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Front Matter
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� Announcements

� Project proposals due on 3/22 (Friday) at 11:59 PM

� You should submit proposals as a group, not 
individually: each group only needs to submit a 

single PDF

� HW5 released 3/22 (Friday), due 4/1 at 11:59 PM

� This is a shorter, written-only HW; you are expected 
to be working on your projects concurrently

� Recommended Readings

� Mitchell, Chapter 13

http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf


Recall:
Markov 
Decision 
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠!

2. For time step 𝑡:
1. Agent observes state 𝑠"
2. Agent takes action 𝑎" = 𝜋 𝑠"
3. Agent receives reward 𝑟" ∼ 𝑝 𝑟	 𝑠", 𝑎")

4. Agent transitions to state 𝑠"#$ ∼ 𝑝 𝑠%	 𝑠", 𝑎")	

3. Total reward is

� MDPs make the Markov assumption: the reward and 
next state only depend on the current state and action.
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𝛾"𝑟"	
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Recall:
Value 
Function

� 𝑉( 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠!, 𝜋 𝑠! + 	𝛾𝑅 𝑠$, 𝜋 𝑠$ + 𝛾)𝑅 𝑠), 𝜋 𝑠) +⋯ 	𝑠! = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠$, 𝜋 𝑠$ + 𝛾𝑅 𝑠), 𝜋 𝑠) +	… |	𝑠! = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑*!∈	𝒮 𝑝 𝑠$	|	𝑠, 𝜋 𝑠 9

:

𝑅 𝑠$, 𝜋 𝑠$ +

	 +𝛾𝔼 𝑅 𝑠), 𝜋 𝑠) +⋯ 	𝑠$] 	

𝑉( s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 -
*!∈	𝒮

𝑝 𝑠$	|	𝑠, 𝜋 𝑠 𝑉( 𝑠$
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Recall:
Optimality

� Optimal value function:

𝑉∗ 𝑠 = max
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

� System of 𝒮  equations and 𝒮  variables

� Optimal policy:

𝜋∗ 𝑠 = argmax
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

5

Immediate 
reward

(Discounted) 
Future reward
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Fixed 
Point 
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values
𝑥$ = 𝑓$ 𝑥$, … , 𝑥1

⋮
𝑥1 = 𝑓1 𝑥$, … , 𝑥1

𝑥$
! , … , 𝑥1

!

� While not converged, do

𝑥$
"#$ ← 𝑓$ 𝑥$

" , … , 𝑥1
"

⋮

𝑥1
"#$ ← 𝑓1 𝑥$

" , … , 𝑥1
"

6Henry Chai - 3/20/24



Fixed Point Iteration:
Example

𝑥$ = 𝑥$𝑥) +
1
2
	

𝑥) = −
3𝑥$
2

𝑥$
! = 𝑥)

! = 0

K𝑥$ =
1
3
, K𝑥) = −

1
2
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𝑡 𝑥!
" 𝑥#

"

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080



Value Iteration

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ! 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 

	 𝑉 "#$ 𝑠 ← max
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 " 𝑠%

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 " 𝑠%

� Return 𝜋∗

8

𝑄 𝑠, 𝑎
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Synchronous
Value Iteration

9

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ! 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 " 𝑠%

� 	𝑉 "#$ 𝑠 ← max
/	∈	𝒜

	𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 " 𝑠%

� Return 𝜋∗
Henry Chai - 3/20/24



Asynchronous
Value Iteration
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ! 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly)

� While not converged, do:
� For 𝑠 ∈ 𝒮 

� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� 𝑉 𝑠 ← max
/	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� Return 𝜋∗
Henry Chai - 3/20/24
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� Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion 

if max
*	∈	𝒮

𝑉 "#$ 𝑠 − 𝑉 " 𝑠 < 𝜖, 

then max
*	∈	𝒮

𝑉 "#$ 𝑠 − 𝑉∗ 𝑠 < )45
$65

 (Williams & Baird, 1993) 

� Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
/	∈	𝒜

	𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 

Value Iteration
Theory

Henry Chai - 3/20/24



� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)

� Initialize 𝜋 randomly 

� While not converged, do:

� Solve the Bellman equations defined by policy 𝜋

	 V( s = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝜋 𝑠 𝑉( 𝑠%

�Update 𝜋

	 −	 𝜋 𝑠 ← argmax
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉( 𝑠%

� Return 𝜋

12

Policy Iteration
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� In policy iteration, the policy improves in each iteration. 

