
10-701: Introduction to
Machine Learning
Lecture 18 – Pretraining,
Fine-tuning & In-Context
Learning
Henry Chai

3/25/24

Front Matter

� Announcements:

� HW5 released 3/22, due 4/1 at 11:59 PM

� Project mentors will be assigned later this week

� Recitation on 3/29 is dedicated time to meet with

your project mentors

� Your group must meet with your assigned project
mentor and receive approval on your proposal to
move forward to the next deliverable

� Daniel is on leave and will be for an indeterminate
amount of time, please direct all course
requests/questions to Henry

Henry Chai - 3/25/24 2

Okay, one
massive detour
later, how on
earth do we go
about training
these things?

Henry Chai - 3/25/24 3Source: https://arxiv.org/pdf/1706.03762.pdf

� In addition to multi-head
attention, transformer
architectures use

1. Positional encodings

2. Layer normalization

3. Residual connections

4. A fully-connected feed-

forward network

https://arxiv.org/pdf/1706.03762.pdf

Recall:
Mini-batch
Stochastic
Gradient
Descent…

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 % and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
Henry Chai - 3/25/24 4

Mini-batch
Stochastic
Gradient
Descent is a lie!

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 % and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
Henry Chai - 3/25/24 5

Mini-batch
Stochastic
Gradient
Descent is a lie!
just the
beginning!

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 % and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
Henry Chai - 3/25/24 6

Traditional
Supervised
Learning

Henry Chai - 3/25/24 7

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

Henry Chai - 3/25/24 8

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• “gradient-based
optimization starting
from random initialization
appears to often get

stuck in poor solutions for
such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

Henry Chai - 3/25/24 9

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Idea: if shallow
networks are easier to
train, let’s just
decompose our deep

network into a series
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 10Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the
network iteratively using
the training dataset

� Start at the input layer
and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 11Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 12Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 13Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

Henry Chai - 3/25/24 14Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 15

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 16

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD
with the training dataset

Is this the only
thing we could
do with the
training data?

Henry Chai - 3/25/24 17

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 18

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

� Train each layer of the

network iteratively using
the training dataset to
learn useful representations

� Use pre-trained weights as
an initialization and
fine-tune the entire network
e.g., via SGD with the

training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset by
minimizing the

reconstruction error
𝒙 − ℎ 𝒙 *

� This objective defines an
autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 19Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 20Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 21Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 22Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

Henry Chai - 3/25/24 23Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� When fine-tuning, we’re
effectively swapping out

the last layer and fitting
all the weights to the
training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� When fine-tuning, we’re
effectively swapping out

the last layer and fitting
all the weights to the
training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

Henry Chai - 3/25/24 24

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

Henry Chai - 3/25/24 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Problem: what if you
don’t even have
enough data to train a
single layer/fine-tune

the pre-trained
network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your

goal task

Henry Chai - 3/25/24 26

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� GPT-3 pre-training data:

Henry Chai - 3/25/24 27Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

� You have some niche task that you want to apply machine

learning to e.g., predicting the author of children’s books

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if

A. the concept of labelled data doesn’t apply to your task
i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

Another
dose of
Reality

Henry Chai - 3/25/24 28

Reinforcement
Learning from
Human
Feedback
(RLHF)

� Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

� Idea: use human feedback to determine how good or

bad some prediction/response is!

� Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

� Idea: use a small number of annotations to learn a

“reward” function!
Henry Chai - 3/25/24 29

Reinforcement
Learning from
Human
Feedback
(RLHF)

Henry Chai - 3/25/24 30

� RLHF is a special form of fine-tuning that uses proximal
policy optimization (PPO)
Source: https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

� Represent states using some feature vector 𝒔(∈ ℝ+
e.g. for Go, 𝒔(= 1, 0, −1,… , 1 ,

� Define a differentiable function that approximates 𝑄

Recall:
Deep
Q-learning

31

𝒔(

𝑎(
Θ 𝑄 𝒔(, 𝑎(; Θ

𝒔(Θ

𝑄 𝒔(, 𝑎#; Θ
𝑄 𝒔(, 𝑎*; Θ

𝑄 𝒔(, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

Henry Chai - 3/25/24

� Represent states using some feature vector 𝒔(∈ ℝ+
e.g. for Go, 𝒔(= 1, 0, −1,… , 1 ,

� Define a differentiable function that approximates 𝑄
What if instead
of optimizing
the Q-function,
we could
optimize the
policy directly?

