10-701: Introduction to Machine Learning Lecture 20 – Learning Theory (Finite Case)

Henry Chai

4/1/24

Front Matter

- Announcements
 - HW5 released 3/22, due 4/1 (today!) at 11:59 PM
 - Project mentors have been assigned
 - If you haven't already done so, please meet with your project mentors ASAP to discuss your proposals
 - Project check-ins due on 4/8 at 11:59 PM
 - Daniel is on leave and will be for an indeterminate amount of time, please direct all course requests/questions to Henry

Recall: What is Machine Learning 10-701?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
 - SVMs
- Unsupervised Learning
- Ensemble Methods

- Graphical Models
- Learning Theory
- Reinforcement Learning
- Deep Learning
- Generative Al
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

Recall: What is Machine Learning 10-701?

- Supervised Models
 - Decision Trees
 - KNN
 - Naïve Bayes
 - Perceptron
 - Logistic Regression
 - Linear Regression
 - Neural Networks
 - SVMs
- Unsupervised Learning
- Ensemble Methods

- Graphical Models
- Learning Theory
- Reinforcement Learning
- Deep Learning
- Generative Al
- Important Concepts
 - Feature Engineering
 - Regularization and Overfitting
 - Experimental Design
 - Societal Implications

Statistical Learning Theory Model 1. Data points are generated i.i.d. from some *unknown* distribution

 $\boldsymbol{x}^{(n)} \sim p^*(\boldsymbol{x})$

- 2. Labels are generated from some *unknown* function $y^{(n)} = c^*(x^{(n)})$
- 3. The learning algorithm chooses the hypothesis (or classifier) with lowest *training* error rate from a specified hypothesis set, \mathcal{H}
- 4. Goal: return a hypothesis (or classifier) with low *true* error rate

Recall: Types of Error

True error rate

- Actual quantity of interest in machine learning
- How well your hypothesis will perform on average across all possible data points
- Test error rate: used to evaluate hypothesis performance
 - Good estimate of the true error rate
- Validation error rate: used to set model hyperparameters
 Slightly "optimistic" estimate of the true error rate
- Training error rate: used to set model parameters
 - Very "optimistic" estimate of the true error rate

Types of Risk (a.k.a. Error)

- Expected risk of a hypothesis h (a.k.a. true error) $R(h) = P_{\boldsymbol{x} \sim p^*} (c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}))$
- Empirical risk of a hypothesis *h* (a.k.a. training error)

$$\widehat{R}(h) = P_{\boldsymbol{x} \sim \mathcal{D}} \left(c^*(\boldsymbol{x}) \neq h(\boldsymbol{x}) \right)$$
$$= \frac{1}{N} \sum_{n=1}^N \mathbb{1} \left(c^*(\boldsymbol{x}^{(n)}) \neq h(\boldsymbol{x}^{(n)}) \right)$$
$$= \frac{1}{N} \sum_{n=1}^N \mathbb{1} \left(y^{(n)} \neq h(\boldsymbol{x}^{(n)}) \right)$$

where $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$ is the training data set and $x \sim \mathcal{D}$ denotes a point sampled uniformly at random from \mathcal{D}

Three Hypotheses of Interest

1. The *true function*, *c**

- 2. The expected risk minimizer,
 - $h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$
- 3. The empirical risk minimizer,

 $\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h)$

Key Question

• Given a hypothesis with zero/low training error, what can we say about its true error?

PAC Learning

PAC = <u>P</u>robably <u>A</u>pproximately <u>C</u>orrect

• PAC Criterion:

 $P(|R(h) - \hat{R}(h)| \le \epsilon) \ge 1 - \delta \forall h \in \mathcal{H}$

for some ϵ (difference between expected and empirical risk) and δ (probability of "failure")

• We want the PAC criterion to be satisfied for \mathcal{H} with *small* values of ϵ and δ

Sample Complexity • The sample complexity of an algorithm/hypothesis set, \mathcal{H} , is the number of labelled training data points needed to satisfy the PAC criterion for some δ and ϵ

