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Front Matter

� Announcements

� HW4 released 2/28, due 3/15 (Friday) at 11:59 PM

� Midterm exam on 3/19 from 7 – 9 PM in DH A302

� If you have a conflict with this date/time fill out 

the conflict form on Piazza ASAP

� Final exam date has been announced: Monday, 
May 6th from 1 – 4 PM

� Recommended Readings

� Murphy, Chapters 12.2.1 - 12.2.3

� Daumé III, Chapter 15: Unsupervised Learning
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https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=418
http://ciml.info/dl/v0_99/ciml-v0_99-ch15.pdf


Midterm 
Exam  
Logistics

� Format of questions:
� Multiple choice

� True / False (with justification)

� Derivations
� (Simple) Proofs

� Short answers
� Drawing & Interpreting figures

� Implementing algorithms on paper

� No electronic devices (you won’t need them!)

� You are allowed to bring one letter-/A4-size sheet of 
notes; you can put whatever you want on both sides
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Midterm 
Exam
Topics

� Covered material: Lectures 1 – 13

� Decision Trees

� !-NN

� Linear Regression

� MLE/MAP

� Naïve Bayes

� Logistic Regression

� Regularization

� Neural Networks & Backpropagation

� CNNs & RNNs

� Attention & Transformers
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Midterm 
Exam 
Preparation

� Review the exam practice problems (released 3/12 on 
the course website, under the Recitations tab)

� Attend the dedicated exam 1 review recitation (3/15)

� Review HWs 1 - 4

� Review the key takeaways throughout the lecture slides

� Write your one-page cheat sheet (back and front)
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https://www.cs.cmu.edu/~hchai2/courses/10701/


Recipe 
for 
!-means
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� Define a model and model parameters
� Assume " clusters and use the Euclidean distance
� Parameters: #!, … , #" and & ! , … , & #

� Write down an objective function

'
$%!

#
( $ − #& ! '

� Optimize the objective w.r.t. the model parameters
� Use (block) coordinate descent



!-means 
Algorithm
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� Input: * = ( $ 	 $%!
# , "

1. Initialize cluster centers #!, … , #"
2. While NOT CONVERGED

a. Assign each data point to the cluster with the 
nearest cluster center:

&($) = argmin
*

( $ − #* '
b. Recompute the cluster centers:

#* =
1
4*

'
$	∶& ! %*

( $

where 4* is the number of data points in cluster !

� Output: cluster assignments & ! , … , & #



Shortcomings 
of !-means

� Clusters cannot overlap

� Clusters must all be of the 
same “width” 

� Clusters must be linearly 
separable 
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� Define a model and model parameters
� Assume " Gaussian clusters
� Parameters: 5 = #!, … , #", Σ!, … , Σ", 7!, … , 7"

� Write down an objective function
� Maximize the log marginal likelihood

ℓ 5 * = log;
$%!

#
< ( $ 5

� Optimize the objective w.r.t. the model parameters
� Expectation-maximization
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Recipe 
for 
GMMs



Expectation- 
Maximization 
for GMMs:
Intuition

� Insight: if we knew the cluster assignments, = $ , we 

could maximize the log complete likelihood instead of 

the log marginal likelihood

� Idea: replace = $  in the log complete likelihood with our 

“best guess” for = $  given the parameters and the data 

� Observation: changing the parameters changes our 
“best guess” and vice versa

� Approach: iterate between updating our “best guess” 
and updating the parameters
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Expectation- 
Maximization 
for GMMs 

� Iterative algorithm that alternates between two steps

� Expectation or E-step: for fixed parameters 5, 
compute the expected assignment vectors 
conditioned on 5 and the data set *

> &*$ |( $ , 5 = < &*$ = 1 ( $ , 5 	∀	A	and	!
� Maximization or M-step: for fixed assignment 

vectors = $ , set the parameters 5	to maximize the 
complete log likelihood of the data set *

� Under the hood: EM performs block-coordinate ascent 
on a lower bound of the log marginal likelihood

Henry Chai - 3/11/24 11



E-Step for 
GMMs

< &*$ = 1 ( $ , 5 =
< &*$ = 1, ( $ |5

< ( $ |5

< &*$ = 1 ( $ , 5 =
< &*$ = 1, ( $ |5

∑-%!" < &-
$ = 1, ( $ |5

< &*$ = 1 ( $ , 5 = 7*4 ( $ ; E*, Σ*
∑-%!" 7-4 ( $ ; E-, Σ-

	∀	A	and	!
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M-Step for 
GMMs

Let	4* ='
$%!

