probabilities $p\left(z_k^{(i)} = 1 | \mathbf{x}^{(i)}, \theta\right) \forall i$ and k

Initializing EM for GMMs

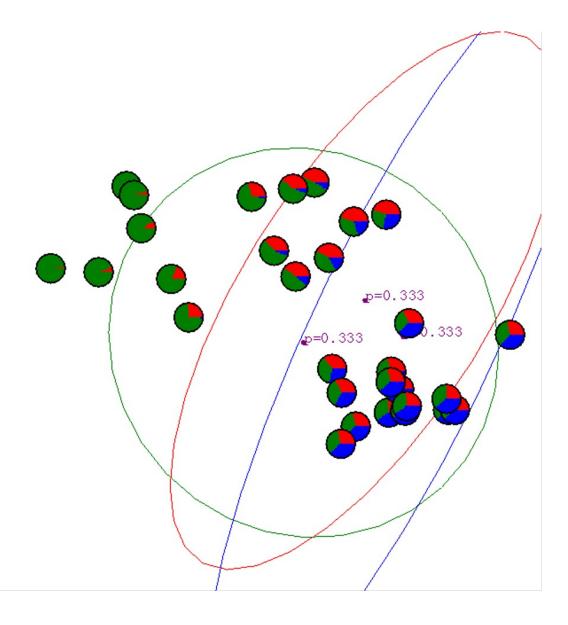
Common heuristics for initialization

- Cluster proportions typically initialized to be uniform
- Cluster means
 - Randomly select data points to be cluster centers
 - Randomly sample locations in the range spanned by the data
- Cluster covariances
 - Identity (or scaled identity) matrix
 - Random positive diagonal matrix
 - Randomly sample L, a lower triangular matrix with positive diagonal entries, and set to LL^{T}
 - Set to the empirical covariance of the data
- Use multiple random restarts

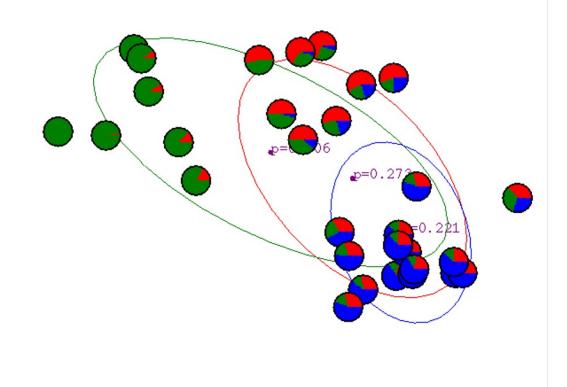
Terminating EM for GMMs Common heuristics for termination

- Stop if the log complete likelihood changes by less than some tolerance
- Stop if the parameters and assignment probabilities change by less than some tolerance
- Stop after a fixed number of iterations

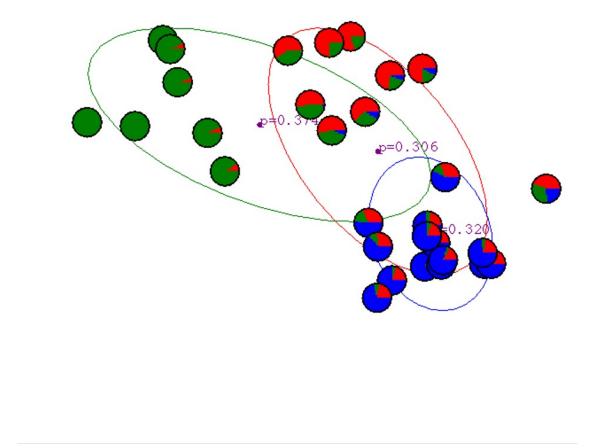
GMMs: Example (Initial)



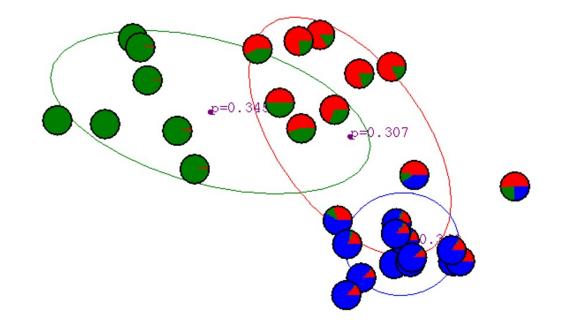
GMMs: Example (1 Iteration)



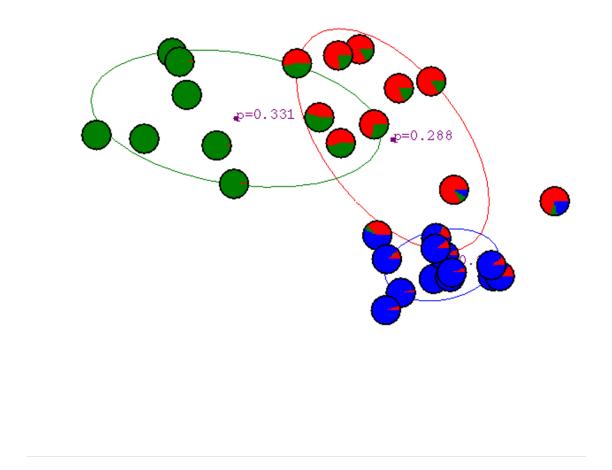
GMMs: Example (2 Iterations)



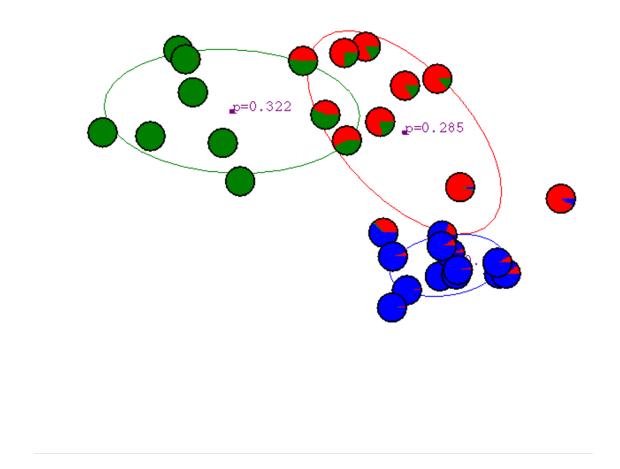
GMMs: Example (3 Iterations)



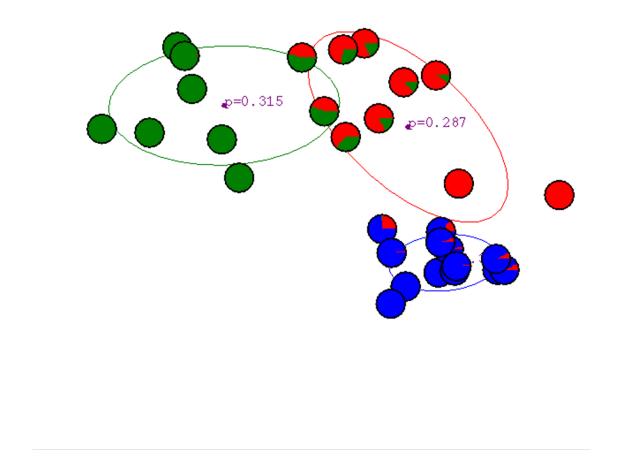
GMMs: Example (4 Iterations)



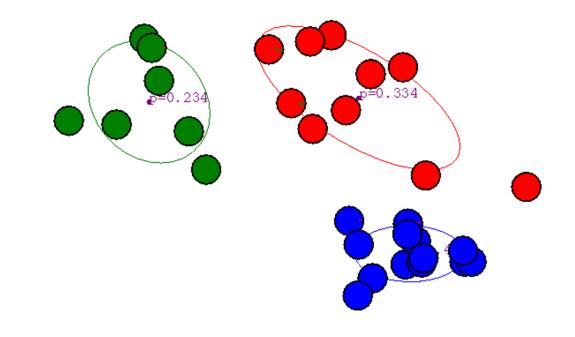
GMMs: Example (5 Iterations)



GMMs: Example (6 Iterations)



GMMs: Example (20 Iterations)

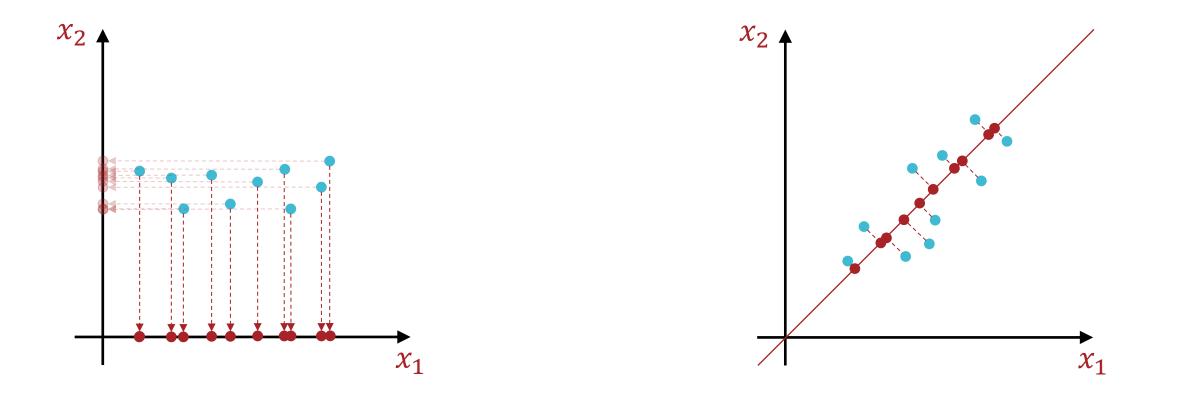


Key Takeaways

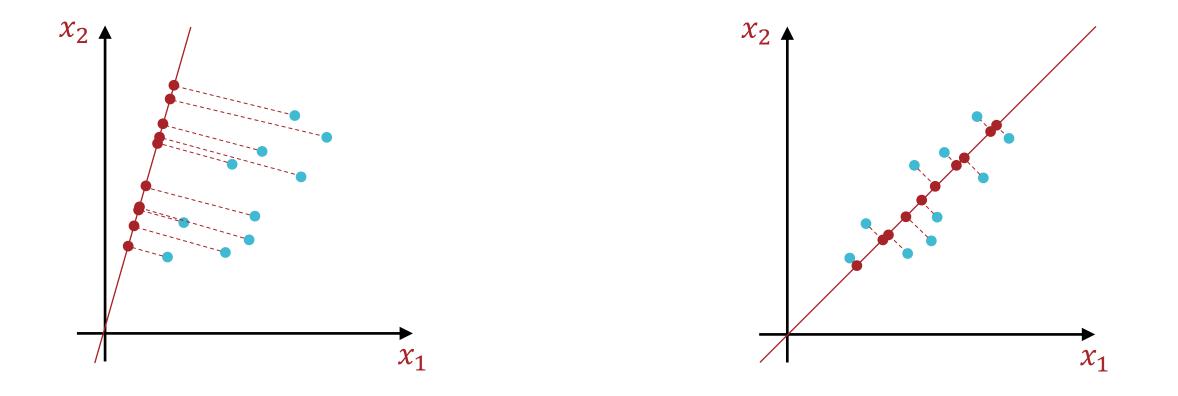
- Partition-based clustering
 - K-means (hard assignments)
 - Block-coordinate descent
 - Setting *K*
 - Initializing K means
 - Gaussian mixture models (probabilistic assignments)
 - Complete vs. marginal likelihood
 - Expectation-maximization for GMMs
 - Initializing EM for GMMs