• Four cases

- Realizable vs. Agnostic
 - Realizable $\rightarrow c^* \in \mathcal{H}$
 - Agnostic $\rightarrow c^*$ might or might not be in \mathcal{H}
- Finite vs. Infinite
 - Finite $\rightarrow |\mathcal{H}| < \infty$
 - Infinite $\rightarrow |\mathcal{H}| = \infty$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies $\int_{\mathcal{H}} \int_{\mathcal{H}} \int_{\mathcal{H}$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \le \epsilon$

1. Assume IK bad hypotheses h,...,hk where $\mathbb{R}(h_k) > \mathbb{E} \quad \forall \ k \in [i, \kappa]$ Z. Prek some bed hypothesis hk A. The probability that he misclassifies a training data point in D>E B. The probability that he correctly Classifies a training data point < 1-EC. The probability that h_{μ} achieves O training error < $(1-E)^{M}(|D|=M)$ 3. Probability that any of the K bad hypotheses achaves O training

3. P(h, achreve, O training erior < ZP(hk achieves O training error) $\leq \overset{K}{\leq} (1 - \epsilon)^{M} = K(1 - \epsilon)^{M} \leq [H](1 - \epsilon)^{M}$ H = 1 $- \mathbf{r}(A \cap \mathbf{B})$ $P(AUB) \leq P(A) + P(B)$

3. Probability that at least one bid hypothesis w/ R(h)>E achieves O training error = [H](I-E)^M $4. \forall x (1-x) \leq e^{-x}$ $\leq |H(e^{e})^{M} = |H|e^{-eM}$ S. $|H|e^{-\epsilon M} \leq \delta \Rightarrow e^{-\epsilon M} \leq \frac{\delta}{|I-1|}$ $\Rightarrow -\epsilon M \leq \ln(\delta) - \ln(|H|)$ $\Rightarrow M \geq \frac{1}{C} \left(\ln \left(|H| \right) - \ln \left(S \right) \right)$ $\Rightarrow M \geq \frac{1}{e} \left(\ln(|H|) + \ln(\frac{1}{s}) \right)$

6. Given $M \ge \frac{1}{\varepsilon} \left(\ln(|H|) + \ln(\frac{1}{\varepsilon}) \right)$ i.i.d. labelled training data points ~ p^{A} , the probability Ξ a bad hypothesis W/R(h) > E al $R(h_p) = 0$ is $\leq S$ 11 7. Given M 2 the postability that all hypotheses w/ $R(h_R) > E$ have $\hat{R}(h_R) > O$ is $\geq 1 - S$

Aside: Proof by Contrapositive • The contrapositive of a statement $A \Rightarrow B$ is $\neg B \Rightarrow \neg A$

- A statement and its contrapositive are logically equivalent, i.e., $A \Rightarrow B$ means that $\neg B \Rightarrow \neg A$
- Example: "it's raining ⇒ Henry brings am umbrella"

is the same as saying

"Henry didn't bring an umbrella ⇒ it's not raining "

7. Given $M \ge \frac{1}{E} \left(\ln(1HI) + \ln(\frac{1}{E}) \right)$ With i.i.d. Labelled training data points -pt August 2011 hypotheses $h_{E} \in H = n/R(h_{E}) > E$ have $R(h_{E}) > 0$ is $\ge 1 - S$ I by contraposition 8. Given M the probability that all hypotheses $h_k \in H$ $w/R(h_k) = 0$ have $R(h_k) \leq G$ is $\geq 1-S$

Theorem 1: Finite, Realizable Case • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{\epsilon} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ with $\widehat{R}(h) = 0$ have $R(h) \leq \epsilon$

 Making the bound tight (setting the two sides equal to each other) and solving for *e* gives... Statistical Learning Theory Corollary • For a finite hypothesis set \mathcal{H} s.t. $c^* \in \mathcal{H}$ and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have

 $R(h) \leq \frac{1}{M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{1}{\delta}\right) \right)$

with probability at least $1 - \delta$.

