10-701: Introduction to Machine Learning Lecture 22 – Random Forests

Henry Chai

4/8/24

Front Matter

Announcements

- Project check-ins due on 4/8 (today!) at 11:59 PM
- HW6 will be released on 4/10 (Wednesday), due 4/19 at 11:59 PM
- No recitation on 4/12 (Friday) due to Carnival
 - We will release next week's recitation handout early to help you complete the relevant portions of HW6

The Netflix Prize

Netflix Prize

• 500,000 users

Leaderboard

Home

Rules

- 20,000 movies
- 100 million ratings
- Goal: To obtain lower error than Netflix's existing system on 3 million held out ratings

Update

Congratulations!

The Netflix Prize sought to substantially improve the accuracy of predictions about how much someone is going to enjoy a movie based on their movie preferences.

On September 21, 2009 we awarded the \$1M Grand Prize to team "BellKor's Pragmatic Chaos". Read about <u>their</u> <u>algorithm</u>, checkout team scores on the <u>Leaderboard</u>, and join the discussions on the <u>Forum</u>.

We applaud all the contributors to this quest, which improves our ability to connect people to the movies they love.

The Netflix Prize

Netflix Prize

Home Rules Leaderboard Update Download

Leaderboard

Showing Test Score. Click here to show quiz score

Display top $20 \sim$ leaders.

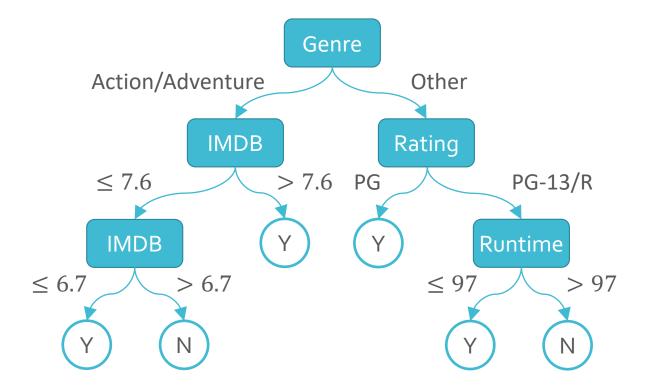
Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	<u> Prize</u> - RMSE = 0.8567 - Winning Te	am: BellKor's Pragn	natic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace_	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

COMPLETED

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	Ν
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	Ν
7	120	Drama	14.5M	1996	6.7	PG-13	Ν
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	Ν
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	Ν
14	128	Action	110M	2007	7.1	PG-13	Ν
15	107	Drama	39M	2009	7.1	PG-13	Ν
16	158	Drama	61M	2012	7.6	PG-13	Ν
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	Ν
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y

Movie Recommendations

MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	Ν
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	Ν
7	120	Drama	14.5M	1996	6.7	PG-13	Ν
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	Ν
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	Ν
14	128	Action	110M	2007	7.1	PG-13	Ν
15	107	Drama	39M	2009	7.1	PG-13	Ν
16	158	Drama	61M	2012	7.6	PG-13	Ν
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	Ν
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y



Recall: Decision Tree Pros & Cons

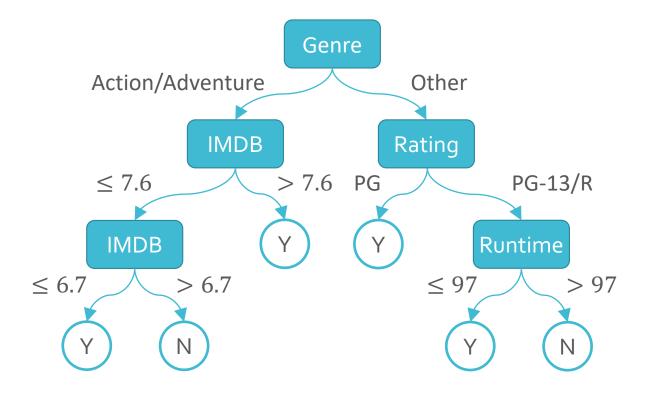
• Pros

- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features

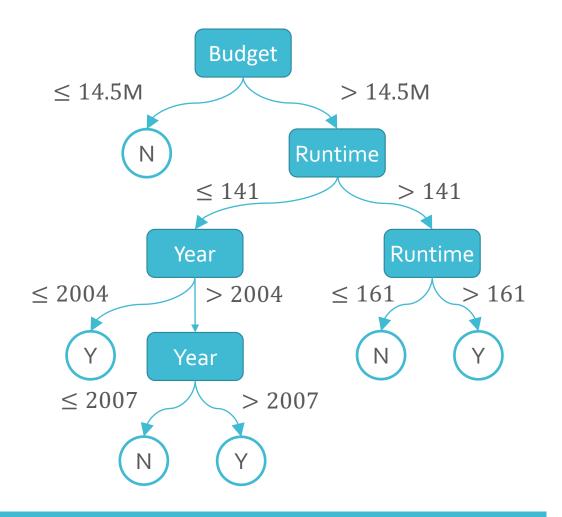
• Cons

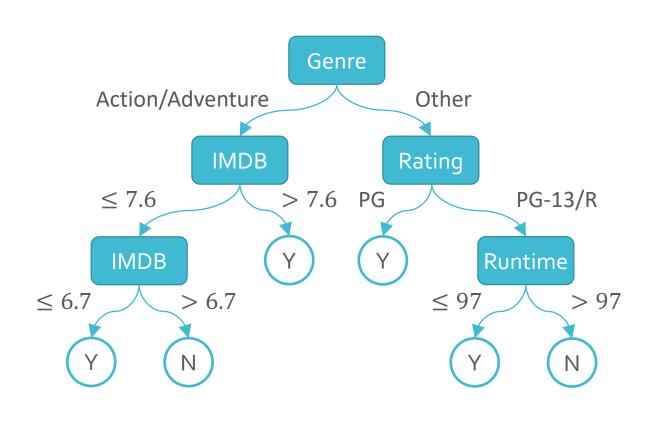
- Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
- Prone to overfit
- High variance