� Given finite state and action spaces, there are finitely 
many possible policies

� Thus, the number of iterations needed to converge 
is bounded!

� Value iteration takes 𝑂 𝒮 ) 𝒜  time / iteration

� Policy iteration takes 𝑂 𝒮 ) 𝒜 + 𝒮 7  time / iteration

� However, empirically policy iteration requires fewer 
iterations to converge

13

Policy Iteration
Theory
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Key Takeaways

� In reinforcement learning, we assume our data comes from a 

Markov decision process

� The goal is to compute an optimal policy or function that 
maps states to actions

� Value function can be defined in terms of values of all other 
states; this is called the Bellman equations

� If the reward and transition functions are known, we can 
solve for the optimal policy (and value function) using value 
or policy iteration

� Both algorithms are instances of fixed point iteration and 
are guaranteed to converge (under some assumptions)

Henry Chai - 3/20/24 14



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

15Henry Chai - 3/20/24



� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎), 𝛾
� Initialize 𝑉 ! 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� 𝑉 𝑠 ← max
/	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
/	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� Return 𝜋∗

Value Iteration
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𝑄∗(𝑠, 𝑎) w/ 
deterministic 
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
              state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

𝑉∗ 𝑠% = max
/"	∈	𝒜

	𝑄∗ 𝑠%, 𝑎%

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 -
*"∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 	 max
/"	∈	𝒜

	𝑄∗ 𝑠%, 𝑎%

𝜋∗ 𝑠 = argmax
/	∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!

17Henry Chai - 3/20/24



𝑄∗(𝑠, 𝑎) w/ 
deterministic 
rewards and 
transitions

18Henry Chai - 3/20/24

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
              state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
/"	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎%

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 	 max
/"	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎% 	

𝜋∗ 𝑠 = argmax
/	∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!



Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards and 
transitions

Algorithm 1: 
Online learning 
(table form) 

19

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠% where 𝑠% = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
/"

𝑄 𝑠%, 𝑎%

Henry Chai - 3/20/24



Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

20

� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1
         

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
/"	∈	𝒜

	𝑄 𝑠, 𝑎%

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠% where 𝑠% = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
/"

𝑄 𝑠%, 𝑎%

Henry Chai - 3/20/24
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� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1 ,
         learning rate 𝛼 ∈ 0, 1  (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
/"	∈	𝒜

	𝑄 𝑠, 𝑎%

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠% where 𝑠% ∼ 𝑝 𝑠%	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
/"

𝑄 𝑠%, 𝑎%

Current 
value

Update w/ 
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 
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� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1 ,
         learning rate 𝛼 ∈ 0, 1  (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
/"	∈	𝒜

	𝑄 𝑠, 𝑎%

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠% where 𝑠% ∼ 𝑝 𝑠%	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
/"

𝑄 𝑠%, 𝑎% − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

Current 
value

Temporal difference 
target

Temporal 
difference
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎): 
Example

Henry Chai - 3/20/24

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0
5.10

𝑉∗ 𝑠  shown in green
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
/"∈ →,←,↑,↻

𝑄 4, 𝑎% = 0Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
/"∈ →,←,↑,↻

𝑄 5, 𝑎% = 3Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
/"∈ →,←,↑,↻

𝑄 4, 𝑎% = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
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6

5
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0

0

0

0
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3
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0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
/"∈ →,←,↑,↻