#
< &*$ = 1 ( $ , 5

7* =
4*
4

E* =
1
4*

'
$%!

#
< &*$ = 1 ( $ , 5 ( $

Σ* =
1
4*

'
$%!

#
< &*$ = 1 ( $ , 5 ( $ − E* ( $ − E*

.
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� Input: * = ( $ 	 $%!
# , "

1. Initialize all parameters #!, … , #", Σ!, … , Σ", 7!, … , 7"
2. While NOT CONVERGED

a. E-step: compute < &*$ = 1 ( $ , 5 ∀	A	and	!
b. M-step: update the parameters

� Output: parameters #!, … , #", Σ!, … , Σ", 7!, … , 7" and 

assignments probabilities < &*$ = 1 ( $ , 5 ∀	A	and	!

GMM
Algorithm



Initializing EM 
for GMMs

� Common heuristics for initialization

� Cluster proportions typically initialized to be uniform

� Cluster means

� Randomly select data points to be cluster centers 

� Randomly sample locations in the range spanned 
by the data 

� Cluster covariances 

� Identity (or scaled identity) matrix

� Random positive diagonal matrix

� Randomly sample I, a lower triangular matrix 
with positive diagonal entries, and set to II/

� Set to the empirical covariance of the data

� Use multiple random restartsHenry Chai - 3/11/24 15



Terminating EM
for GMMs

� Common heuristics for termination

� Stop if the log complete likelihood changes by less 
than some tolerance

� Stop if the parameters and assignment probabilities 
change by less than some tolerance 

� Stop after a fixed number of iterations
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17Figure courtesy of Pat Virtue

GMMs: 
Example
(Initial)
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18Figure courtesy of Pat Virtue

GMMs: 
Example
(1 Iteration)
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19Figure courtesy of Pat Virtue

GMMs: 
Example
(2 Iterations)
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20Figure courtesy of Pat Virtue

GMMs: 
Example
(3 Iterations)
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21Figure courtesy of Pat Virtue

GMMs: 
Example
(4 Iterations)

Henry Chai - 3/11/24



22Figure courtesy of Pat Virtue

GMMs: 
Example
(5 Iterations)
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23Figure courtesy of Pat Virtue

GMMs: 
Example
(6 Iterations)
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GMMs: 
Example
(20 Iterations)
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Key Takeaways

� Partition-based clustering

� "-means (hard assignments)

� Block-coordinate descent

� Setting "
� Initializing " means

� Gaussian mixture models (probabilistic assignments)

� Complete vs. marginal likelihood

� Expectation-maximization for GMMs

� Initializing EM for GMMs
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Unsupervised 
Learning

� Clustering: split an unlabeled data set into groups or 
partitions of “similar” data points

� Use cases:
� Organizing data
� Discovering patterns or structure
� Preprocessing for downstream tasks

� Dimensionality Reduction: given some unlabeled data set, 
learn a latent (typically lower-dimensional) representation

� Use cases:
� Decreasing computational costs
� Improving generalization
� Visualizing data
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J!

J'

J!

J'

Feature Elimination ∈ Dimensionality Reduction
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J!

J'

Feature Reduction

J!

J'
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J!

J'

Which projection do you prefer?

J!

J'

Option A Option B



Centering the 
Data

� To be consistent, we will constrain principal components 
to be orthogonal unit vectors that begin at the origin

� Preprocess data to be centered around the origin:

1. 	# = 1
4'0%!

#
( 0

2.	M( 0 = ( 0 − #	∀	N

3. 	P =
M( ! .

M( ' .

⋮
M( # .
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Reconstruction 
Error

� The projection of M( 0  onto a unit vector R is

= 0 = R.M( 0

R '

R
R '

Henry Chai - 3/13/24 36

Length of projection Direction of projection



� The projection of M( 0  onto a unit vector R is
= 0 = R.M( 0 R

M( 0 − R.M( 0 R '
'

	 = M( 0 .M( 0 − 2 R.M( 0 R.M( 0 + R.M( 0 R.M( 0 R.R

	 = M( 0 .M( 0 − R.M( 0 R.M( 0

	 = M( 0
'
' − R.M( 0 '

Reconstruction 
Error
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TR = argmin
1: 1 ""%!

