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Front Matter

Henry Chai - 3/13/24

* Announcements

* HW4 released 2/28, due 3/15 (Friday) at 11:59 PM
* Midterm exam on 3/19 from 7 -9 PM in DH A302

* If you have a conflict with this date/time fill out

the conflict form on Piazza ASAP

* Final exam date has been announced: Monday,

May 6th from 1 -4 PM

- Recommended Readings

* Murphy, Chapters 12.2.1-12.2.3

« Daumé lll, Chapter 15: Unsupervised Learning



https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=418
http://ciml.info/dl/v0_99/ciml-v0_99-ch15.pdf

* Format of questions:

- Multiple choice
* True / False (with justification)

* Derivations

Midterm * (Simple) Proofs
Exam * Short answers

Logistics ° Drawing & Interpreting figures

 Implementing algorithms on paper

* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-/A4-size sheet of

notes; you can put whatever you want on both sides
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* Covered material: Lectures 1 — 13

* Decision Trees
* k-NN
* Linear Regression

Midterm * MLE/MAP
Exam * Naive Bayes

TOpICS * Logistic Regression
 Regularization

* Neural Networks & Backpropagation

* CNNs & RNNs

- Attention & Transformers

3/13/24



Midterm

Exam
Preparation

3/13/24

* Review the exam practice problems (released 3/12 on

the course website, under the Recitations tab)

- Attend the dedicated exam 1 review recitation (3/15)
* Review HWs 1 -4
 Review the key takeaways throughout the lecture slides

* Write your one-page cheat sheet (back and front)


https://www.cs.cmu.edu/~hchai2/courses/10701/

* Define a model and model parameters
* Assume K clusters and use the Euclidean distance

- Parameters: iy, ..., g and zD, ... z(V)

Recipe

* Write down an objective function
for

N
K-means lex(” — 10l
=1

* Optimize the objective w.r.t. the model parameters
* Use (block) coordinate descent

Henry Chai-3/11/24



~ \1 N
* Input: D = {(x(l) )}i=1’K
1. Initialize cluster centers w4, ..., Uy

2. While NOT CONVERGED

a. Assign each data point to the cluster with the

nearest cluster center:

K-means

Algorithm 20 = argmin [|x — |,
b. Recompute the cluster centers:

1 .
- )
e =N, Z *

l Z(l)zk
where N}, is the number of data points in cluster k

- Qutput: cluster assignments z, ..., z(V)

Henry Chai-3/11/24



* . » Clusters cannot overlap
([ J
([ J
: * Clusters must all be of the

Shortcomings T
of K-means R same “width”

® ° ':':'0' .

. * Clusters must be linearly
. ° separable

Henry Chai-3/11/24



* Define a model and model parameters
- Assume K Gaussian clusters

* Parameters: 60 = {iq, ..., Ux, X1, oo, 2y 1, ooe, Wi}

* Write down an objective function
* Maximize the log marginal likelihood

N
£(0|D) = log 1_[ p(x(i)|9)
i=1

- Optimize the objective w.r.t. the model parameters
* Expectation-maximization

Henry Chai-3/11/24



Expectation-

Maximization
for GMMs:
Intuition

Henry Chai-3/11/24

* Insight: if we knew the cluster assignments, z(i), we

could maximize the log complete likelihood instead of

the log marginal likelihood

* Idea: replace zW in the log complete likelihood with our

“best guess” for z(W given the parameters and the data

* Observation: changing the parameters changes our

“best guess” and vice versa

* Approach: iterate between updating our “best guess”

and updating the parameters

10



Expectation-

Maximization
for GMMs

Henry Chai-3/11/24

* Iterative algorithm that alternates between two steps

* Expectation or E-step: for fixed parameters 0,
compute the expected assignment vectors

conditioned on 6@ and the data set D
E [Z,(Ci)|x(i),9] =p (Z’((i) = 1‘x(i),9) Viandk
* Maximization or M-step: for fixed assignment

vectors z(i), set the parameters 8 to maximize the

complete log likelihood of the data set D

* Under the hood: EM performs block-coordinate ascent

on a lower bound of the log marginal likelihood

11



E-Step for

GMMs

Henry Chai-3/11/24

(6 1) -

p( (0 _ =1, x(‘)|9)

p(x®]6)

