10-701: Introduction to Machine Learning Lecture 16: Value and Policy Iteration

Henry Chai

3/18/24

Front Matter

- Announcements
	- Midterm exam on 3/19 (tomorrow!) from **7 – 9 PM in DH A302**
	- Project proposals due on 3/22 (Friday) at 11:59 PM
		- You should submit proposals as a group, not individually: each group only needs to submit a single PDF
	- HW5 released 3/22 (Friday), due 4/1 at 11:59 PM
		- This is a *shorter, written-only HW*; you are expected to be working on your projects concurrently
- Recommended Readings
- **Mitchell, [Chapter 13](http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf) 2 2**

Principal Components: Example

PCA Algorithm

- Input: $\mathcal{D} = \{(\boldsymbol{x}^{(n)})\}$ $n=1$ \overline{N} , ρ
- 1. Center the data
- 2. Use SVD to compute the eigenvalues and eigenvectors of $X^T X$
- 3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
- 4. Project the data into the space defined by V_{ρ} , $Z = XV_{\rho}$
- \cdot Output: Z , the transformed (potentially lowerdimensional) data

Shortcomings of PCA

 Principal components are constrained to be orthogonal (unit) vectors

Insight: neural networks implicitly learn low-dimensional representations of

Autoencoders

Learn the weights by minimizing the reconstruction loss:

$$
e(\pmb{x}) = \left\| \pmb{x} - \pmb{o}^{(L)} \right\|_2^2
$$

Autoencoders

Deep Autoencoders

PCA (A) vs. Autoencoders (B) (Hinton and Salakhutdinov, 2014)

Key Takeaways

 PCA finds an orthonormal basis where the first principal component maximizes the variance \Leftrightarrow minimizes the reconstruction error

- PCs are given by the eigenvectors of the covariance matrix $X^T X$ with the corresponding eigenvalues being a measure of the variance captured by that PC
- Eigenvectors & eigenvalues can be computed using SVD
- * ICA finds statistically independent, not orthogonal componen
- Autoencoders use neural networks to automatically learn a latent representation that minimizes the reconstruction error

Learning Paradigms

- Supervised learning $\mathcal{D} = \{(\boldsymbol{x}^{(i)}, y^{(i)})\}$ $i=1$ \overline{N} • Regression - $y^{(i)} \in \mathbb{R}$ • Classification - $y^{(i)} \in \{1, ..., C\}$
- Unsupervised learning $\mathcal{D} = \{ \boldsymbol{x}^{(i)} \}$ $i=1$ \overline{N}

Clustering

- Dimensionality reduction
- Reinforcement learning $\mathcal{D} = \{ (\mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)}) \}$ $n=1$ \overline{N}
- Active learning
- **· Semi-supervised learning**
- Online learning

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/ Source: https://www.wired.com/2012/02/high-speed-trading/

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Henry Chai - 3/18/24

Source: https://twitter.com/alphagomovie

Reinforcement Learning: Problem Formulation

- \cdot State space, S
- \cdot Action space, \mathcal{A}
- Reward function
	- Stochastic, $p(r | s, a)$
	- Deterministic, $R: S \times \mathcal{A} \rightarrow \mathbb{R}$
- **Transition function**
	- Stochastic, $p(s' | s, a)$
	- Deterministic, δ : $S \times \mathcal{A} \rightarrow S$

Reinforcement Learning: Problem Formulation

• Policy, $\pi : \mathcal{S} \to \mathcal{A}$

- Specifies an action to take in *every* state
- Value function, V^{π} : $S \to \mathbb{R}$
	- Measures the expected total payoff of starting in some state s and executing policy π , i.e., in every state, taking the action that π returns

- \cdot $S =$ all empty squares in the grid
- \cdot $\mathcal{A} = \{ \text{up}, \text{down}, \text{left}, \text{right} \}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward

Is this policy optimal?

