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* Announcements:

* HWS5 released 3/22, due 4/1 at 11:59 PM
* Project mentors will be assigned later this week

* Recitation on 3/29 is dedicated time to meet with
your project mentors

Front Matter * Your group must meet with your assigned project

mentor and receive approval on your proposal to

move forward to the next deliverable

* Daniel is on leave and will be for an indeterminate

amount of time, please direct all course

requests/questions to Henry
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) * In addition to multi-head

|
Add & Norm
Feed | attention, transformer

Okay, one
massive detour
later, how on N

Forward

architectures use

Add & Norm 1. Positional encodings

Multi-Head
Attention

earth do we go
about training
these things? Positional

Encoding

Layer normalization

3. Residual connections

4. A fully-connected feed-

o forward network

Embedding

1

Henry Chai - 3/25/24 Source: https://arxiv.org/pdf/1706.03762.pdf
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Recall:
Mini-batch

Stochastic
Gradient
Descent...
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* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B
1. Randomly initialize the parameters 0 and sett = 0
2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the loss w.r.t. the sampled batch,
vJ(B) (g(t))

c. Update 8: 0+D (O _ yv](B)(g(t))
d. Incrementt:t<t+1

- Qutput: 8



* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B

1. —the parameters 0 andsett = 0

2. While TERMINATION CRITERION is not satisfied

Mini-batch

Stochastic a. Randomly sample B data points from D, {(x(?, y(b))}izl

Gradient b. Compute the gradient of the-w.r.t. the sampled batch,
Descent is a lie! VB (9®)
c. Update 8: 91D « ) — y(B)(g®)

d. Incrementt:t < t+1

- Qutput: 8
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Mini-batch

Stochastic
Gradient
Descent is aliel
just the
beginning!
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* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B

1. —the parameters 0 andsett = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the-w.r.t. the sampled batch,
vJ(B) (g(t))

c. Update 8: 0+D (O _ yv](B)(g(t))
d. Incrementt:t<t+1

- Qutput: 8



* You have some task that you want to apply machine

learning to
* You have a labelled dataset to train with
* You fit a deep learning model to the dataset

Traditional

Supervised
Learning

Henry Chai - 3/25/24



Henry Chai - 3/25/24

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * “gradient-based

52 L .

v optimization starting

Q

=1 from random initialization
0)

appears to often get
Shallow "Deep" PP 5

Network Network (no stuck in poor solutions for

pre-training) such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books
* You have a tiny labelled dataset to train with

* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

S * |dea: if shallow

E |

- networks are easier to

d 1

= train, let’s just

0 decompose our deep

Shallow "Deep"
Network Network (no network into a series

pre-training) of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Pre-training

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the

Output layer

network iteratively using

the training dataset

- Start at the input layer
and move towards the

output layer

* Once a layer has been
trained, fix its weights
and use those to train

subsequent layers

34 hidden layer

24 hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre-training and move towards the
(Bengio et al., output layer Output layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer

Henry Chai - 3/25/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* Train each layer of the

network iteratively using

the training dataset
Output layer

- Start at the input layer

Pre-training and move towards the
(Bengio et al-; output layer 2" hidden layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer

Henry Chai - 3/25/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf



https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the Output layer
network iteratively using

the training dataset
34 hidden layer

- Start at the input layer

Pre-training and move towards the
(Bengio et al-; output layer 2" hidden layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer

Henry Chai - 3/25/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Fine-tuning

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the Output layer
network iteratively using

the training dataset
34 hidden layer

* Use the pre-trained
weights as an
initialization and 2" hidden laver

fine-tune the entire

network e.g., via SGD 15t hidden layer

with the training dataset

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset the entire network e.g., via SGD
Su pervised with the training dataset
Pre-training
(BengiO et g | > = Classification error on MNIST handwritten digit dataset
= 3
2006) 5
52
0
Shallow "Deep" "Deep"
Network Network (no Network

pre-training)  (supervised

Henry Chai - 3/25/24 pre-tralnlng) 15



* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
Su pe rvised predict the labels with the training dataset
Pre-training
(Bengio et al . Classification error on MNIST handwritten digit dataset
°) Q\O
— 3
2006) 5
0
Shallow "Deep” "Deep"
Network Network (no Network

pre-training)  (supervised

re-trainin
Henry Chai - 3/25/24 p e-tra g) 16



s this the only
thing we could

do with the
training data?