Theorem 2: Finite, Agnostic Case • For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , if the number of labelled training data points satisfies

$$M \ge \frac{1}{2\epsilon^2} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)$$

then with probability at least $1 - \delta$, all $h \in \mathcal{H}$ satisfy $|R(h) - \hat{R}(h)| \leq \epsilon$

- Bound is inversely quadratic in ϵ , e.g., halving ϵ means we need four times as many labelled training data points
- Again, making the bound tight and solving for ϵ gives...

Statistical Learning Theory Corollary • For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \widehat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

What happens when $|\mathcal{H}| = \infty$? • For a finite hypothesis set \mathcal{H} and arbitrary distribution p^* , given a training data set S s.t. |S| = M, all $h \in \mathcal{H}$ have

$$R(h) \le \widehat{R}(h) + \sqrt{\frac{1}{2M} \left(\ln(|\mathcal{H}|) + \ln\left(\frac{2}{\delta}\right) \right)}$$

with probability at least $1 - \delta$.

The Union Bound...

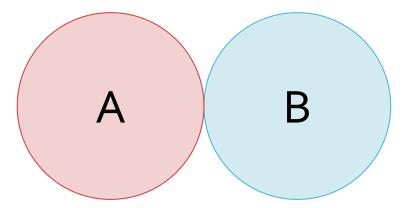
$P\{A \cup B\} \le P\{A\} + P\{B\}$



The Union Bound is Bad!

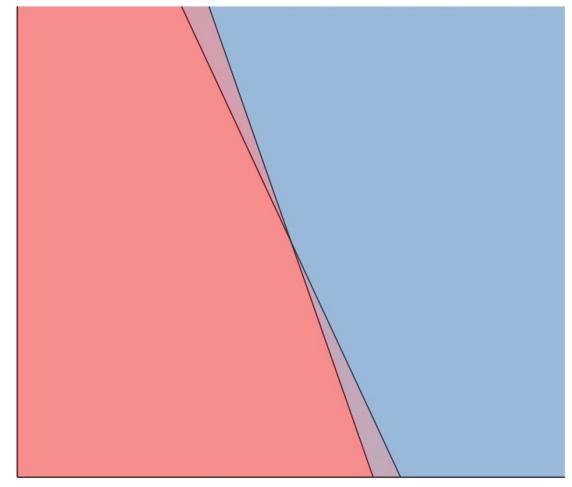
 $P\{A \cup B\} \le P\{A\} + P\{B\}$

 $P\{A \cup B\} = P\{A\} + P\{B\} - P\{A \cap B\}$



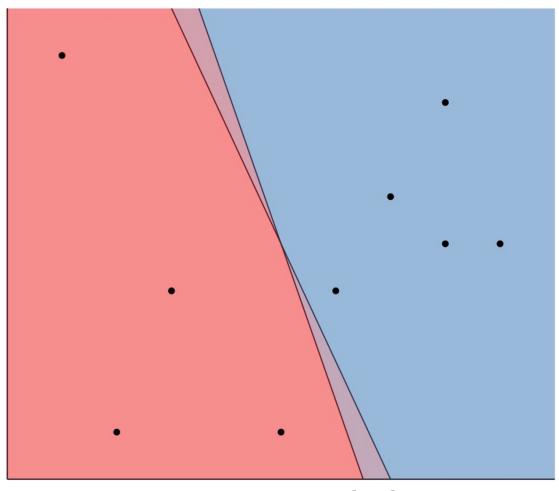
Intuition

- If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events
 - "h₁ is consistent with the first m training data points"
 - "h₂ is consistent with the first m training data points"
- will overlap a lot!



Intuition

- If two hypotheses $h_1, h_2 \in \mathcal{H}$ are very similar, then the events
 - "h₁ is consistent with the first m training data points"
 - "h₂ is consistent with the first m training data points"
- will overlap a lot!



Key Takeaways

- Statistical learning theory model
- Expected vs. empirical risk of a hypothesis
- Four possible cases of interest
 - realizable vs. agnostic
 - finite vs. infinite
- Sample complexity bounds and statistical learning theory corollaries for finite hypothesis sets