10-701: Introduction to Machine Learning Lecture 20 – Learning Theory (Finite Case)

Henry Chai

4/1/24

Front Matter

- Announcements
	- HW5 released 3/22, due 4/1 (today!) at 11:59 PM
	- Project mentors have been assigned
		- **If you haven't already done so, please meet with your project mentors ASAP to discuss your proposals**
	- Project check-ins due on 4/8 at 11:59 PM
	- **Daniel is on leave and will be for an indeterminate amount of time, please direct all course requests/questions to Henry**

Recall: What is Machine Learning 10 -701?

- **· Supervised Models**
	- Decision Trees
	- \cdot KNN
	- Naïve Bayes
	- Perceptron
	- Logistic Regression
	- Linear Regression
	- Neural Networks
	- SVMs
- Unsupervised Learning
- Ensemble Methods
- Graphical Models
- Learning Theory
- **Reinforcement Learning**
- Deep Learning
- Generative AI
- Important Concepts
	- **Feature Engineering**
	- Regularization and Overfitting
	- Experimental Design
	- Societal Implications

Recall: What is Machine Learning 10 -701?

- **· Supervised Models**
	- Decision Trees
	- \cdot KNN
	- Naïve Bayes
	- Perceptron
	- Logistic Regression
	- Linear Regression
	- Neural Networks
	- SVMs
- Unsupervised Learning
- Ensemble Methods
- Graphical Models
- **Learning Theory**
- **Reinforcement Learning**
- Deep Learning
- Generative AI
- Important Concepts
	- **Feature Engineering**
	- Regularization and Overfitting
	- Experimental Design
	- Societal Implications

Statistical Learning Theory Model 1. Data points are generated i.i.d. from some *unknown* distribution

 $x^{(n)} \sim p^*(x)$

- 2. Labels are generated from some *unknown* function $y^{(n)} = c^* (x^{(n)})$
- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest *training* error rate from a specified hypothesis set, H
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Recall: Types of Error

• True error rate

- Actual quantity of interest in machine learning
- How well your hypothesis will perform on average across all possible data points
- Test error rate: used to evaluate hypothesis performance
	- Good estimate of the true error rate
- Validation error rate: used to set model hyperparameters Slightly "optimistic" estimate of the true error rate
- Training error rate: used to set model parameters
	- Very "optimistic" estimate of the true error rate

Types of Risk (a.k.a. Error)

- \cdot Expected risk of a hypothesis h (a.k.a. true error) $R(h) = P_{x \sim p^*}(c^*(x) \neq h(x))$
- Empirical risk of a hypothesis h (a.k.a. training error)

$$
\hat{R}(h) = P_{x \sim \mathcal{D}}(c^*(x) \neq h(x))
$$
\n
$$
= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(c^*(x^{(n)}) \neq h(x^{(n)}))
$$
\n
$$
= \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(y^{(n)} \neq h(x^{(n)}))
$$

where $\mathcal{D} = \{(\pmb{x}^{(n)}, y^{(n)})\}$ $n=1$ \overline{N} is the training data set and $\mathbf{x} \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D} Three Hypotheses of Interest

1. The *true function*, c^*

- 2. The *expected risk minimizer,*
	- $h^* = \argmin R(h)$ $h \in \mathcal{H}$
- 3. The *empirical risk minimizer,*

 $\widehat{h} = \mathrm{argmin}$ $h \in H$ $\widehat{R}(h)$

Key Question

 Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

PAC = **P**robably **A**pproximately **C**orrect

• PAC Criterion:

 $P(|R(h) - \hat{R}(h)| \leq \epsilon) \geq 1 - \delta \forall h \in \mathcal{H}$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

 We want the PAC criterion to be satisfied for H with *small* values of ϵ and δ

Sample **Complexity** • The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ

Four cases

- · Realizable vs. Agnostic
	- Realizable $\rightarrow c^* \in \mathcal{H}$
	- Agnostic $\rightarrow c^*$ might or might not be in \mathcal{H}
- Finite vs. Infinite
	- Finite $\rightarrow |\mathcal{H}| < \infty$
	- Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set H s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data l_{eff} points satisfies 1 1 $M \geq$ $\ln(|\mathcal{H}|) + \ln$ ϵ δ

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

I. Assume $\exists K^{s}b.d''hypothers$ $h_1, ..., h_k$ where $R(h_k) > C$ $\forall k \in [0, k]$ 2. Prek some bad hypothesis hk A. The polochity that he misclessifies
a travaing determined to D > E B. The pobability that he correctly C. The probability that \int_{A}^{A} fracting dete point < 1-6
C. The probability that \int_{A}^{A} achieves 0
fracting error $\leq (1-\epsilon)$ $\binom{M}{1-\epsilon}$ $3.$ Probability that any of the K bad hypotheses achieves 0 training