Henry Chai - 3/25/24

* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD

predict the labels with the training dataset

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training)  (supervised

pre-training) .



Unsupervised
Pre-training

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of

the training dataset to information and could be used

learn useful representations  to recreate the inputs

Test Error (%)

Classification error on MNIST handwritten digit dataset

Shallow "Deep" "Deep"
Network Network (no Network
pre-training)  (supervised

pre-training) .



Unsupervised
Pre-training

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the Output layer

network iteratively using

the training dataset by

o 34 hidden layer
minimizing the

reconstruction error

lx — h(x)||5 2nd hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Unsupervised
Pre-training

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the
network iteratively using
the training dataset by
minimizing the
reconstruction error

|lx — h(x)]|, Reconstructed
input

* This architecture/
objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

20
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* Train each layer of the
network iteratively using

the training dataset by Reconstructed

Unsu pervised minimizing the hidden layer
Pre-trainin g reconstruction error
(BengiO et al,, lx — h(x) |2 2" hidden layer

2006) * This architecture/

objective defines an 15t hidden layer

autoencoder

Input layer

Henry Chai - 3/25/24 Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 21
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Unsupervised
Pre-training

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the

* This architecture/

Reconstructed
hidden layer
network iteratively using

the training dataset by

o 34 hidden layer
minimizing the

reconstruction error

lx — h(x)||5 2nd hidden layer

objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Fine-tuning

(Bengio et al.,
2006)

Henry Chai - 3/25/24

* Train each layer of the Output layer

* When fine-tuning, we’re

network iteratively using
the training dataset by
S 34 hidden layer
minimizing the
reconstruction error

lx — h(x)||5 2" hidden layer

effectively swapping out  1st higden layer
the last layer and fitting
all the weights to the

training dataset Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Unsupervised
Pre-training

(Bengio et al.,
2006)
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* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of
the training dataset by information and could be used
minimizing the to recreate the inputs

reconstruction error

Classification error on MNIST handwritten digit dataset

3
2
o 2
@
0
Sha”OW "Deep" "Deep" llDeepu
Network Network (no Network Network

pre-training)  (supervised (unsupervised

pre-training) pre-training) »



Another
dose of

Reality

Henry Chai - 3/25/24

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a-deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * Problem: what if you

v 2 don’t even have

Q

=1 enough data to train a
0)

single layer/fine-tune
Shallow "Deep" 5 Y

Network Network (no the pre-trained

pre-training) network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 25
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Another
dose of

Reality

Henry Chai - 3/25/24

* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

- Ideally, you want to use a large dataset related to your

goal task

26



* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dose of - Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* GPT-3 pre-training data:

Quantity Weight in

Dataset (tokens) training mix
Common Crawl (filtered) 410 billion 60%
WebText2 19 billion 22%
Booksl 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

Henry Chai - 3/25/24 Source: https://arxiv.org/pdf/2005.14165.pdf 27
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* You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dose of - Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* Okay that’s great for pre-training and all, but what if
A. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

Henry Chai - 3/25/24



Reinforcement
Learning from

Human
Feedback
(RLHF)

Henry Chai - 3/25/24

* Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

* Idea: use human feedback to determine how good or

bad some prediction/response is!

* Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation...

* |dea: use a small number of annotations to learn a

“reward” function!

29



Reinforcement
Learning from

Human
Feedback

(RLHF)

Henry Chai - 3/25/24

Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

N
o

Explain reinforcement

learning to a 6 year old.

'

o)

z

We give treats and

punishments to teach...

}

Step 2

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

r N

./
Explain reinforcement
learning to a 6 year old.

In reinforcement E aris..
learning, the A o
agentis...
Inmachine We givetreats and
learning.. punishments to
teach...
. >

®

0-0-0-0

Nt
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=~

Write a story
about otters.

