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10-701: Introduction to 
Machine Learning
Lecture 20 – Learning 
Theory (Finite Case)



Front Ma)er

� Announcements

� HW5 released 3/22, due 4/1 (today!) at 11:59 PM

� Project mentors have been assigned

� If you haven’t already done so, please meet 
with your project mentors ASAP to discuss your 
proposals

� Project check-ins due on 4/8 at 11:59 PM 

� Daniel is on leave and will be for an indeterminate 
amount of >me, please direct all course 
requests/ques>ons to Henry
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Recall: 
What is 
Machine 
Learning
10-701?
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� Supervised Models
� Decision Trees
� KNN
� Naïve Bayes
� Perceptron
� Logistic Regression
� Linear Regression
� Neural Networks
� SVMs

� Unsupervised Learning
� Ensemble Methods

� Graphical Models

� Learning Theory

� Reinforcement Learning

� Deep Learning

� Generative AI 
� Important Concepts

� Feature Engineering 
� Regularization and 

Overfitting
� Experimental Design
� Societal Implications
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Sta;s;cal 
Learning 
Theory Model

1. Data points are generated i.i.d. from some unknown 
distribu_on

! ! ∼ #∗ !
2. Labels are generated from some unknown func_on

$ ! = &∗ ! !

3. The learning algorithm chooses the hypothesis (or 
classifier) with lowest training error rate from a 
specified hypothesis set, ℋ

4. Goal: return a hypothesis (or classifier) with low true 
error rate
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Recall:
Types of Error

� True error rate

� Actual quan_ty of interest in machine learning

� How well your hypothesis will perform on average 
across all possible data points

� Test error rate: used to evaluate hypothesis performance
� Good es_mate of the true error rate

� Valida_on error rate: used to set model hyperparameters
� Slightly “op_mis_c” es_mate of the true error rate

� Training error rate: used to set model parameters
� Very “op_mis_c” es_mate of the true error rate
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Types of Risk 
(a.k.a. Error)

� Expected risk of a hypothesis ℎ (a.k.a. true error)

) ℎ = *#	∼	&∗ &∗ ! ≠ ℎ !

� Empirical risk of a hypothesis ℎ (a.k.a. training error) 
,) ℎ = *#	∼	' &∗ ! ≠ ℎ !

,) ℎ = 1
./!()

*
0 &∗ ! ! ≠ ℎ ! !

,) ℎ = 1
./!()

*
0 $ ! ≠ ℎ ! !

where 1 = ! ! , $ !
!()
*

 is the training data set and 
! ∼ 1 denotes a point sampled uniformly at random from 1 
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Three 
Hypotheses of 
Interest
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1. The true func/on, &∗

2. The expected risk minimizer, 

ℎ∗ = argmin
+	∈	ℋ

) ℎ

3. The empirical risk minimizer, 

,ℎ = argmin
+	∈	ℋ

,) ℎ  



Key Ques;on � Given a hypothesis with zero/low training error, what 
can we say about its true error? 
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PAC Learning

� PAC = Probably Approximately Correct

� PAC Criterion:

* ) ℎ − ,) ℎ ≤ ; ≥ 1 − =	∀	ℎ ∈ ℋ

for some ; (difference between expected and 
empirical risk) and = (probability of “failure”) 

� We want the PAC criterion to be sa_sfied for ℋ	with 
small values of ϵ and δ
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Sample 
Complexity
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� The sample complexity of an algorithm/hypothesis set, ℋ, 

is the number of labelled training data points needed to 
satisfy the PAC criterion for some = and ;

� Four cases

� Realizable vs. Agnostic

� Realizable → &∗ ∈ ℋ
� Agnostic → &∗ might or might not be in ℋ

� Finite vs. Infinite

� Finite → ℋ < ∞
� Infinite → ℋ = ∞



Theorem 1: 
Finite, 
Realizable Case
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� For a finite hypothesis set ℋ s.t. &∗ ∈ ℋ and arbitrary 
distribu_on #∗, if the number of labelled training data 
points sa_sfies 

F ≥ 1
; ln ℋ + ln 1

=
then with probability at least 1 − =, all ℎ ∈ ℋ with 
,) ℎ = 0 have ) ℎ ≤ ;



Proof of
Theorem 1: 
Finite, 
Realizable Case

1. Assume there are J “bad” hypotheses in ℋ, i.e., 
ℎ), ℎ., … , ℎ/ that all have ) ℎ0 > ;

2. Pick one bad hypothesis, ℎ0
A. Probability that ℎ0 correctly classifies the first 

training data point < 1 − ;
B. Probability that ℎ0 correctly classifies all F 

training data points < 1 − ; 1

3. Probability that at least one bad hypothesis correctly 
classifies all F training data points =

*(ℎ)	correctly	classiTies	all	F	training	data	points ∪
	 ℎ.	correctly	classiTies	all	F	training	data	points ∪

⋮
	 ∪ ℎ/	correctly	classiTies	all	F	training	data	points)
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Proof of
Theorem 1: 
Finite, 
Realizable Case

*(ℎ)	correctly	classiTies	all	F	training	data	points ∪
	 ℎ.	correctly	classiTies	all	F	training	data	points ∪

⋮
	 ∪ ℎ/	correctly	classiTies	all	F	training	data	points)

≤ /
0()

/
* ℎ0	correctly	classiTies	all	F	training	data	points

by the union bound: * Z ∪ [ = * Z + * [ − * Z ∩ [
by the union bound: * Z ∪ [ ≤ * Z + * [ − * Z ∩ [
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Proof of
Theorem 1: 
Finite, 
Realizable Case

/
0()