Unsupervised Learning

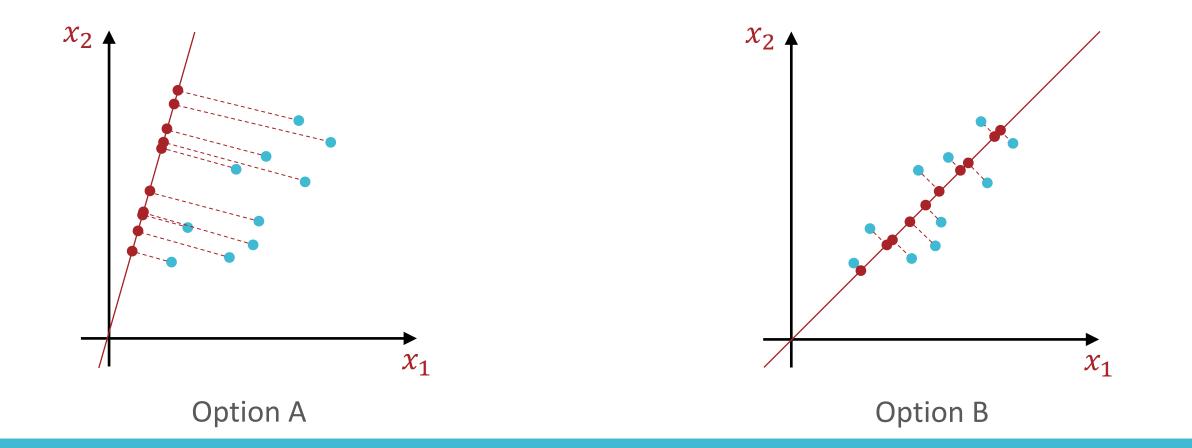
- Clustering: split an unlabeled data set into groups or partitions of "similar" data points
 - Use cases:
 - Organizing data
 - Discovering patterns or structure
 - Preprocessing for downstream tasks
- Dimensionality Reduction: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
 - Use cases:
 - Decreasing computational costs
 - Improving generalization
 - Visualizing data



Feature Elimination



Feature Reduction



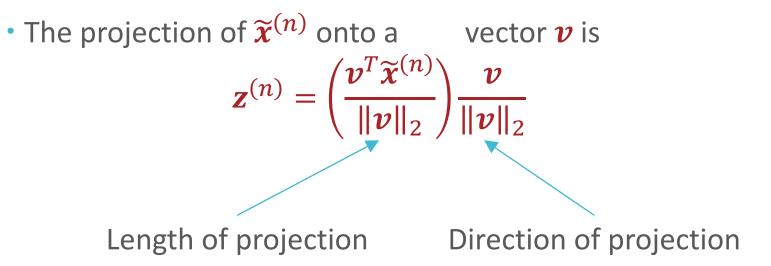
Which projection do you prefer?

Centering the Data

- To be consistent, we will constrain principal components to be *orthogonal unit vectors* that begin at the origin
- Preprocess data to be centered around the origin:

1. $\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}^{(n)}$ 2. $\widetilde{\boldsymbol{x}}^{(n)} = \boldsymbol{x}^{(n)} - \boldsymbol{\mu} \forall n$ 3. $X = \begin{bmatrix} \widetilde{\boldsymbol{x}}^{(1)^T} \\ \widetilde{\boldsymbol{x}}^{(2)^T} \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)^T} \end{bmatrix}$

Reconstruction Error



Reconstruction Error

• The projection of $\widetilde{\mathbf{x}}^{(n)}$ onto a unit vector \mathbf{v} is $\mathbf{z}^{(n)} = (\mathbf{v}^T \widetilde{\mathbf{x}}^{(n)}) \mathbf{v}$

$$\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N} \left\| \widetilde{\boldsymbol{x}}^{(n)} - (\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v} \right\|_{2}^{2}$$

$$\begin{aligned} \left\| \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v} \right\|_2^2 \\ &= \widetilde{\boldsymbol{x}}^{(n)^T} \widetilde{\boldsymbol{x}}^{(n)} - 2 \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} + \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v}^T \boldsymbol{v} \\ &= \widetilde{\boldsymbol{x}}^{(n)^T} \widetilde{\boldsymbol{x}}^{(n)} - \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right) \boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \\ &= \left\| \left\| \widetilde{\boldsymbol{x}}^{(n)} \right\|_2^2 - \left(\boldsymbol{v}^T \widetilde{\boldsymbol{x}}^{(n)} \right)^2 \end{aligned}$$