D (z(i) =1, x(i)|9)

£ 1p( M- 1 x(‘)|9)

ﬂkN(x(.)» i, 2 )

Viandk
j= 1n]N(x(‘ M, L )

12
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N
Let N, = z p (20 = 1[x®,0)
Nk =1
e = =
1 N
e = gy, 2,7 (6 = 1]x0.0)x
=1
N

13



GMM
Algorithm

Henry Chai-3/11/24

‘input: D = {(x®@ )}, K
1. Initialize all parameters iy, ..., Ug, 21, o) 2, T, oo, T
2. While NOT CONVERGED

a. E-step: compute p (Z,gi) = 1‘x(i), 9) Viandk

b. M-step: update the parameters

* Output: parameters w4, ..., Uy, 21, -, 2, 1, ..., T and

assignments probabilities p (z,gi) = 1‘x(i), H) Viandk

14



 Common heuristics for initialization

* Cluster proportions typically initialized to be uniform

* Cluster means

- Randomly select data points to be cluster centers

- Randomly sample locations in the range spanned

by the data
Initializing EM + Cluster covariances
for GMMs - |dentity (or scaled identity) matrix

- Random positive diagonal matrix

- Randomly sample L, a lower triangular matrix

with positive diagonal entries, and set to LLT

* Set to the empirical covariance of the data

15
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* Use multiple random restarts



Terminating EM
for GMMs

Henry Chai-3/11/24

 Common heuristics for termination

- Stop if the log complete likelihood changes by less

than some tolerance

* Stop if the parameters and assignment probabilities

change by less than some tolerance

- Stop after a fixed number of iterations

16



GMMs:
Example

(Initial)




GMMs:
Example

(1 Iteration)
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GMMs:
Example

(2 Iterations)
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GMMs:
Example

(3 Iterations)
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GMMs:
Example

(4 Iterations)




GMMs:
Example

(5 Iterations)
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GMMs:
Example

(6 Iterations)
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GMMs:
Example

(20 Iterations)

Henry Chai-3/11/24



\CAELCEENR
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* Partition-based clustering

* K-means (hard assignments)
* Block-coordinate descent
- Setting K
* Initializing K means
* Gaussian mixture models (probabilistic assignments)
- Complete vs. marginal likelihood
* Expectation-maximization for GMMs

* Initializing EM for GMMs

25



Unsupervised

Learning

Henry Chai - 3/13/24

* Clustering: split an unlabeled data set into groups or
partitions of “similar” data points
* Use cases:
* Organizing data
* Discovering patterns or structure
* Preprocessing for downstream tasks

- Dimensionality Reduction: given some unlabeled data set,

learn a latent (typically lower-dimensional) representation

- Use cases:

* Decreasing computational costs
* Improving generalization
* Visualizing data

31



Feature Elimination

Henry Chai - 3/13/24

32



Feature Reduction

Henry Chai - 3/13/24
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Option A

Which projection do you prefer?

Henry Chai - 3/13/24

Option B

34



* To be consistent, we will constrain principal components

to be orthogonal unit vectors that begin at the origin

* Preprocess data to be centered around the origin:

N
1
: — (n)
Centering the LH Nzx
n=1

Data 2. %™ = xW —yvn

_%(1)’1"_

7@

)T

Henry Chai - 3/13/24



Reconstruction
Error

Henry Chai - 3/13/24

- The projection of ™ onto a

vector v is

) — <vT§(n)
vl

_—

Length of projection

) T
O\

Direction of projection
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Reconstruction
Error

