10-701: Introduction to Machine Learning Lecture 20 – Learning Theory (Finite Case)

Front Matter

- Announcements
 - HW5 released 3/22, due 4/1 (today!) at 11:59 PM
 - Project mentors have been assigned
 - If you haven't already done so, please meet with your project mentors ASAP to discuss your proposals
 - Project check-ins due on 4/8 at 11:59 PM
 - Daniel is on leave and will be for an indeterminate amount of time, please direct all course requests/questions to Henry

Recall: What is Machine Learning 10-701?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
 - SVMs
- Unsupervised Learning
- Ensemble Methods

- Graphical Models
- Learning Theory
- Reinforcement Learning
- Deep Learning
- Generative Al
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

Recall: What is Machine Learning 10-701?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
 - SVMs
- Unsupervised Learning
- Ensemble Methods

- Graphical Models
- Learning Theory
- Reinforcement Learning
- Deep Learning
- Generative Al
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

Statistical Learning Theory Model

1. Data points are generated i.i.d. from some *unknown* distribution

$$\mathbf{x}^{(n)} \sim p^*(\mathbf{x})$$

2. Labels are generated from some *unknown* function

$$y^{(n)} = c^*(\boldsymbol{x}^{(n)})$$

- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest training error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Recall: Types of Error

- True error rate
 - Actual quantity of interest in machine learning
 - How well your hypothesis will perform on average across all possible data points
- Test error rate: used to evaluate hypothesis performance
 - Good estimate of the true error rate
- Validation error rate: used to set model hyperparameters
 - Slightly "optimistic" estimate of the true error rate
- Training error rate: used to set model parameters
 - Very "optimistic" estimate of the true error rate

Types of Risk (a.k.a. Error)

Expected risk of a hypothesis h (a.k.a. true error)

$$R(h) = P_{\boldsymbol{x} \sim p^*} (c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}))$$

• Empirical risk of a hypothesis h (a.k.a. training error)

$$\widehat{R}(h) = P_{\boldsymbol{x} \sim \mathcal{D}} \left(c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1} \left(c^*(\boldsymbol{x}^{(n)}) \neq h(\boldsymbol{x}^{(n)}) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1} \left(y^{(n)} \neq h(\boldsymbol{x}^{(n)}) \right)$$

where $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ is the training data set and $x \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D}

Three Hypotheses of Interest

1. The true function, c^*

2. The expected risk minimizer,

$$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$$

3. The *empirical risk minimizer*,

$$\hat{h} = \operatorname*{argmin}_{h \in \mathcal{H}} \hat{R}(h)$$

Key Question

 Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

• PAC = **P**robably **A**pproximately **C**orrect

PAC Criterion:

$$P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \ \forall \ h \in \mathcal{H}$$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

• We want the PAC criterion to be satisfied for ${\mathcal H}$ with small values of ϵ and δ

Sample Complexity

- The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ
- Four cases
 - Realizable vs. Agnostic
 - Realizable $\rightarrow c^* \in \mathcal{H}$
 - Agnostic $\rightarrow c^*$ might or might not be in ${\mathcal H}$
 - Finite vs. Infinite
 - Finite $\rightarrow |\mathcal{H}| < \infty$
 - Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

- 1. Assume there are K "bad" hypotheses in \mathcal{H} , i.e., h_1, h_2, \ldots, h_K that all have $R(h_k) > \epsilon$
- 2. Pick one bad hypothesis, h_k
 - A. Probability that h_k correctly classifies the first training data point $< 1 \epsilon$
 - B. Probability that h_k correctly classifies all M training data points $< (1 \epsilon)^M$
- 3. Probability that at least one bad hypothesis correctly classifies all M training data points =

 $P(h_1 \text{ correctly classifies all } M \text{ training data points } \cup h_2 \text{ correctly classifies all } M \text{ training data points } \cup :$

 \cup h_K correctly classifies all M training data points)

 $P(h_1 \text{ correctly classifies all } M \text{ training data points } \cup h_2 \text{ correctly classifies all } M \text{ training data points } \cup \vdots$

 \cup h_K correctly classifies all M training data points)

$$\leq \sum_{k=1}^{K} P(h_k \text{ correctly classifies all } M \text{ training data points})$$

by the union bound:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $\leq P(A) + P(B)$

$$\sum_{k=1}^{K} P(h_k \text{ correctly classifies all } M \text{ training data points})$$

$$< k(1 - \epsilon)^M \le |\mathcal{H}|(1 - \epsilon)^M$$

because $k \leq |\mathcal{H}|$

- 3. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}|(1-\epsilon)^{M}$
- 4. Using the fact that $1 x \le \exp(-x) \ \forall x$, $|\mathcal{H}|(1 \epsilon)^M \le |\mathcal{H}| \exp(-\epsilon)^M = |\mathcal{H}| \exp(-M\epsilon)$
- 5. Probability that at least one bad hypothesis correctly classifies all M training data points $\leq |\mathcal{H}| \exp(-M\epsilon)$, which we want to be low, i.e., $|\mathcal{H}| \exp(-M\epsilon) \leq \delta$

$$|\mathcal{H}| \exp(-M\epsilon) \le \delta \to \exp(-M\epsilon) \le \frac{\delta}{|\mathcal{H}|}$$

$$\to -M\epsilon \le \ln\left(\frac{\delta}{|\mathcal{H}|}\right)$$

$$\to M \ge \frac{1}{\epsilon} \left(-\ln\left(\frac{\delta}{|\mathcal{H}|}\right)\right)$$

$$\to M \ge \frac{1}{\epsilon} \left(\ln\left(\frac{|\mathcal{H}|}{\delta}\right)\right)$$

$$\to M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right)\right)$$

- 6. Given $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that \exists a bad hypothesis $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ and $\hat{R}(h_k) = 0$ is $\leq \delta$
- 7. Given $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 \delta$