Minimizing the Reconstruction Error ↓ Maximizing the Variance $\widehat{\boldsymbol{v}} = \underset{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{\infty} \left\| \widetilde{\boldsymbol{x}}^{(n)} - (\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}) \boldsymbol{v} \right\|_{2}^{2}$ $= \underset{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{\infty} \left\| \widetilde{\boldsymbol{x}}^{(n)} \right\|_{2}^{2} - \left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \right)^{2}$ $= \underset{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \sum_{n=1}^{\infty} (\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)})^{2} \longleftarrow \begin{array}{l} \text{Variance of projections} \\ (\widetilde{\boldsymbol{x}}^{(n)} \text{ are centered}) \end{array}$ $= \operatorname*{argmax}_{\boldsymbol{v}: \|\boldsymbol{v}\|_{2}^{2}=1} \boldsymbol{v}^{T} \left(\sum_{n=1}^{N} \widetilde{\boldsymbol{x}}^{(n)} \widetilde{\boldsymbol{x}}^{(n)}^{T} \right) \boldsymbol{v}$ $= \operatorname{argmax} \boldsymbol{v}^T (X^T X) \boldsymbol{v}$ $v: ||v||_2^2 = 1$

Maximizing the Variance

$$\widehat{\boldsymbol{v}} = \operatorname*{argmax}_{\boldsymbol{v}:\|\boldsymbol{v}\|_2^2=1} \boldsymbol{v}^T(X^T X) \boldsymbol{v}$$

$$\mathcal{L}(\boldsymbol{\nu},\lambda) = \boldsymbol{\nu}^T (X^T X) \boldsymbol{\nu} - \lambda (\|\boldsymbol{\nu}\|_2^2 - 1)$$
$$= \boldsymbol{\nu}^T (X^T X) \boldsymbol{\nu} - \lambda (\boldsymbol{\nu}^T \boldsymbol{\nu} - 1)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{v}} = (X^T X) \boldsymbol{v} - \lambda \boldsymbol{v}$$

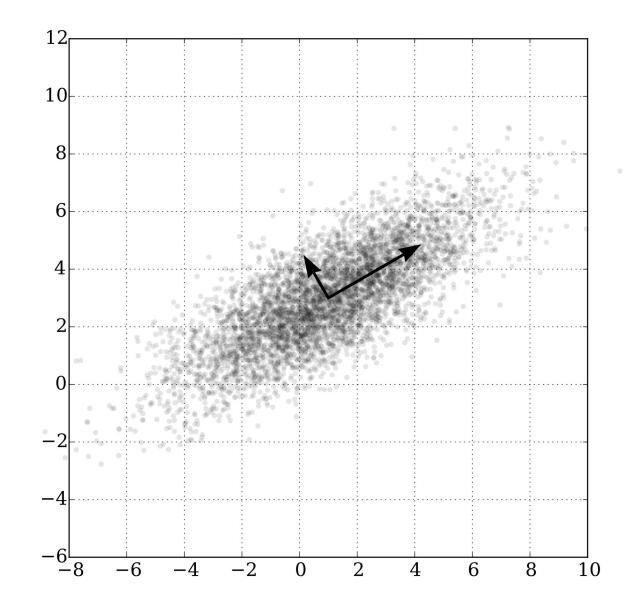
 $\rightarrow (X^T X)\widehat{\boldsymbol{v}} - \lambda\widehat{\boldsymbol{v}} = 0 \rightarrow (X^T X)\widehat{\boldsymbol{v}} = \lambda\widehat{\boldsymbol{v}}$

• \hat{v} is an eigenvector of $X^T X$ and λ is the corresponding eigenvalue! But which one?