32

𝒔(

𝑎(
Θ 𝑄 𝒔(, 𝑎(; Θ

𝒔(Θ

𝑄 𝒔(, 𝑎#; Θ
𝑄 𝒔(, 𝑎*; Θ

𝑄 𝒔(, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

Henry Chai - 3/25/24

� Represent states using some feature vector 𝒔(∈ ℝ+
e.g. for Go, 𝒔(= 1, 0, −1,… , 1 ,

� Define a differentiable function that specifies a
stochastic policy 𝜋.

� Minimize the negative expected total reward w.r.t. ΘParametrized
Stochastic
Policies

33

𝒔(Θ

𝑝 𝑎#|𝒔(; Θ ≔ 𝜋. 𝑎# 𝒔(
𝑝 𝑎*|𝒔(; Θ ≔ 𝜋. 𝑎* 𝒔(

𝑝 𝑎 𝒜 |𝒔(; Θ ≔ 𝜋. 𝑎 𝒜 𝒔(
⋮

Model:

Henry Chai - 3/25/24

ℓ Θ = −𝔼/! B
("%

0

𝛾(𝑟(

� Represent states using some feature vector 𝒔(∈ ℝ+
e.g. for Go, 𝒔(= 1, 0, −1,… , 1 ,

� Define a differentiable function that specifies a
stochastic policy 𝜋.

� Minimize the negative expected total reward w.r.t. Θ
Okay… but
how on earth
do we
compute the
gradient of this
thing?

34

𝒔(Θ

𝑝 𝑎#|𝒔(; Θ ≔ 𝜋. 𝑎# 𝒔(
𝑝 𝑎*|𝒔(; Θ ≔ 𝜋. 𝑎* 𝒔(

𝑝 𝑎 𝒜 |𝒔(; Θ ≔ 𝜋. 𝑎 𝒜 𝒔(
⋮

Model:

Henry Chai - 3/25/24

ℓ Θ = −𝔼/! 𝔼1 𝑠2 𝑠, 𝑎 B
("%

0

𝛾(𝑟(

Trajectories

� A trajectory Τ = 𝒔%, 𝑎%, 𝒔#, 𝑎#, … , 𝒔, is one run of an

agent through an MDP ending in a terminal state, 𝒔,

� Our stochastic policy and the transition distribution
induce a distribution over trajectories

𝑝. Τ = 𝑝 𝒔%, 𝑎%, 𝒔#, 𝑎#, … , 𝒔,	

𝑝. Τ = 𝑝 𝒔% F
("%

,3#

𝑝 𝑠()# 𝑠(, 𝑎(𝜋. 𝑎(𝒔(

� Requires a distribution over initial states 𝑝 𝒔% e.g.,

uniform over all states, fixed or deterministic, etc…

� If all runs end at a terminal state, then we can rewrite

the negative expected total reward as

Henry Chai - 3/25/24 35

ℓ Θ = −𝔼1! 4" 𝒔",7",…,𝒔# B
("%

,3#

𝛾(𝑅 𝒔(, 𝑎(≔ −𝔼1! 4 𝑅 Τ

Likelihood
Ratio
Method
a.k.a.
REINFORCE
(Williams,
1992)

Henry Chai - 3/25/24 36Source: https://citeseerx.ist.psu.edu/doc/10.1.1.129.8871

∇.ℓ Θ = ∇. −𝔼1! 4 𝑅 Τ = ∇. −H𝑅 Τ 𝑝. Τ 	𝑑Τ

∇.ℓ Θ = −H𝑅 Τ ∇.𝑝. Τ 	𝑑Τ

∇.ℓ Θ = −H𝑅 Τ ∇. 𝑝 𝒔% F
("%

,3#

𝑝 𝑠()# 𝑠(, 𝑎(𝜋. 𝑎(𝒔(𝑑Τ

� Issues:
� The transition probabilities 𝑝 𝑠()# 𝑠(, 𝑎(are unknown a priori

� Computing ∇.𝑝. Τ involves taking the gradient of a product

https://citeseerx.ist.psu.edu/doc/10.1.1.129.8871

∇.ℓ Θ = ∇. −𝔼1! 4 𝑅 Τ = ∇. −H𝑅 Τ 𝑝. Τ 	𝑑Τ

∇.ℓ Θ = −H𝑅 Τ ∇.𝑝. Τ 	𝑑Τ

∇.ℓ Θ = −H𝑅 Τ ∇. 𝑝 𝒔% F
("%

,3#

𝑝 𝑠()# 𝑠(, 𝑎(𝜋. 𝑎(𝒔(𝑑Τ

� Insight:

∇.𝑝. Τ =
𝑝. Τ
𝑝. Τ

∇.𝑝. Τ = 𝑝. Τ ∇. log 𝑝. Τ

log 𝑝. Τ = log 𝑝 𝑠% +B
("%

,3#

log 𝑝 𝑠()# 𝑠(, 𝑎(+ log 𝜋. 𝑎(𝒔(

∇. log 𝑝. Τ = B
("%

,3#

∇. log 𝜋. 𝑎(𝒔(

Likelihood
Ratio
Method
a.k.a.
REINFORCE
(Williams,
1992)

Henry Chai - 3/25/24 37

No longer depends on
𝑝 𝑠()# 𝑠(, 𝑎(!

Likelihood
Ratio
Method
a.k.a.
REINFORCE
(Williams,
1992)

Henry Chai - 3/25/24 38

∇.ℓ Θ = ∇. −𝔼1! 4 𝑅 Τ = ∇. −H𝑅 Τ 𝑝. Τ 	𝑑Τ

∇.ℓ Θ = −H𝑅 Τ ∇.𝑝. Τ 	𝑑Τ = −H𝑅 Τ ∇. log 𝑝. Τ 𝑝. Τ 𝑑Τ

∇.ℓ Θ = −𝔼1! 4 𝑅 Τ ∇. log 𝑝. Τ

∇.ℓ Θ ≈ −
1
𝑁B
9"#

$

𝑅 Τ 9 ∇. log 𝑝. Τ 9

(where Τ 9 = 𝒔%
9 , 𝑎%

9 , 𝒔#
9 , 𝑎#

9 , … , 𝒔, $
9 	is a sampled trajectory)

= −
1
𝑁
B
9"#

$

B
("%

, $ 3#

𝛾(𝑅 𝒔(
9 , 𝑎(

9 B
("%

, $ 3#

∇. log 𝜋. 𝑎(
9 𝒔(

9

Policy Gradient
Methods

Henry Chai - 3/25/24 39

� Practical considerations:

� Not compatible with deterministic policies (would
require knowledge of the transition probabilities)

� Sampled trajectories/rewards can be highly variable,

which leads to unstable estimates of the expectation

� Can compare sampled rewards against a

constant baseline to get an advantage function
(Peters and Schaal, 2008): 𝐴 Τ = 𝑅 Τ − 𝐵

Policy Gradient
Methods

� Practical considerations:

� Policy gradient methods are on-policy: they require
using the current (potentially bad) policy to sample
(a lot of) trajectories…

� Trust region methods (Schulman et al., 2015)
impose a constraint on how far the policy
distribution can shift from one iteration to the
next (in terms of a KL divergence)

� Proximal policy optimization (Schulman et al.,
2017) limits how much the magnitude of the
objective function can change from one iteration

to the next via clipping
Henry Chai - 3/25/24 40

Okay, so this is
great if our
problem is
subjective, but
again, what can
we do for
objective tasks
where training
data is scarce?

Henry Chai - 3/25/24 41

� RLHF is a special form of fine-tuning, used to fine-tune GPT-

3.5 into ChatGPT
Source: https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

In-context
Learning

� Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

� Idea: leverage the LLM’s context window by passing a
few one zero(!) examples to the model as input,

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a
massive number of examples/tasks and the input
conditions the model to “locate” the relevant concepts

Henry Chai - 3/25/24 42Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 3/25/24 43Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 3/25/24 44Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 3/25/24 45Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

Henry Chai - 3/25/24 46Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks
without having to fine-tune the model, sometimes even
with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Key Takeaways

� Instead of random initializations, modern deep learning

typically initializes weights via pretraining, then fine-
tunes them to the specific task

� Supervised vs. unsupervised fine-tuning

� Pretraining need not occur on the task of interest

� For tasks with subjective outputs, models can be fine-
tuned using reinforcement learning with human feedback

� Uses (proximal) policy optimization to optimize a
parametrized policy directly

� Some tasks can be performed by a pretrained LLM
without any fine-tuning via in-context learning

47Henry Chai - 3/25/24