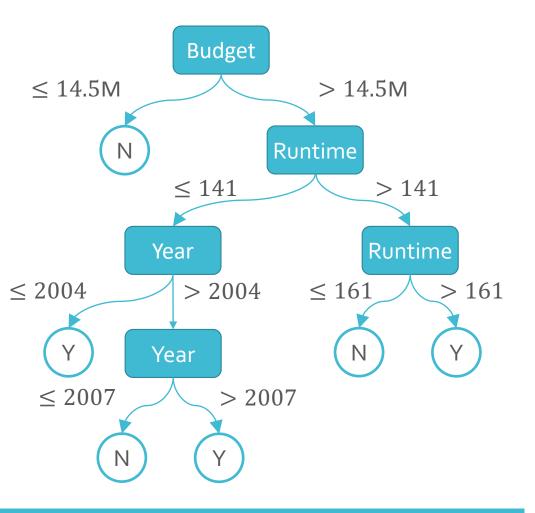
MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	Ν
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	Ν
7	120	Drama	14.5M	1996	6.7	PG-13	Ν
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	Ν
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	Ν
14	128	Action	110M	2007	7.1	PG-13	Ν
15	107	Drama	39M	2009	7.1	PG-13	Ν
16	158	Drama	61M	2012	7.6	PG-13	Ν
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	Ν
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y



MovielD	Runtime	Genre	Budget	Year	IMDB	Rating	Liked?
1	124	Action	18M	1980	8.7	PG	Y
2	105	Action	30M	1984	7.8	PG	Y
3	103	Comedy	6M	1986	7.8	PG-13	Ν
4	98	Adventure	16M	1987	8.1	PG	Y
5	128	Comedy	16.4M	1989	8.1	PG	Y
6	120	Comedy	11M	1992	7.6	R	Ν
7	120	Drama	14.5M	1996	6.7	PG-13	Ν
8	136	Action	115M	1999	6.5	PG	Y
9	90	Action	90M	2001	6.6	PG-13	Y
10	161	Adventure	100M	2002	7.4	PG	Ν
11	201	Action	94M	2003	8.9	PG-13	Y
12	94	Comedy	26M	2004	7.2	PG-13	Y
13	157	Biography	100M	2007	7.8	R	Ν
14	128	Action	110M	2007	7.1	PG-13	Ν
15	107	Drama	39M	2009	7.1	PG-13	Ν
16	158	Drama	61M	2012	7.6	PG-13	Y
17	169	Adventure	165M	2014	8.6	PG-13	Y
18	100	Biography	9M	2016	6.7	R	Ν
19	130	Action	180M	2017	7.9	PG-13	Y
20	141	Action	275M	2019	6.5	PG-13	Y







Decision Trees: Pros & Cons

• Pros

- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features

• Cons

- Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
- Prone to overfit
- High variance
 - Can be addressed via ensembles \rightarrow random forests

The Wisdom of Crowds In 1906, Francis Galton asked ~800 people at a farmer's fair to guess the weight of a cow, including "experts"

- Actual weight: 1198 lbs
- Mean guess: 1197 lbs
- Mean guess was more accurate than any single guess, even the experts

Random Forests Combines the prediction of many diverse decision trees to reduce their variability

• If *B* independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^2}{B}$

Random forests = bagging + split-feature randomization

= **b**ootstrap **<u>agg</u>**regat**<u>ing</u>** + split-feature randomization

Aggregating

- How can we combine multiple decision trees, $\{t_1, t_2, ..., t_B\}$, to arrive at a single prediction?
- Regression average the predictions:

$$\bar{t}(\boldsymbol{x}) = \frac{1}{B} \sum_{b=1}^{B} t_b(\boldsymbol{x})$$

 Classification - plurality (or majority) vote; for binary labels encoded as {-1, +1}:

$$\bar{t}(\boldsymbol{x}) = \operatorname{sign}\left(\frac{1}{B}\sum_{b=1}^{B}t_{b}(\boldsymbol{x})\right)$$

Random Forests Combines the prediction of many diverse decision trees to reduce their variability

• If *B* independent random variables $x^{(1)}, x^{(2)}, ..., x^{(B)}$ all have variance σ^2 , then the variance of $\frac{1}{B} \sum_{b=1}^{B} x^{(b)}$ is $\frac{\sigma^2}{B}$

Random forests = bagging + split-feature randomization

= **b**ootstrap **<u>agg</u>**regat**<u>ing</u>** + split-feature randomization

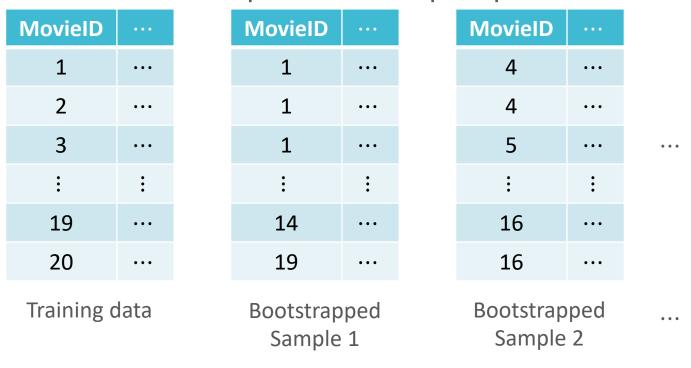
Bootstrapping

- Insight: one way of generating different decision trees is by changing the training data set
- Issue: often, we only have one fixed set of training data
- