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* Announcements
* Project check-ins due on 4/8 at 11:59 PM
Front Matter - Daniel is on leave and will be for an indeterminate

amount of time, please direct all course

requests/questions to Henry
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* Given a hypothesis with zero/low training error, what

Key Question

can we say about its true error?
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Theorem 1:
Finite,
Realizable Case
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* For a finite hypothesis set H s.t. ¢* € H and arbitrary
distribution p*, if the number of labelled training data
points satisfies

M > %(ln(l?[l) +1n (%))

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€

- Making the bound tight (setting the two sides equal to

each other) and solving for € gives...



* For a finite hypothesis set H s.t. ¢* € H and arbitrary

distribution p*, given a training data set S s.t. |[S| = M,

Statistical all b € H with R(h) = 0 have
Learning

Theory R(h) < %(ln(l}[ )+ 1n (%))

Corollary:
Finite,
Realizable Case

with probability at least 1 — 6.
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* For a finite hypothesis set H and arbitrary distribution

p*, given a training dataset Ss.t. |S| =M, allh e H
Statistical have

Learning

Theory R(h) < R(h) + V%(ln(l}[l) +1n (%))

with probability at least 1 — 6.

Corollary:
Finite,
Agnostic Case
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* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. |S| =M, allh e H

have

What

happens R(K) < R(R) + Vﬁ(lnawn t1n(3))

with probability at least 1 — 6.

when
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P{A U B} < P{4} + P{B)

P{AU B} = P{A} + P{B} — P{A N B}

The Union

Bound is Bad!
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Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “hq is consistent with the first m
training data points”

* “h, is consistent with the first m
training data points”

will overlap a lot!
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Labellings

Henry Chai - 4/3/24

- Given some finite set of data points S = (x(l), ., x(M))

and some hypothesis h € H, applying h to each point in

S results in a labelling

. (h(x(l)), . h(x(M))) is a vector of M +1’s and -1’s

* Insight: given S = (x(l), ...,x(M)), each hypothesis in H

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is

3(S) = {(A(xD), .., (x™)) | h € 3¢}
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Example: Labellings

H = {h1; h2' h3}
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Example: Labellings

H = {hli h2' h3}

(hl(x(l)), hy (x@), by (x®), hl(x(‘”))
=(—1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}

(hz (x D), hy(x@), by (x®), (x(4)))
=(—1,+1,-1,+1)
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Example: Labellings

H = {hli h2' h3}

(h3 (x D), hy(x@), hy (x®), b (x(4)))
=(+1,+1,-1,-1)
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Example: Labellings
H = {h1; h2'h3}

H(S)
={(+1,+1,-1,-1),(-1,+1,—-1,+1)}

|H (S| =2
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Example: Labellings
H = {hl! hz,hg}

H(S) =
{(+1,+1,-1,—-1)}

[H S| =1
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Growth

Function
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* The growth function of H is the maximum number of

distinct labellings H can induce on any set of M data points:

guM) = cmax,  |H(S)]

c gy (M) < 2M VY H and M

- I shatters S if |H(S)| = 2M

*1f3 S s.t. |S| = M and H shatters S, then g4r(M) = 2M
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Growth

Function:
Example

Henry Chai - 4/3/24

- x(M € R? and H = all 2-dimensional linear separators

* What is g#(3)?
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Growth

Function:
Example

Henry Chai - 4/3/24

- xM) € R2 and H = all 2-dimensional linear separators

* What is g#(3)?

[H(SDI =6 [H(S2)| =8
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Growth

Function:
Example

Henry Chai - 4/3/24

- xM) € R2 and H = all 2-dimensional linear separators

gy (3)=8=2°

[H(SDI =6 [H(S2)| =8
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Growth

Function:
Example

Henry Chai - 4/3/24

- x(M € R? and H = all 2-dimensional linear separators

* What is g+ (4)?
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Growth
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Example
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- xM) € R2 and H = all 2-dimensional linear separators

* What is g+ (4)?
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Growth

Function:
Example
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- xM) € R2 and H = all 2-dimensional linear separators

- gy(4) =14 < 2%

|H (S| =14 |H(S2)| = 14
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

Henry Chai - 4/3/24

* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

M > é(logz(zg:}c(ZM ) +log, (%»

then with probability at least 1 — 6, all h € H with
R(h) = e have R(h) > 0

- M appears on both sides of the inequality...
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Dimension