/

PPO

* RLHF is a special form of fine-tuning that uses proximal

policy optimization (PPO)

Source: https://openai.com/blog/chatgpt
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Recall:

Deep
Q-learning

Henry Chai - 3/25/24

- Represent states using some feature vector s, € R™

e.g. forGo, s, =[1,0,—1, ...,1]7

* Define a differentiable function that approximates Q

S¢—
Model 1:
ar—

7 Q(Str Aat; ®)

7 Q(St; ai; @)

7 Q(Stl az; @)
Model 2: s, — .

— Q(s¢ a4 0)

31



What if instead
of optimizing
the Q-function,

we could
optimize the
policy directly?

Henry Chai - 3/25/24

- Represent states using some feature vector s, € R™

e.g. forGo, s, =[1,0,—1, ...,1]7

* Define a differentiable function that approximates Q

S¢—
Model 1:
ar—

7 Q(Str Aat; ®)

7 Q(St; ai; @)

7 Q(Stl az; @)
Model 2: s, — .

— Q(s¢ a4 0)
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- Represent states using some feature vector s, € R
e.g. forGo, s, =[1,0,—1, ...,1]7

* Define a differentiable function that specifies a
stochastic policy g

: * Minimize the negative expected total reward w.r.t. ©
Parametrized

Stochastic 2(0) = —Eg, [z ytrt]
t=0

Policies

— p(ay|sg; ©) == mg(aylse)

— plaz|ss; ©) == me(azls;)
Model: s;—

— (141156 0) = mo(a)qy|st)

Henry Chai - 3/25/24 33



Okay... but
how on earth
do we

compute the
gradient of this
thing?

Henry Chai - 3/25/24

- Represent states using some feature vector s, € R

e.g. forGo, s, =[1,0,—1, ...,1]7

* Define a differentiable function that specifies a

stochastic policy g

* Minimize the negative expected total reward w.r.t. ©

’B(@) — _]ETC@ Ep(S’|S, a) Z)/trt]
Lt=0

— p(ay|sg; ©) == mg(aylse)
— pl(az|s¢; ©) == mg(az|se)

Model: s;—
— (141156 0) = mo(a)qy|st)

34



* A trajectory T = {s,, ay, S1,a4, ..., ST} is one run of an

agent through an MDP ending in a terminal state, st

* Our stochastic policy and the transition distribution

induce a distribution over trajectories

pe(T) = p(iso, Ao, 1,1, ..., ST })

T—-1
=pso) | [pCsealse @) me(arlso)
t=0

Trajectories

* Requires a distribution over initial states p(sg) e.g.,

uniform over all states, fixed or deterministic, etc...

- If all runs end at a terminal state, then we can rewrite

the negative expected total reward as
T—1

£(0) = _Ep@(T={so,ao,...,sT}) [z VtR(St: at)] = _[Ep@(T) [R(T)]
t=0

Henry Chai - 3/25/24 35



Likelihood
Ratio
Method

a.k.a.
REINFORCE
(Williams,
1992)

Henry Chai - 3/25/24

Ve?(0) = Vo(—E,,m[R(D]) = Ve (‘ f R(T)pe(T) dT)

= — f R(T)Vepe(T) dT

T-1
= —fR(T)V(a P(SO)HP(SHﬂSt» at) me(aclsy) | dT
t=0

* |ssues:

* The transition probabilities p(s¢+1]|S¢, a;) are unknown a priori

* Computing Vgpe(T) involves taking the gradient of a product

Source: https://citeseerx.ist.psu.edu/doc/10.1.1.129.8871
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Likelihood
Ratio
Method

a.k.a.
REINFORCE
(Williams,
1992)

Henry Chai - 3/25/24

Ve?(0) = Vo(—Epy(n)[R(T)]) = Ve <— j R(T)pe(T) dT)

= — J R(T)Vepe(T) dT

T-1

= = j R(T)Vg (P(So) 1_[ p(Set1lse ar) ﬂ@(at|5t)) dT

t=0

* Insight:

Vope(T) = Po(T)

pe(T)

T-1

logpe(T) = logp(so) + Z logp(st41lse, ag) + logme(aclse)

t=0
T-1

Ve(logpe(T)) = z Ve logmg(atlse) +—
=0

Vope(T) = pe(T)Ve(logpe(T))

No longer depends on
p(Stt1lse ar)!