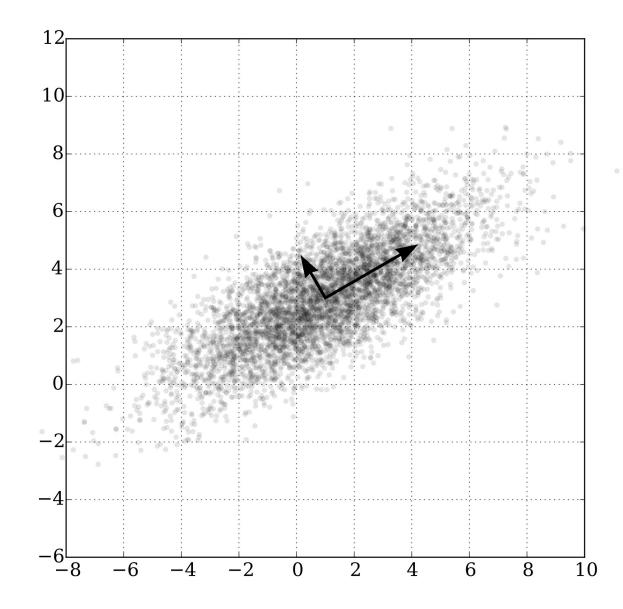
Maximizing the Variance

- $\widehat{\boldsymbol{v}} = \operatorname*{argmax}_{\boldsymbol{v}:\|\boldsymbol{v}\|_2^2=1} \boldsymbol{v}^T(X^T X) \boldsymbol{v}$
 - $(X^T X)\widehat{\boldsymbol{v}} = \lambda\widehat{\boldsymbol{v}} \rightarrow \widehat{\boldsymbol{v}}^T (X^T X)\widehat{\boldsymbol{v}} = \lambda\widehat{\boldsymbol{v}}^T\widehat{\boldsymbol{v}} = \lambda$
 - The first principal component is the eigenvector \widehat{v}_1 that corresponds to the largest eigenvalue λ_1
 - The second principal component is the eigenvector \hat{v}_2 that corresponds to the second largest eigenvalue λ_1
 - $\widehat{\boldsymbol{v}}_1$ and $\widehat{\boldsymbol{v}}_2$ are orthogonal
 - Etc ...
 - λ_i is a measure of how much variance falls along \hat{v}_i

Principal Components: Example



How can we efficiently find principal components (eigenvectors)?



Singular Value Decomposition (SVD) for PCA • Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

 $X = USV^T$

where:

- 1. $U \in \mathbb{R}^{N \times N}$ columns of U are eigenvectors of XX^T
- 2. $V \in \mathbb{R}^{D \times D}$ columns of V are eigenvectors of $X^T X$
- 3. $S \in \mathbb{R}^{N \times D}$ diagonal matrix whose entries are the eigenvalues of $X \rightarrow$ squared entries are the eigenvalues of XX^T and X^TX

PCA Algorithm

- Input: $\mathcal{D} = \{ (x^{(n)}) \}_{n=1}^{N}, \rho$
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of $X^T X$
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: *Z*, the transformed (potentially lower-dimensional) data

How many PCs should we use?

- Input: $\mathcal{D} = \{ (\mathbf{x}^{(n)}) \}_{n=1}^{N}, \rho$
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of $X^T X$
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- Output: *Z*, the transformed (potentially lower-dimensional) data