Henry Chai - 4/3/24

* dyc(H) = the largest value of M s.t. gor (M) = 2M, i.e., the

greatest number of data points that can be shattered by H

* If H can shatter arbitrarily large finite sets, then
dyc(H) = o

* 9 (M) = O(MdVC(}[)) (Sauer-Shelah lemma)

* To prove that dy-(H) = C, you need to show

1. 3 some set of C data points that H can shatter and
2. Aasetof C + 1data points that H can shatter
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VC-Dimension:

Example

Henry Chai - 4/3/24

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

* What is dvc(}[)?
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VC-Dimension:

Example
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- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

X+

* What is dvc(}[)?
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VC-Dimension:

Example
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X+
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VC-Dimension:

Example

Henry Chai - 4/3/24

- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

xD @

* What is dvc(}[)?
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VC-Dimension:

Example
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- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

xD @
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VC-Dimension:

Example
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- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

x| @

* What is dvc(}[)?
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VC-Dimension:

Example

Henry Chai - 4/3/24

- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

* What is dvc(}[)?
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VC-Dimension:

Example

Henry Chai - 4/3/24

- x(M € R and H = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

“dyc(H) =1
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VC-Dimension:

Example
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- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

* What is g¢r(m)?
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VC-Dimension:

Example
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- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

'Rl >
xD @ B @ L6 | 46 £ (m=1) ,(m)

* What is g¢r(m)?

42



VC-Dimension:

Example
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- x(M € R and A = all 1-dimensional positive rays, i.e.,

all hypotheses of the form h(x; a) = sign(x — a)

'Rl >
xD @ B @ L6 | 46 £ (m=1) ,(m)

a

*gyr(m) =m+1=0(0m")
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VC-Dimension:

Example
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- x(M) € R and H = all 1-dimensional positive intervals

a b
* What are dy(H) and g¢r(m)?
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VC-Dimension:

Example
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- x(M € R and H = all 1-dimensional positive intervals

x| @

a b
* What are dy(H) and g¢r(m)?
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VC-Dimension:

Example
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- x(M) € R and H = all 1-dimensional positive intervals

—eo—o—0o—0o—0o—0— 09 >
YD @ B @ 6| .6 x(m=1)| ,(m)
a b

* What are dy(H) and g¢r(m)?
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- x(M € R and H = all 1-dimensional positive intervals

VC-Dimension: —eo—o—0o—0o—0o—0— 09 >
Example XD x@ B W G| x© oD

a b
* dyc(H) = 2 and gg(m) = (m;d) + 1 = 0(m?)

Henry Chai - 4/3/24

47



Growth

Function:
Example
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- x(M € R2 and H = all 2-dimensional positive convex sets
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Growth

Function:
Example
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- x(M € R2 and H = all 2-dimensional positive convex sets

* What are dy(H) and g4 (M)?
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Growth

Function:
Example
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- x(M € R2 and H = all 2-dimensional positive convex sets

* What are dy(H) and g4 (M)?

eH

(™) £@

£®

(6 @

£
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- x(M € R2 and H = all 2-dimensional positive convex sets

* What are dy(H) and g4 (M)?

»@
Growth - o
. x(m x 2
Function:
Example
x3)
»(6) @

£

Henry Chai - 4/3/24
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- x(M € R2 and H = all 2-dimensional positive convex sets

* dyc(H) = o0 and gz (M) = 2" = 0(M)

»@
Growth - o
: x(m x?
Function:
Example
x3)
(6 e

£

Henry Chai - 4/3/24
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Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

w-o(b{acoovs(l) )

then with probability at least 1 — 6, all h € H with
R(h) =0haveR(h) <€
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Statistical
Learning

Theory
Corollary
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* Infinite, realizable case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |[S| = M,

all h € 7 with R(h) = 0 have

R(h) <O (% (dvc(}[) log (dVCAZH)) + log(

with probability at least 1 — 6.

1

)

)
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Theorem 4:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, agnostic case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

v = 0/ (drc90) +108(3)

then with probability at least 1 — 6, all h € H have
IR(h) —R(h)| <€
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Statistical
Learning

Theory
Corollary
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* Infinite, agnostic case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |S| = M,
all h € H have

R(h) <R(h)+0 . %(dvc(}[) + log (%))

with probability at least 1 — 6.
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How well does
h generalize?

N J

° ° Y
Approximation ; T\
Generalization R(h) <R(R) +0 M(dvc(}[) + log (5)))
Tradeoff A0

How well does h
approximate ¢*?

Henry Chai - 4/3/24 v



Increases as
dyc(H) increases

N J

° ° Y
Approximation ; T\
Generalization R(h) <R(R) +0 M(dvc(}[) + log (5)))
Tradeoff A0

Decreases as
dyc(H) increases
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* For infinite hypothesis sets, use the VC-dimension (or

the growth function) as a measure of complexity
* Computing dy(H) and g4 (M)
Key IE keaways - Connection between VC-dimension and the growth

function (Sauer-Shelah lemma)

- Sample complexity and statistical learning theory

style bounds using dy(H)
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Bias-Variance

Tradeoff

Henry Chai - 4/3/24

. [ES[eer(hS)] — [ES [[Ex~D (hs(x) — C*(x))Z:_

- Assume a regression task with squared error and let

hs € H = the hypothesis trained on training data S

“errp(hs) = Exop [(hs(x) — ¢ *(x))zl

= Ex-p [IES :(hs(x) — C*(x))z:-

- where B(#) = Eg[hs(x)]~ z s, (x)

= Ex~p :Es[hs(x)z — 2hg(x)c*(x) + C*(x)z:
= Ex-p 'Es[hs(x)Z] — 2h(x)c*(x) + c*(x)?
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- Assume a regression task with squared error and let
hs € H = the hypothesis trained on training data S

*errp(hs) = Ex-p [(hs(x) —C *(x))zl

hs(2)?] — 2h(x)c*(x) + ¢*(x)?]

Bias-Variance

Eg[
_ ' 21 T (a2
Tradeoff = ExeplEslhs(0)™] — h(x)
+h(x)% — 2h(x)c*(x) + c*(x)?]

= Byp [Bs[hs()? - R0?] + (RG0) - )]
= E,.p|Variance of hg(x) + Bias of h(x)|

Henry Chai - 4/3/24 61



How much does h
change if the training
data set changes?

N Y,
Bias-Variance Eeferr (ho)] = E [15: heC )ZYE( ]+ () - e ))2]
Tradeoff SETTDAASIT = B | B st * VoY
e A
How well on

average does h
approximate c¢*?

Henry Chai - 4/3/24 62



How well could h
approximate

anything?
N \ J
Bias-Variance _ _ 2
Tradeoff Bslerry(hs)] = By-p | Es[hs(x)? — hx)?] + (h(")jf @) ]
4 A
How well on

average does h
approximate c¢*?

Henry Chai - 4/3/24 63



Increases as H
becomes more

complex
N . J
Bias-Variance Eeferr (ho)] = E [15: hsCa)? — ] + () — e ))2]
Tradeoff SIETTDRAI = Baep | BslsT8T 7 L2 VoY
4 N

Decreases as H
becomes more
complex

Henry Chai - 4/3/24



Bias-Variance

Tradeoff:
Example

Henry Chai - 4/3/24

- x®W € Rand D = Uniform(0, 27)
- ¢* =sin(:), i.e., y = sin(x)
N =2-D ={(xW,sin(xW)), (x?, sin(x?))}

*Ho=1{h:h(x) =b}and H; ={h: h(x) = ax + b}
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Bias-Variance
Tradeoft:

Example
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Bias-Variance
Tradeoft:

Example
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h(x)

h(x)
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Bias-Variance R(x) h(x)
Tradeoft: v
Example

Bias of h(x) = 0.50 Bias of h(x) = 0.21

Variance of hg(x) = 0.25 Variance of he(x) = 1.74
Eslerrp(hs)]|= 0.75 Eclerrp(hs)] = 1.95
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Bias-Variance
Tradeoft:

Example
(N =5)

Henry Chai - 4/3/24

h(x)

N

Bias of h(x) = 0.50
Variance of hg(x) = 0.10
Eslerrp(hs)] = 0.60

h(x)

Bias of h(x) = 0.21

Variance of hq(x)
Eglerrp(hs)]

~ (0.21

~ (0.42
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