	'
0%!

#
M( 0 − R.M( 0 R '

'



Minimizing the
Reconstruction 
Error 

⇕
Maximizing the
Variance
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TR = argmin
1: 1 ""%!

	'
0%!

#
M( 0 − R.M( 0 R '

'

TR = argmin
1: 1 ""%!

	'
0%!

#
M( 0

'
' − R.M( 0 '

TR = argmax
1: 1 ""%!

	'
0%!

#
R.M( 0 ' Variance of projections 

(M( 0  are centered)

TR = argmax
1: 1 ""%!

	R. '
0%!

#
M( 0 M( 0 . R

TR = argmax
1: 1 ""%!

	R. P.P R



Maximizing the
Variance

Henry Chai - 3/13/24 39

TR = argmax
1: 1 ""%!

	R. P.P R

ℒ R, W = 	R. P.P R − W R '' − 1
ℒ R, W = 	R. P.P R − W R.R − 1

Xℒ
XR = P.P R − WR
Xℒ
XR → P.P TR − WTR = 0 → P.P TR = WTR
Xℒ
XR

• TR is an eigenvector of P.P and W is the 
corresponding eigenvalue! But which one?



Maximizing the
Variance
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TR = argmax
1: 1 ""%!

	R. P.P R

P.P TR = WTR 	→ 	 TR. P.P TR = WTR.TR = W

• The first principal component is the eigenvector TR! that 
corresponds to the largest eigenvalue W!
• The second principal component is the eigenvector TR' 

that corresponds to the second largest eigenvalue W!
• TR! and TR' are orthogonal 

• Etc … 
• W$ is a measure of how much variance falls along TR$



Principal 
Components: 
Example

Henry Chai - 3/13/24 41Source: https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg 

https://en.wikipedia.org/wiki/Principal_component_analysis


Henry Chai - 3/13/24 42Source: https://en.wikipedia.org/wiki/Principal_component_analysis#/media/File:GaussianScatterPCA.svg 

How can we 
efficiently find 
principal 
components 
(eigenvectors)?

https://en.wikipedia.org/wiki/Principal_component_analysis


Singular Value 
Decomposition 
(SVD) for PCA

� Every real-valued matrix P ∈ ℝ#×4 can be expressed as

P = ]^_. 

where:

1.  ] ∈ ℝ#×# - columns of ] are eigenvectors of PP.

2.  _ ∈ ℝ4×4 - columns of _ are eigenvectors of P.P
3.  ^ ∈ ℝ#×4 - diagonal matrix whose entries are the   

eigenvalues of P → squared entries are the 
eigenvalues of PP. and P.P
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PCA Algorithm
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� Input: * = ( 0 	 0%!
# , `

1. Center the data 

2. Use SVD to compute the eigenvalues and eigenvectors 
of P.P

3. Collect the top ` eigenvectors (corresponding to the ` 
largest eigenvalues), _5 ∈ ℝ4×5 

4. Project the data into the space defined by _5, a = P_5
� Output: a, the transformed (potentially lower-

dimensional) data



How many PCs 
should we use?

Henry Chai - 3/13/24 45

� Input: * = ( 0 	 0%!
# , `

1. Center the data 

2. Use SVD to compute the eigenvalues and eigenvectors 
of P.P

3. Collect the top ` eigenvectors (corresponding to the ` 
largest eigenvalues), _5 ∈ ℝ4×5 

4. Project the data into the space defined by _5, a = P_5
� Output: a, the transformed (potentially lower-

dimensional) data



Choosing the 
number of PCs

� Define a percentage of explained variance for the Ath PC: 

bW$ ∑W-
� Select all PCs above some threshold of explained 

variance, e.g., 5%

� Keep selecting PCs until the total explained variance 
exceeds some threshold, e.g., 90%

� Evaluate on some downstream metric
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PCA Example: 
MNIST Digits

Henry Chai - 3/13/24 47Figures courtesy of Matt Gormley



PCA Example: 
MNIST Digits
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PCA Example: 
MNIST Digits

Henry Chai - 3/13/24 49Figure courtesy of Matt Gormley



Shortcomings 
of PCA
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� Principal components are 
orthogonal (unit) vectors

� Principal components can 
be expressed as linear 
combinations of the data