Optimal policy given a reward of -2 per step

Optimal policy given a reward of -0.1 per step

Markov Decision Process (MDP) Assume the following model for our data:

- Start in some initial state s_0
- 2. For time step t :
	- 1. Agent observes state s_t
	- 2. Agent takes action $a_t = \pi(s_t)$
	- 3. Agent receives reward $r_t \sim p(r | s_t, a_t)$
	- 4. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

3. Total reward is \sum $\overline{t=0}$ ∞ $\gamma^t r_t$

 MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Reinforcement Learning: 3 Key **Challenges**

- 1. The algorithm has to gather its own training data
- 2. The outcome of taking some action is often stochastic or unknown until after the fact
- 3. Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi -armed bandit

- Single state: $|{\mathcal{S}}| = 1$
- Three actions: $A = \{1, 2, 3, \}$
- Deterministic transitions
- Rewards are stochastic

MDP Example: Multi -armed bandit

Reinforcement Learning: **Objective** Function

• Find a policy $\pi^* = \argmax V^{\pi}(s)$ $\forall s \in S$ π

 $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}].$ s and executing policy π forever]

$$
= \mathbb{E}_{p(s' \mid s, a)}[R(s_0 = s, \pi(s_0))
$$

 $+ \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots$

$$
= \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{p(s'|s,a)} [R(s_t, \pi(s_t))]
$$

 ∞

where $0 < y < 1$ is some discount factor for future rewards

Value Function: Example

$$
\begin{array}{|c|c|c|}\n\hline\n0 & 1 & 2 & 3 & 4 & 6 \\
\hline\n-2 & 1 & 2 & 3 & 4 & 6 \\
\hline\n\end{array}
$$

$$
R(s,a) = \left\{
$$

 $\sqrt{-2}$ if entering state 0 (safety) 3 if entering state 5 (field goal) 7 if entering state 6 (touch down) 0 otherwise

 $\gamma = 0.9$

Value Function: Example

 $R(s, a) =$ −2 if entering state 0 (safety 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise $\gamma = 0.9$ -2 -1.8 2.7 3 0 0

Value Function: Example

 $R(s, a) =$ -2 if entering state 0 (safety) 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise $\gamma = 0.9$ 5.10 5.67 6.3 7 0 0 0

How can we learn this optimal policy?

 $R(s, a) =$ -2 if entering state 0 (safety) 3 if entering state 5 (field goal 7 if entering state 6 (touch down) 0 otherwise $\gamma = 0.9$ 5.10 5.67 6.3 7 0 0 0

 $V^{\pi}(s) = \mathbb{E}$ [discounted total reward of starting in state s and executing policy π forever]

$$
= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \dots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \dots | s_1])
$$

 $V^{\pi}(s) = \mathbb{E}$ [discounted total reward of starting in state s and executing policy π forever]

 $= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]$ $= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + ... | s_0 = s]$ = $R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)))$ $+ \gamma \mathbb{E} [R(s_2, \pi(s_2)) + \cdots | s_1]$

 $V^{\pi}(s) = \mathbb{E}$ [discounted total reward of starting in state s and executing policy π forever]

$$
= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \dots | s_0 = s]
= R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \dots | s_1])

 $V^{\pi}(s) = \mathbb{E}$ [discounted total reward of starting in state s and executing policy π forever]

 $= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]$

 $= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + ... | s_0 = s]$ = $R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)))$ $+ \gamma \mathbb{E} [R(s_2, \pi(s_2)) + \cdots | s_1]$

•
$$
V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}
$$

executing policy π forever]

$$
= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_1, \pi(s_1)) + \gamma R(s_2, \pi(s_2)) + \dots | s_0 = s]
$$

\n
$$
= R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 | s, \pi(s)) (R(s_1, \pi(s_1)) + \gamma \mathbb{E}[R(s_2, \pi(s_2)) + \dots | s_1])
$$

$$
V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)
$$

Bellman equations

Optimality

Optimal value function:

$$
V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')
$$

• System of $|\mathcal{S}|$ equations and $|\mathcal{S}|$ variables

Optimal policy:

