10-701: Introduction to Machine Learning Lecture 17: Q-Learning and Deep RL

Henry Chai

3/20/24

Front Matter

- Announcements
 - Project proposals due on 3/22 (Friday) at 11:59 PM
 - You should submit proposals as a group, not individually: each group only needs to submit a single PDF
 - HW5 released 3/22 (Friday), due 4/1 at 11:59 PM
 - This is a *shorter, written-only HW*; you are expected to be working on your projects concurrently
- Recommended Readings
 - Mitchell, Chapter 13

Recall: Markov Decision Process (MDP) • Assume the following model for our data:

- 1. Start in some initial state *s*₀
- 2. For time step *t*:
 - 1. Agent observes state s_t
 - 2. Agent takes action $a_t = \pi(s_t)$

 \sim

- 3. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
- 4. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

3. Total reward is
$$\sum_{t=0}^{\infty} \gamma^t r_t$$

• MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Recall: Value Function

•
$$V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}$$

executing policy π forever]

$$= \mathbb{E}[R(s_{0}, \pi(s_{0})) + \gamma R(s_{1}, \pi(s_{1})) + \gamma^{2} R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_{1}, \pi(s_{1})) + \gamma R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \sum_{s_{1} \in S} p(s_{1} | s, \pi(s)) (R(s_{1}, \pi(s_{1})) + \gamma \mathbb{E}[R(s_{2}, \pi(s_{2})) + \dots | s_{1}])$$

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)$$

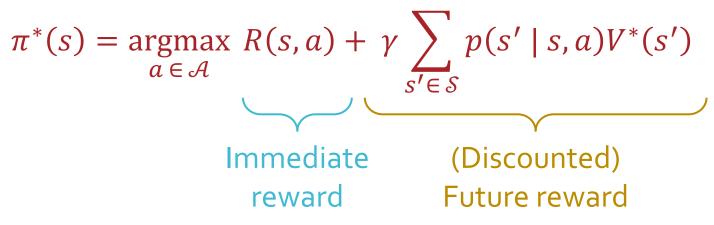
Bellman equations

4

Recall: Optimality • Optimal value function:

$$V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

• System of $|\mathcal{S}|$ equations and $|\mathcal{S}|$ variables



Fixed Point Iteration

- Iterative method for solving a system of equations
- Given some equations and initial values

$$x_{1} = f_{1}(x_{1}, \dots, x_{n})$$

$$\vdots$$

$$x_{n} = f_{n}(x_{1}, \dots, x_{n})$$

$$x_{1}^{(0)}, \dots, x_{n}^{(0)}$$

• While not converged, do

$$x_1^{(t+1)} \leftarrow f_1\left(x_1^{(t)}, \dots, x_n^{(t)}\right)$$

•

$$x_n^{(t+1)} \leftarrow f_n\left(x_1^{(t)}, \dots, x_n^{(t)}\right)$$

Fixed Point Iteration: Example

$$x_{1} = x_{1}x_{2} + \frac{1}{2}$$

$$x_{2} = -\frac{3x_{1}}{2}$$

$$x_{1}^{(0)} = x_{2}^{(0)} = 0$$

$$\hat{x}_{1} = \frac{1}{3}, \hat{x}_{2} = -\frac{1}{2}$$

t	$x_1^{(t)}$	$x_2^{(t)}$
0	0	0
1	0.5	0
2	0.5	-0.75
3	0.125	-0.75
4	0.4063	-0.1875
5	0.4238	-0.6094
6	0.2417	-0.6357
7	0.3463	-0.3626
8	0.3744	-0.5195
9	0.3055	-0.5616
10	0.3284	-0.4582
11	0.3495	-0.4926
12	0.3278	-0.5243
13	0.3281	-0.4917
14	0.3386	-0.4922
15	0.3333	-0.5080

Value Iteration

Inputs: R(s, a), p(s' | s, a)
Initialize V⁽⁰⁾(s) = 0 ∀ s ∈ S (or randomly) and set t = 0
While not converged, do:
For s ∈ S

$$V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V^{(t)}(s')$$

•
$$t = t + 1$$

• For $s \in S$
 $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V^{(t)}(s')$
• Return π^*

Henry Chai - 3/20/24

Synchronous Value Iteration

• Inputs: R(s, a), p(s' | s, a)• Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set t = 0• While not converged, do: • For $s \in S$ • For $a \in \mathcal{A}$ $Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V^{(t)}(s')$ • $V^{(t+1)}(s) \leftarrow \max_{a \in \mathcal{A}} Q(s,a)$ • t = t + 1• For $s \in S$ $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(t)}(s')$ • Return π^*

Asynchronous Value Iteration

• Inputs: $R(s, a), p(s' \mid s, a)$ • Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) • While not converged, do: • For $s \in S$ • For $a \in \mathcal{A}$ $Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V(s')$ • $V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$ • For $s \in S$ $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{c' \in \mathcal{C}} p(s' \mid s, a) V(s')$ • Return π^*

Value Iteration Theory

• Theorem 1: Value function convergence

V will converge to V^* if each state is "visited"

infinitely often (Bertsekas, 1989)

• Theorem 2: Convergence criterion

 $\inf \max_{s \in \mathcal{S}} \left| V^{(t+1)}(s) - V^{(t)}(s) \right| < \epsilon,$

then $\max_{s \in S} |V^{(t+1)}(s) - V^*(s)| < \frac{2\epsilon\gamma}{1-\gamma}$ (Williams & Baird, 1993)

• Theorem 3: Policy convergence

The "greedy" policy, $\pi(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q(s, a)$, converges to the optimal π^* in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

Policy Iteration

• Inputs: R(s, a), p(s' | s, a)

- Initialize π randomly
- While not converged, do:
 - Solve the Bellman equations defined by policy π

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, \pi(s)) V^{\pi}(s')$$

• Update π

$$\pi(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s')$$

• Return π

Policy Iteration Theory

- In policy iteration, the policy improves in each iteration.
- Given finite state and action spaces, there are finitely many possible policies
 - Thus, the number of iterations needed to converge is bounded!
- Value iteration takes $O(|\mathcal{S}|^2|\mathcal{A}|)$ time / iteration
- Policy iteration takes $O(|\mathcal{S}|^2|\mathcal{A}| + |\mathcal{S}|^3)$ time / iteration
 - However, empirically policy iteration requires fewer iterations to converge

Key Takeaways

- In reinforcement learning, we assume our data comes from a Markov decision process
- The goal is to compute an optimal policy or function that maps states to actions
- Value function can be defined in terms of values of all other states; this is called the Bellman equations
- If the reward and transition functions are known, we can solve for the optimal policy (and value function) using value or policy iteration
 - Both algorithms are instances of fixed point iteration and are guaranteed to converge (under some assumptions)

Two big Q's

 What can we do if the reward and/or transition functions/distributions are unknown?

 How can we handle infinite (or just very large) state/action spaces? Value Iteration

Inputs: R(s, a), p(s' | s, a), γ
Initialize V⁽⁰⁾(s) = 0 ∀ s ∈ S (or randomly) and set t = 0
While not converged, do:

For s ∈ S
For a ∈ A

• $V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$ • For $s \in S$ $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V(s')$ • Return π^*

 $Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V(s')$

Q*(s, a) w/ deterministic rewards

• $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}]$

$$= R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) V^*(s')$$

$$V^*(s') = \max_{a' \in \mathcal{A}} Q^*(s',a')$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) \left[\max_{a' \in \mathcal{A}} Q^*(s',a')\right]$$

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s,a)$$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Q*(s, a) w/ deterministic rewards and transitions • $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal]}$

 $= R(s,a) + \gamma V^*(\delta(s,a))$

• $V^*(\delta(s,a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$ $Q^*(s,a) = R(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$

 $\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Henry Chai - 3/20/24

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: Online learning (table form) • Inputs: discount factor γ , an initial state s

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - Take a random action *a*

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update *Q*(*s*, *a*):

 $Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update Q(s, a):

 $Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$

• Update Q(s, a):

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a')\right)$$

Current Update w/

value

deterministic transitions

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

• Receive reward r = R(s, a)