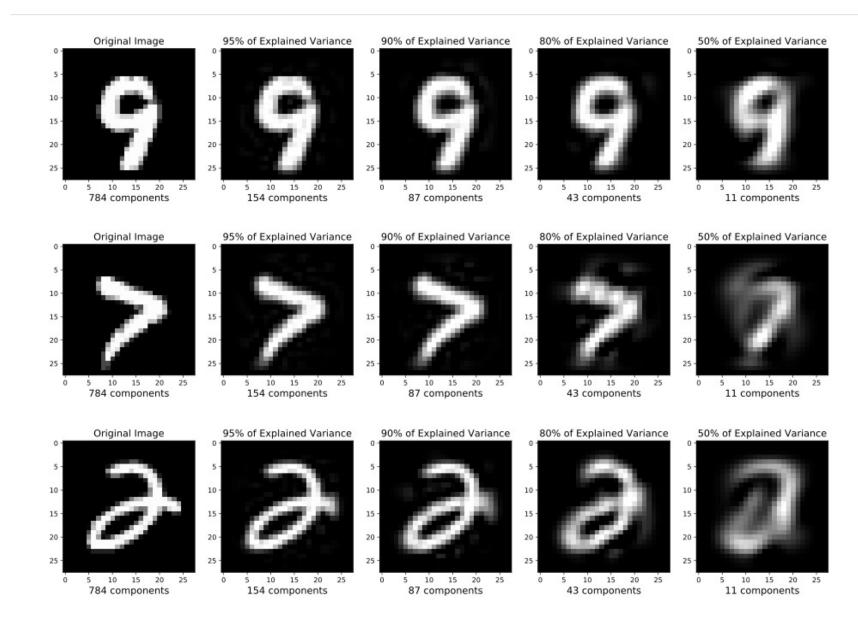
Choosing the number of PCs

• Define a percentage of explained variance for the i^{th} PC:

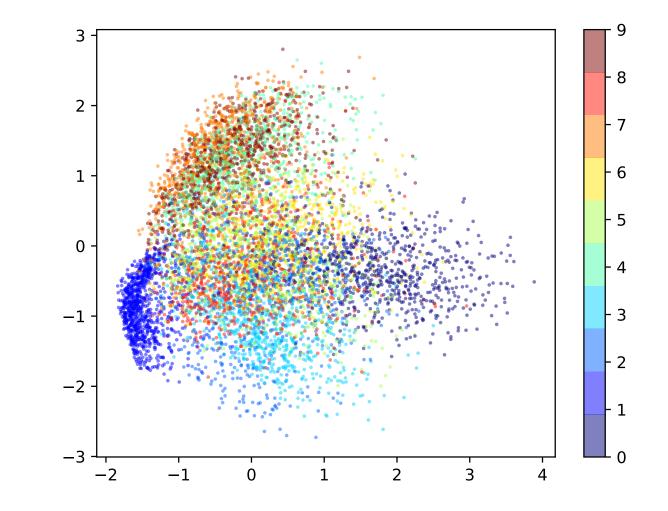
 $\lambda_i / \sum \lambda_j$

- Select all PCs above some threshold of explained variance, e.g., 5%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric

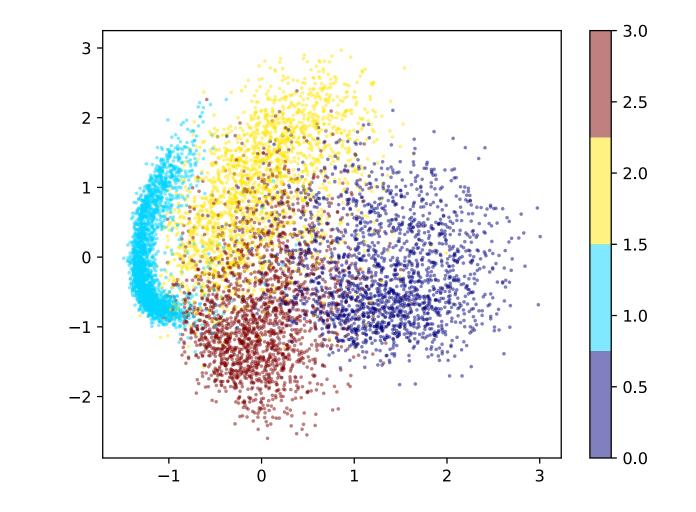
PCA Example: MNIST Digits



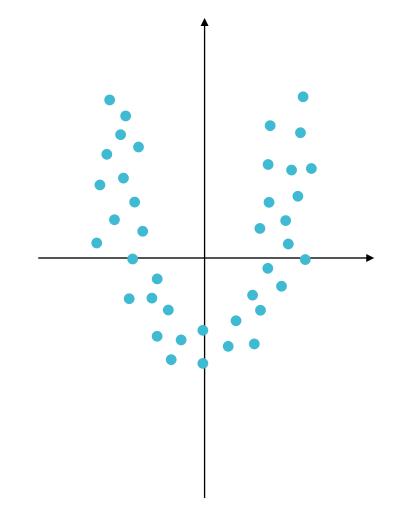
PCA Example: MNIST Digits



PCA Example: MNIST Digits



Shortcomings of PCA



- Principal components are orthogonal (unit) vectors
- Principal components can be expressed as linear combinations of the data