37



Likelihood
Ratio
Method

a.k.a.
REINFORCE
(Williams,
1992)

Henry Chai - 3/25/24

Ve?(0) = Vo(—Ep,(m[R(T)]) = Ve (‘ J R(T)pe(T) dT)
_ j R(T)Vopo(T) dT = — f R(T)Ve (log pe(T))pe(T)dT

= _IEPG) (T) [R(T)Vg(logpe(T))]

N
1
~ == R(T™) Vg (log pe(T™))
n=1

(where T = {s(()"), a(()n), Sgn), a&n), . 55321)} is a sampled trajectory)

1 N [/TMW_1 T(W 1
) DICICCED) [DAENCEEY
n=1 t=0

t=0

38



Policy Gradient

Methods

Henry Chai - 3/25/24

* Practical considerations:

* Not compatible with deterministic policies (would

require knowledge of the transition probabilities)

- Sampled trajectories/rewards can be highly variable,

which leads to unstable estimates of the expectation

* Can compare sampled rewards against a

constant baseline to get an advantage function
(Peters and Schaal, 2008): A(T) = R(T) — B

39



* Practical considerations:
* Policy gradient methods are on-policy: they require

using the current (potentially bad) policy to sample

(a lot of) trajectories...

* Trust region methods (Schulman et al., 2015)
POIle Gradient impose a constraint on how far the policy
Methods distribution can shift from one iteration to the

next (in terms of a KL divergence)

* Proximal policy optimization (Schulman et al.,
2017) limits how much the magnitude of the

objective function can change from one iteration

to the next via clipping

Henry Chai - 3/25/24 40



* Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

* Idea: leverage the LLM’s context window by passing a
few examples to the model as input,

without performing any updates to the parameters

In-context * Intuition: during training, the LLM is exposed to a
| ea rning massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

Henry Chai - 3/25/24 Source: https://arxiv.org/pdf/2111.02080.pdf 42
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Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

Henry Chai - 3/25/24

* Idea: leverage the LLM’s context window by passing a

few examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: < task description
sea otter => loutre de mer < examples
peppermint => menthe poivrée <

plush girafe => girafe peluche «-

cheese => ¢ prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

43
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Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

Henry Chai - 3/25/24

* Idea: leverage the LLM'’s context window by passing a
few one examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

One-shot Fine-tuning

In addition to the task description, the model sees a single The model is trained via repeated gradient updates using a

example of the task. No gradient updates are performed. large corpus of example tasks.

. o 1 sea otter => loutre de mer < example #1
1 Translate English to French: < task description
\Z
2 sea otter => loutre de mer ¢ example
gradient update
3 cheese => < prompt
\Z
1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

Source: https://arxiv.org/pdf/2005.14165.pdf
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Few-shot,
One-shot &

Zero-shot
(in-context)
Learning

Henry Chai - 3/25/24

* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 cheese => «—— prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

éIe

2

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt
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* Idea: leverage the LLM'’s context window by passing a
few-one zero(!) examples to the model as input,
without performing any updates to the parameters

106 Aggregate Performance Across Benchmarks
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Lea rn i ng 8152—;048'/;)—8; 1.3B 2.6B 6.7B _13B 175B

Parameters in LM (Billions)

* Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

Henry Chai - 3/25/24 Source: https://arxiv.org/pdf/2005.14165.pdf
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\CAELCEENR

Henry Chai - 3/25/24

* Instead of random initializations, modern deep learning
typically initializes weights via pretraining, then fine-

tunes them to the specific task

* Supervised vs. unsupervised fine-tuning

* Pretraining need not occur on the task of interest

* For tasks with subjective outputs, models can be fine-
tuned using reinforcement learning with human feedback
* Uses (proximal) policy optimization to optimize a

parametrized policy directly

* Some tasks can be performed by a pretrained LLM

without any fine-tuning via in-context learning
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