 $3. P(h, ac)$ er 105 \leq $\sum_{n=1}^{\infty} P(h_{k}$ achieves 0 training error) $\frac{k-1}{k}$
 $\leq \sum_{k=1}^{k-1} (1-\epsilon)^{M} = K(I-\epsilon)^{M} \leq JHJ(I-\epsilon)^{M}$
 $\frac{k-1}{k}$ unron bound: $P(A \cup B) = I(A) + P(B)$ $-\overline{P}(A\cap B)$ $P(AUB) \le P(A) + P(B)$

 $3. P \cdot b \cdot b \cdot b \cdot b \cdot f$ that at least on ded hypothesis $w/$
 $R(b) > 6$ achaves 0 training error $\leq |b|/(1-e)^{m}$ $4. \forall x \begin{pmatrix} 1-x \end{pmatrix} \le e^{-x^2}$ $\leq |f(e^{-\epsilon})^M - f|e^{-\epsilon M}$ $S. |H|e^{-\epsilon M} \le \delta \Rightarrow e^{-\epsilon M} \le \frac{\epsilon}{|H|}$
 $\Rightarrow -\epsilon M \le \ln(\delta) - \ln(|H|)$ $\Rightarrow M \geq \frac{1}{\rho} (ln (|H|) - ln(\delta))$ $\Rightarrow M \geq \frac{1}{\epsilon} \left(\ln(\frac{1}{1}) + \ln(\frac{1}{\epsilon}) \right)$

 $G.$ Given $M \geq \frac{1}{\epsilon} \left(\ln(HH) + \ln(\frac{1}{\epsilon}) \right)$ i.i.d. Undelled training data points - pro
the probability $\frac{1}{2}$ a bad hypothesis
w/ $R(h) > \epsilon$ a $R(h) = 0$ is ≤ 5 \overline{U} 7. Given $M \geq 1$ the pobability that all hypotheses w/ $R(h_{k}) > \epsilon$ $h_{k}v_{k}$ $\hat{R}(h_{k}) > \epsilon$ $5 \ge 1-\epsilon$

Aside: Proof by **Contrapositive**

• The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$

- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella \Rightarrow it's not raining"

7. Given $M \ge \frac{1}{\epsilon} (h(H)) + \ln(\frac{1}{\epsilon})$
 $\lim_{\lambda \to \infty} \frac{f(x)}{f(x)} = \frac{1}{\epsilon} \cdot \frac{1}{\epsilon} \$ I Ly contreposition $8. Gvar M$ He probability that all hypotheses $h_k \in H$
w/ $\hat{R}(h_k) = 0$ have $R(h_k) \leq 0$ is $\geq 1-5$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set H s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M \geq \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

 Making the bound tight (setting the two sides equal to each other) and solving for ϵ gives...

Statistical Learning **Theory Corollary**

• For a finite hypothesis set H s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. $|S| = M$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have

> $R(h) \leq$ 1 \overline{M} $ln(|\mathcal{H}|) + ln$ 1 δ

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case • For a finite hypothesis set H and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$
M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)
$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|R(h) - \hat{R}(h)| \leq \epsilon$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary

• For a finite hypothesis set H and arbitrary distribution p^* , given a training data set S s.t. $|S| = M$, all $h \in \mathcal{H}$ have

$$
R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}
$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$? • For a finite hypothesis set H and arbitrary distribution p^* , given a training data set S s.t. $|S| = M$, all $h \in \mathcal{H}$ have

$$
R(h) \le \hat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}
$$

with probability at least $1 - \delta$.

The Union Bound…

$P{A \cup B} \le P{A} + P{B}$

The Union Bound is Bad!

 $P{A \cup B} \le P{A} + P{B}$

 $P{A \cup B} = P{A} + P{B} - P{A \cap B}$

Intuition

- If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events
	- " h_1 is consistent with the first m training data points"
	- " h_2 is consistent with the first m training data points"
	- will overlap a lot!

Intuition

- If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events
	- " h_1 is consistent with the first m training data points"
	- " h_2 is consistent with the first m training data points"
	- will overlap a lot!

 h_1 h_2

Key Takeaways

- Statistical learning theory model
- Expected vs. empirical risk of a hypothesis
- Four possible cases of interest
	- realizable vs. agnostic
	- finite vs. infinite
- Sample complexity bounds and statistical learning theory corollaries for finite hypothesis sets