Henry Chai - 3/13/24

* The projection of %™ onto a unit vector v is

z(W = (vT'g(n))v

¥ = argmin Z”x(") (vT ("))v ||2

v IIvIIZ—l

2 — (TE™)w ||
= %M Fm) _ 2(vT¥ W) + (V1MW) (T )y

= %™ F™ _ (pT )T %M

= [[E; - (@"=™)’
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Minimizing the
Reconstruction
Error

()
Maximizing the
Variance

Henry Chai - 3/13/24

D = argmin ZHx(n) M

v IIvIIZ—l

argmin z ||x(”) || — (v

v IIvIIz—l

(n))z

Variance of projections
= argmax Z(v x(")) — Pro)

vi|lv|l5=1 =1

N

oy T

= argmax vT< E ¥ () x()
vi|lv|l5=1 =1

= argmax v! XTX)v
vilvll5=1

%™ are centered)

)s
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Maximizing the
Variance

Henry Chai - 3/13/24

D = argmax v (XTX)v
vi|vll5=1
L, ) = v XTX)v - A(lvll5 — 1)
= v XTX)v-A1v'v-1)

0L
. X' X)v—Av

> XTX)W-1w=0-X'X)p=1p

AN .

- D is an eigenvector of X' X and A is the

corresponding eigenvalue! But which one?

39



Maximizing the
Variance

Henry Chai - 3/13/24

D = argmax v (XTX)v
vi|lv|l5=1

XTX)o =10 - T XTX)p=9"Dp=2

- The first principal component is the eigenvector v, that
corresponds to the largest eigenvalue 14
- The second principal component is the eigenvector v,
that corresponds to the second largest eigenvalue 14
- V1 and D, are orthogonal
- Etc...

- A; is a measure of how much variance falls along v;

40



Principal

Components:
Example

Henry Chai - 3/13/24

Source: https://en.wikipedia.org/wiki/Principal component analysis#/media/File:GaussianScatterPCA.svg

41


https://en.wikipedia.org/wiki/Principal_component_analysis

How can we
efficiently find

principal
components
(eigenvectors)?

Henry Chai - 3/13/24

Source: https://en.wikipedia.org/wiki/Principal component analysis#/media/File:GaussianScatterPCA.svg

42


https://en.wikipedia.org/wiki/Principal_component_analysis

]RNXD

* Every real-valued matrix X € can be expressed as

X=USsvT
- where:
Singular Value
Decomposition 1. U € R¥*N _columns of U are eigenvectors of XX T
(SVD) for PCA 2. Ve RP*P - columns of V are eigenvectors of XTX

3. S € RM*P _djagonal matrix whose entries are the

eigenvalues of X — squared entries are the
eigenvalues of XX and XTX

Henry Chai - 3/13/24

43



* Input: D = {(x™ )}Zzl,p
1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

PCA Algorithm

3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P

4. Project the data into the space defined by ,, Z = XV,

* OQutput: Z, the transformed (potentially lower-

dimensional) data

Henry Chai - 3/13/24 44



* Input: D = {(x™ )}Zzl,p
1. Center the data

2. Use SVD to compute the eigenvalues and eigenvectors
of XTX

How many PCs

should we use? 3. Collect the top p eigenvectors (corresponding to the p

largest eigenvalues), V, € RP*P

4. Project the data into the space defined by ,, Z = XV,

* OQutput: Z, the transformed (potentially lower-

dimensional) data

Henry Chai - 3/13/24 45



Choosing the

number of PCs

Henry Chai - 3/13/24

- Define a percentage of explained variance for the it PC:

Ayé%

» Select all PCs above some threshold of explained

variance, e.g., 5%

- Keep selecting PCs until the total explained variance

exceeds some threshold, e.g., 90%

* Evaluate on some downstream metric

46
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Figures courtesy of Matt Gormley
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Figure courtesy of Matt Gormley
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PCA Example:

MNIST Digits o

Henry Chai - 3/13/24 Figure courtesy of Matt Gormley



Shortcomings

of PCA

Henry Chai - 3/13/24

v

* Principal components are

orthogonal (unit) vectors

* Principal components can

be expressed as linear

combinations of the data
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