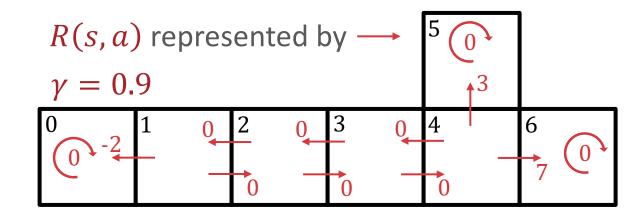
value

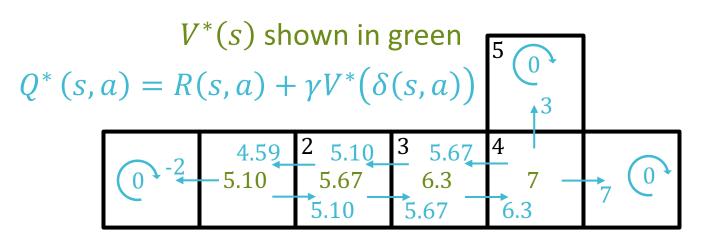
Update the state: s ← s' where s' ~ p(s' | s, a) Temporal
Update Q(s, a): difference

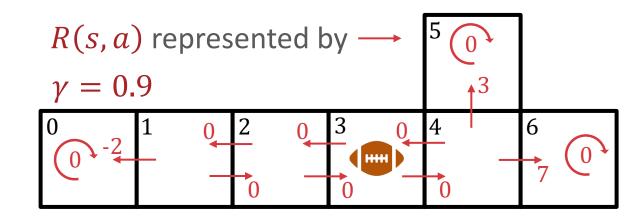
$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Current Temporal difference