𝑄 4, 𝑎% = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

30

� For Algorithms 1 & 2 (deterministic transitions),             
𝑄 converges to 𝑄∗ if

1.  Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2.  0 ≤ 𝛾 < 1 

3.  ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4.  Initial 𝑄 values are finite
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

31

� For Algorithm 3 (temporal difference learning),              

𝑄 converges to 𝑄∗ if

1.  Every valid state-action pair is visited infinitely often 

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2.  0 ≤ 𝛾 < 1 

3.  ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4.  Initial 𝑄 values are finite

5.  Learning rate 𝛼" follows some “schedule” s.t.    
∑"&!' 𝛼" = ∞ and ∑"&!' 𝛼") < ∞ e.g., 𝛼" = ⁄$ "#$ 
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Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?
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Playing Go

33

AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
Henry Chai - 3/20/24

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

� How many legal 
Go board states 
are there? 



Playing Go
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AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
Henry Chai - 3/20/24

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

� There are ~10170  

legal Go board 
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

• Throw a neural network at it! 
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Deep 
Q-learning

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to 

approximate 𝑄∗ 𝑠, 𝑎

� Learn the parameters using stochastic gradient 
descent (SGD)

� Training data 𝒔", 𝑎", 𝑟", 𝒔"#$  gathered online by 
the agent/learning algorithm 
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� Represent states using some feature vector 𝒔" ∈ ℝL 
e.g. for Go, 𝒔" = 1, 0, −1,… , 1 M

� Define a differentiable function that approximates 𝑄 

Deep 
Q-learning:
Model

37

𝒔"

𝑎"
Θ 𝑄 𝒔", 𝑎"; Θ

𝒔" Θ

𝑄 𝒔", 𝑎$; Θ
𝑄 𝒔", 𝑎); Θ

𝑄 𝒔", 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:
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� “True” loss

ℓ Θ = -
*	∈	𝒮

-
/	∈	𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
)

1. Use stochastic gradient descent: just consider one 
state-action pair in each iteration

2. Use temporal difference learning: 
� Given current parameters Θ N  the temporal 

difference target is 
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

/"	
𝑄 𝑠%, 𝑎%; Θ " ≔ 𝑦

� Set the parameters in the next iteration Θ N#$  such 
that 𝑄 𝑠, 𝑎; Θ N#$ ≈ 𝑦

ℓ Θ N , Θ "#$ = 𝑦 − 𝑄 𝑠, 𝑎; Θ N#$
)

1. 𝒮 too big to compute this sum

Deep 
Q-learning:
Loss Function

38

2. Don’t know 𝑄∗ 
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Deep 
Q-learning

Algorithm 4: 
Online learning 
(parametric 
form)

39

� Inputs: discount factor 𝛾, an initial state 𝑠!,

    learning rate 𝛼

� Initialize parameters Θ !  

� For 𝑡 = 0, 1, 2,	 …
� Gather training sample 𝒔", 𝒂", 𝑟", 𝒔"#$

� Update Θ "  by taking a step opposite the gradient

Θ "#$ ← Θ " − 𝛼∇Oℓ Θ " , Θ

where

∇Oℓ Θ " , Θ = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ ∇O𝑄 𝑠, 𝑎; Θ
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Deep 
Q-learning:
Experience
Replay

40

� SGD assumes i.i.d. training samples but in RL, samples are 
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, …	, 𝑒𝑁} of the 𝑁 
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂", 𝑟", 𝒔"#$  (Lin, 1992)

� Also keeps the agent from “forgetting” about recent 
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and 

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some 
distribution that prioritizes experiences with high error 
(Schaul et al., 2016)
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Key Takeaways

� We can use (deep) Q-learning when the 
reward/transition functions are unknown and/or when 
the state/action spaces are too large to be modelled 
directly

� Also guaranteed to converge under certain 
assumptions

� Experience replay can help address non-i.i.d. 
samples
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