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* Announcements

* HWS5 released 3/22, due 4/1 (today!) at 11:59 PM
* Project mentors have been assigned

* If you haven’t already done so, please meet

with your project mentors ASAP to discuss your

Front Matter

proposals
* Project check-ins due on 4/8 at 11:59 PM

* Daniel is on leave and will be for an indeterminate

amount of time, please direct all course

requests/questions to Henry
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Recall:
What is
Machine

Eearhthe
10-7017
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* Supervised Models
* Decision Trees

* KNN

* Naive Bayes

* Perceptron

* Logistic Regression
* Linear Regression
* Neural Networks

- SVMs

* Unsupervised Learning

* Ensemble Methods

* Graphical Models

° Learning Theory

* Reinforcement Learning
* Deep Learning

* Generative Al

* Important Concepts

* Feature Engineering

° Regularization and
Overfitting

* Experimental Design
* Societal Implications
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Statistical

Learning
Theory Model
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Data points are generated i.i.d. from some unknown
distribution

x™ ~ p*(x)

Labels are generated from some unknown function
y™ = c*(x("))

. The learning algorithm chooses the hypothesis (or

classifier) with lowest training error rate from a
specified hypothesis set, H

Goal: return a hypothesis (or classifier) with low true
error rate



* True error rate

* Actual quantity of interest in machine learning

* How well your hypothesis will perform on average

across all possible data points
Recall:

Types of Error * Test error rate: used to evaluate hypothesis performance

* Good estimate of the true error rate

* Validation error rate: used to set model hyperparameters

- Slightly “optimistic” estimate of the true error rate

* Training error rate: used to set model parameters

* Very “optimistic” estimate of the true error rate
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Types of Risk

(a.k.a. Error)
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* Expected risk of a hypothesis h (a.k.a. true error)
R(h) = Py p(c*(x) # h(x))

* Empirical risk of a hypothesis h (a.k.a. training error)
R(h) = Py .p(c*(x) # h(x))

. %Z 1(c*(x™) # A(x™))
= %ZN: 1 (y(n) + h(x(")))

where D = {(x(”),y(”))}zzl is the training data set and
X ~ D denotes a point sampled uniformly at random from D



1. The true function, c*

Three 2. The expected risk minimizer,
Hypotheses of h* = argmin R (h)

Interest ’
3. The empirical risk minimizer,

h = argmin R(h)

heH —
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* Given a hypothesis with zero/low training error, what

Key Question

can we say about its true error?
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PAC Learning
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* PAC = Probably Approximately Correct

* PAC Criterion:
P([R(W)—R(W)|<€)=1-6VheH
for some € (difference between expected and

empirical risk) and 6 (probability of “failure”)

* We want the PAC criterion to be satisfied for

H with small values of € and 6
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Sample

Complexity
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- The sample complexity of an algorithm/hypothesis set, I,

is the number of labelled training data points needed to

satisfy the PAC criterion for some § and €

* Four cases

* Realizable vs. Agnostic

* Realizable » c* € H

* Agnostic = ¢* might or might not be in H
* Finite vs. Infinite

* Finite » |H| < o

* Infinite = |H| = oo
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary

distribution p*, if the number of labelled training data

: - wtd.
points satisfies t

{oe o¥

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

12
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Proof of
Theorem 1:

Finite,
Realizable Case
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* The contrapositive of a statement A = B is =B = —A

* A statement and its contrapositive are logically equivalent,
Aside: Proof by i.e., A = B means that =B = —A4

Contra positive - Example: “it’s raining = Henry brings am umbrella”
is the same as saying

“Henry didn’t bring an umbrella = it’s not raining ”
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Theorem 1:

Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data

points satisfies

1 1
M 2~ (ln(lHI) +1n (E))
AEN
then with probability at least 1 — 6, all h € H with

R(h) =0 have R(h) < ’16'

- Making the bound tight (setting the two sides equal to

each other) and solving for € gives...
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, given a training data set S s.t. |[S| = M,

all h € 7 with R(h) = 0 have
Statistical

Learning R(h) < %(ln(lm) +in (%))

Theory
Corollary

with probability at least 1 — 6.
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Theorem 2:

Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution

p*, if the number of labelled training data points satisfies

M > 2—12(1n(|}[|) + In (;))

then with probability at least 1 — §, all h € H satisfy
IR(h) —R(h)| <€

* Bound is inversely quadratic in €, e.g., halving € means

we need four times as many labelled training data points

- Again, making the bound tight and solving for € gives...
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Statistical
Learning

Theory
Corollary
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}[l) +1In (%))

with probability at least 1 — 6.
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What
happens

when
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

R(R) < R(R) + w % (ln(l}[l) +1In (%))

with probability at least 1 — 6.
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The Union

Bound...

Henry Chai - 4/1/24

P{A U B} < P{4} + P{B)
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The Union

Bound is Bad!
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P{A U B} < P{4} + P{B)

P{AU B} = P{A} + P{B} — P{A N B}
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Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “hq is consistent with the first m
training data points”

* “h, is consistent with the first m
training data points”

will overlap a lot!
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- Statistical learning theory model
* Expected vs. empirical risk of a hypothesis

* Four possible cases of interest
* realizable vs. agnostic
* finite vs. infinite

- Sample complexity bounds and statistical learning

theory corollaries for finite hypothesis sets
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