/
* ℎ0	correctly	classiTies	all	F	training	data	points

< ] 1 − ; 1 ≤ ℋ 1 − ; 1

because ] ≤ ℋ
3. Probability that at least one bad hypothesis correctly 

classifies all F training data points ≤ ℋ 1 − ; 1

4. Using the fact that 1 − ^ ≤ exp −^ 	∀	^, 
ℋ 1− ; 1 ≤ ℋ exp −; 1 = ℋ exp −F;

5. Probability that at least one bad hypothesis correctly 
classifies all F training data points ≤ ℋ exp −F; , 
which we want to be low, i.e., ℋ exp −F; ≤ =
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Proof of
Theorem 1: 
Finite, 
Realizable Case

ℋ exp −F; ≤ = → exp −F; ≤ =
ℋ

ℋ exp −.; ≤ = → −F; ≤ ln =
ℋ

ℋ exp −.; ≤ = → F ≥ 1
; − ln =

ℋ

ℋ exp −.; ≤ = → F ≥ 1
; ln ℋ

=

ℋ exp −.; ≤ = → F ≥ 1
; ln ℋ + ln 1

=
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Proof of
Theorem 1: 
Finite, 
Realizable Case

6. Given F ≥ )
2 ln ℋ + ln )

3  labelled training 
data points, the probability that ∃ a bad hypothesis 
ℎ0 ∈ ℋ with ) ℎ0 > ; and ,) ℎ0 = 0 is ≤ =

⇕

7. Given F ≥ )
2 ln ℋ + ln )

3  labelled training 
data points, the probability that all hypotheses ℎ0 ∈
ℋ with ) ℎ0 > ; have ,) ℎ0 > 0 is ≥ 1 − =
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Aside: Proof by 
Contraposi;ve

� The contraposi_ve of a statement Z ⇒ [ is ¬[ ⇒ ¬Z 

� A statement and its contraposi_ve are logically equivalent, 
i.e., Z ⇒ [ means that ¬[ ⇒ ¬Z 

� Example: “it’s raining ⇒ Henry brings am umbrella”

is the same as saying 

“Henry didn’t bring an umbrella ⇒ it’s not raining ” 
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Proof of
Theorem 1: 
Finite, 
Realizable Case

7. Given F ≥ )
2 ln ℋ + ln )

3  labelled training 
data points, the probability that all hypotheses ℎ0 ∈
ℋ with ) ℎ0 > ; have ,) ℎ0 > 0 is ≥ 1 − =

⇕

8. Given F ≥ )
2 ln ℋ + ln )

3  labelled training 
data points, the probability that all hypotheses ℎ0 ∈
ℋ with ,) ℎ0 = 0 have ) ℎ0 ≤ ; is ≥ 1 − =       ◼
(proof by contraposi_ve) 
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� For a finite hypothesis set ℋ s.t. &∗ ∈ ℋ and arbitrary 
distribu_on #∗, if the number of labelled training data 
points sa_sfies 

F ≥ 1
; ln ℋ + ln 1

=
then with probability at least 1 − =, all ℎ ∈ ℋ with 
,) ℎ = 0 have ) ℎ ≤ ;

� Making the bound _ght (seang the two sides equal to 
each other) and solving for ; gives... 

Theorem 1: 
Finite, 
Realizable Case
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Sta;s;cal 
Learning 
Theory 
Corollary

Henry Chai - 4/1/24 21

� For a finite hypothesis set ℋ s.t. &∗ ∈ ℋ and arbitrary 
distribution #∗, given a training data set d s.t. d = F, 
all ℎ ∈ ℋ with ,) ℎ = 0	have

) ℎ ≤ 1
F ln ℋ + ln 1

=
with probability at least 1 − =.



Theorem 2: 
Finite,  
Agnos;c Case
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� For a finite hypothesis set ℋ and arbitrary distribu_on 
#∗, if the number of labelled training data points sa_sfies 

F ≥ 1
2;. ln ℋ + ln 2

=
then with probability at least 1 − =, all ℎ ∈ ℋ sa_sfy  

) ℎ − ,) ℎ ≤ ;
� Bound is inversely quadra_c in ;, e.g., halving ; means 

we need four _mes as many labelled training data points

� Again, making the bound _ght and solving for ; gives…



Sta;s;cal 
Learning 
Theory 
Corollary
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� For a finite hypothesis set ℋ and arbitrary distribution 
#∗, given a training data set d s.t. d = F, all ℎ ∈ ℋ 
have

) ℎ ≤ ,) ℎ + 1
2F ln ℋ + ln 2

=

with probability at least 1 − =.



What 
happens 
when 
ℋ = ∞?
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� For a finite hypothesis set ℋ and arbitrary distribu_on 
#∗, given a training data set d s.t. d = F, all ℎ ∈ ℋ 
have

) ℎ ≤ ,) ℎ + 1
2F ln ℋ + ln 2

=

with probability at least 1 − =.



The Union 
Bound…
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A B

* Z ∪ [ ≤ * Z + *{[}
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B

* Z ∪ [ = * Z + * [ − *{Z ∩ [}

The Union 
Bound is Bad!
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A

* Z ∪ [ ≤ * Z + *{[}
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Intui;on

� If two hypotheses ℎ), ℎ. ∈ ℋ are 
very similar, then the events 

� “ℎ) is consistent with the first h 
training data points” 

� “ℎ. is consistent with the first h 
training data points”

� will overlap a lot! 
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Intuition
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Key Takeaways

� Statistical learning theory model

� Expected vs. empirical risk of a hypothesis  

� Four possible cases of interest 
� realizable vs. agnostic

� finite vs. infinite

� Sample complexity bounds and statistical learning 
theory corollaries for finite hypothesis sets 
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