Aside: Proof by Contrapositive

- The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$
- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining "

- 7. Given $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $R(h_k) > \epsilon$ have $\hat{R}(h_k) > 0$ is $\geq 1 \delta$
- 8. Given $M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$ labelled training data points, the probability that all hypotheses $h_k \in \mathcal{H}$ with $\hat{R}(h_k) = 0$ have $R(h_k) \leq \epsilon$ is $\geq 1 \delta$ (proof by contrapositive)

Theorem 1: Finite, Realizable Case

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1-\delta$, all $h\in\mathcal{H}$ with $\widehat{R}(h)=0$ have $R(h)\leq\epsilon$

• Making the bound tight (setting the two sides equal to each other) and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have

$$R(h) \le \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case

• For a finite hypothesis set ${\mathcal H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1-\delta$, all $h\in\mathcal{H}$ satisfy $|R(h)-\hat{R}(h)|\leq\epsilon$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$?

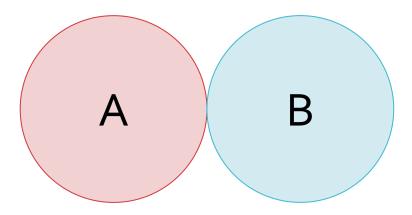
• For a finite hypothesis set $\mathcal H$ and arbitrary distribution p^* , given a training data set S s.t. |S|=M, all $h\in\mathcal H$ have

$$R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M}} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

with probability at least $1 - \delta$.

$$P\{A \cup B\} \le P\{A\} + P\{B\}$$

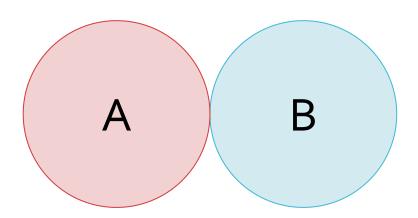
The Union Bound...



$$P\{A \cup B\} \le P\{A\} + P\{B\}$$

$$P\{A \cup B\} = P\{A\} + P\{B\} - P\{A \cap B\}$$

The Union Bound is Bad!

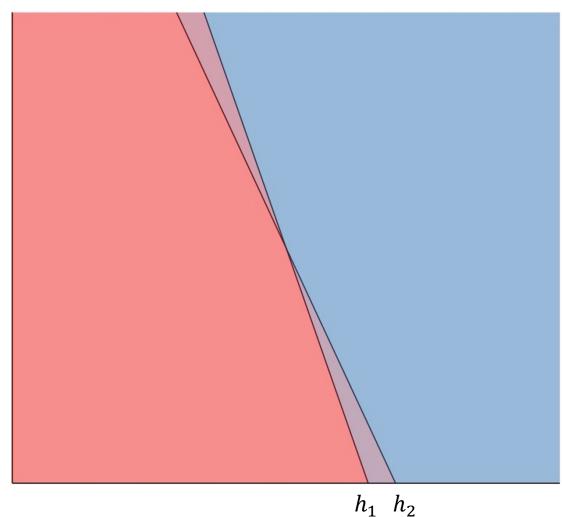


Intuition

If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events

- " h_1 is consistent with the first mtraining data points"
- " h_2 is consistent with the first mtraining data points"

will overlap a lot!

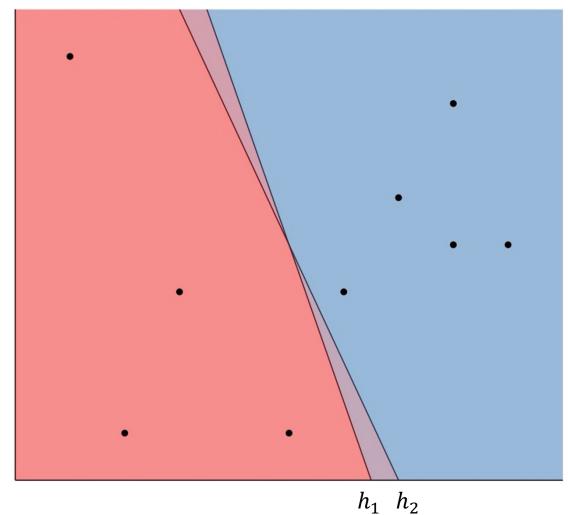


Intuition

If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events

- " h_1 is consistent with the first mtraining data points"
- " h_2 is consistent with the first mtraining data points"

will overlap a lot!



Key Takeaways

- Statistical learning theory model
- Expected vs. empirical risk of a hypothesis
- Four possible cases of interest
 - realizable vs. agnostic
 - finite vs. infinite
- Sample complexity bounds and statistical learning theory corollaries for finite hypothesis sets