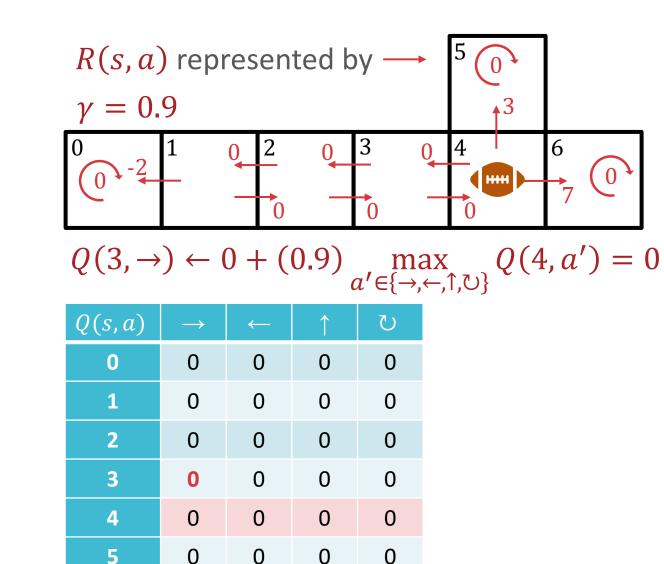
target

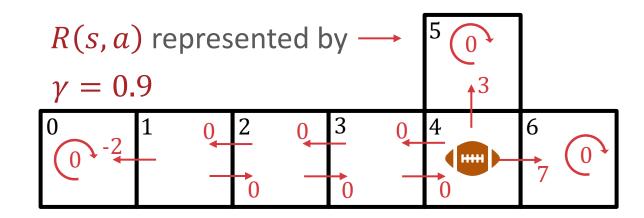




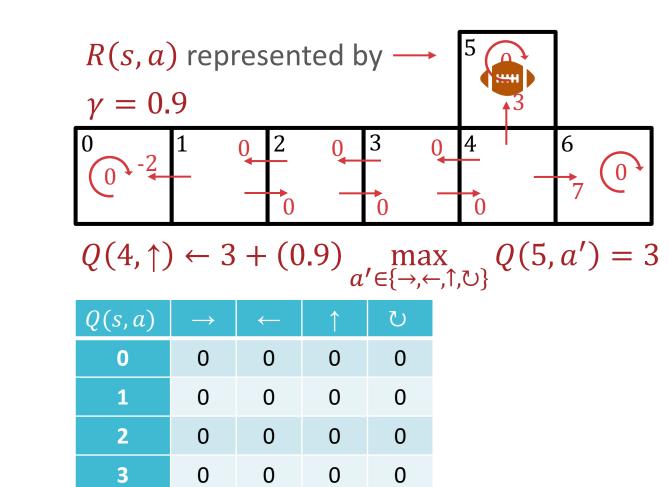


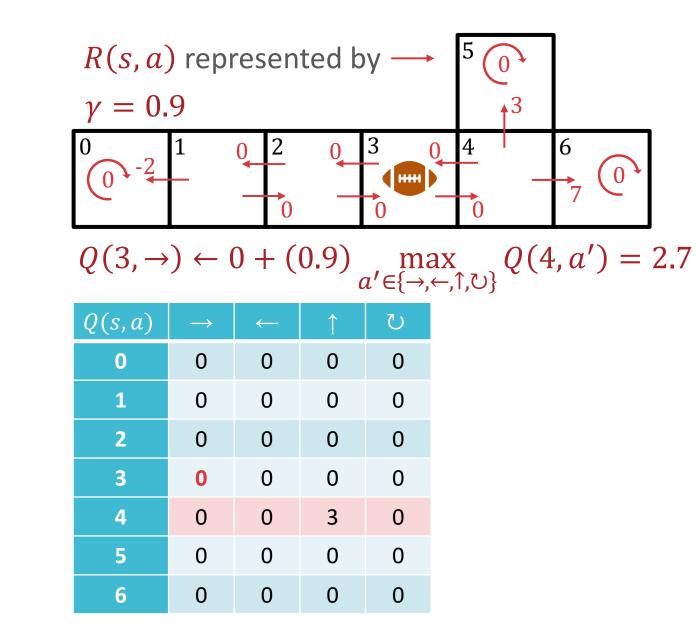
Q(s,a)	\rightarrow	\leftarrow	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0

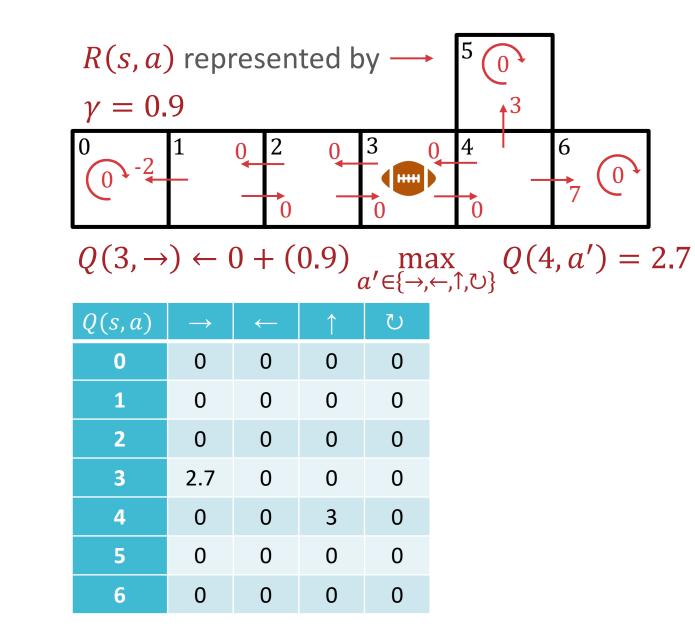




Q(s,a)	\rightarrow	\leftarrow	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0







Learning Q*(s, a): Convergence • For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- **2**. $0 \le \gamma < 1$
- **3**. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
- 4. Initial *Q* values are finite

Learning Q*(s, a): Convergence • For Algorithm 3 (temporal difference learning), Q converges to Q^* if

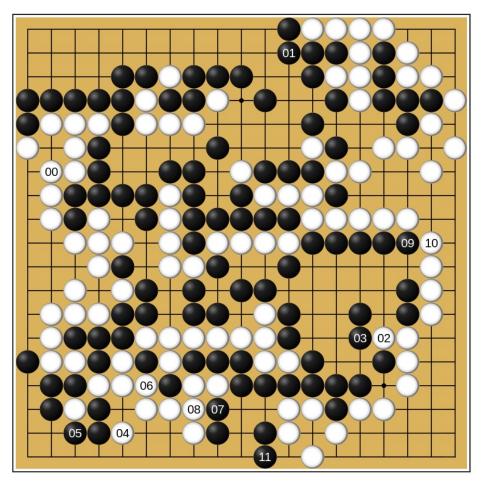
- 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- $2. \ 0 \le \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
- 4. Initial *Q* values are finite
- 5. Learning rate α_t follows some "schedule" s.t.

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = \frac{1}{t+1}$

Two big Q's

- What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- How can we handle infinite (or just very large) state/action spaces?

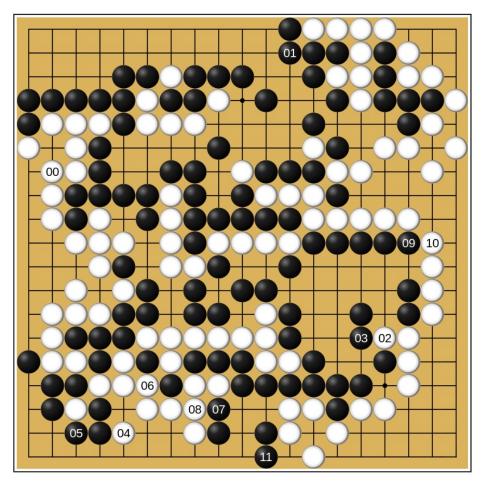
AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- How many legal Go board states are there?

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- There are ~10¹⁷⁰ legal Go board states!

Henry Chai - 3/20/24

Two big Q's

- What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- How can we handle infinite (or just very large) state/action spaces?
 - Throw a neural network at it!

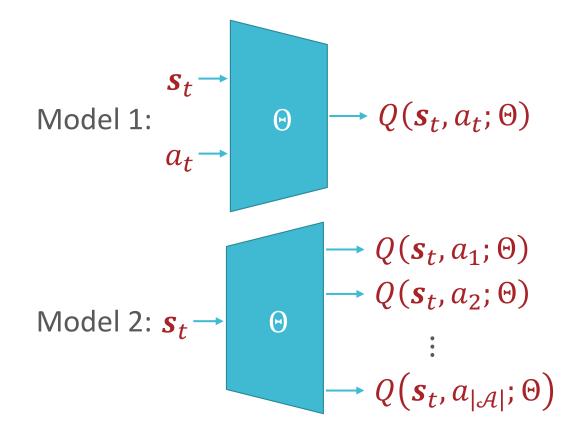
Deep Q-learning

• Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s, a)$

- Learn the parameters using *stochastic* gradient descent (SGD)
- Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a *differentiable* function that approximates Q



Deep Q-learning: Loss Function • "True" loss $\ell(\Theta) = \sum_{s \in S} \sum_{a \in A} \left(Q^*(s, a) - Q(s, a; \Theta) \right)^2$

- 1. *S* too big to compute this sum
- 1. Use stochastic gradient descent: just consider one state-action pair in each iteration
- 2. Use temporal difference learning:
 - Given current parameters Θ^(t) the temporal difference target is

 $Q^*(s,a) \approx r + \gamma \max_{a'} Q(s',a';\Theta^{(t)}) \coloneqq y$

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx y$

$$\ell(\Theta^{(t)},\Theta^{(t+1)}) = \left(y - Q(s,a;\Theta^{(t+1)})\right)^2$$

Deep Q-learning

Algorithm 4: Online learning (parametric form) • Inputs: discount factor γ , an initial state s_0 ,

learning rate α

• Initialize parameters $\Theta^{(0)}$

• For t = 0, 1, 2, ...

• Gather training sample (s_t, a_t, r_t, s_{t+1})

• Update $\Theta^{(t)}$ by taking a step opposite the gradient $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta} \ell(\Theta^{(t)}, \Theta)$

where

 $\nabla_{\Theta}\ell(\Theta^{(t)},\Theta) = 2(y - Q(s,a;\Theta))\nabla_{\Theta}Q(s,a;\Theta)$

Deep Q-learning: Experience Replay • SGD assumes i.i.d. training samples but in RL, samples are highly correlated

• Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, \dots, e_N\}$ of the N most recent experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ (Lin, 1992)

- Also keeps the agent from "forgetting" about recent experiences
- Alternate between:
 - 1. Sampling some e_i uniformly at random from \mathcal{D} and applying a Q-learning update (repeat T times)
 - 2. Adding a new experience to \mathcal{D}
- Can also sample experiences from *D* according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

Key Takeaways

 We can use (deep) Q-learning when the reward/transition functions are unknown and/or when the state/action spaces are too large to be modelled directly

- Also guaranteed to converge under certain assumptions
- Experience replay can help address non-i.i.d. samples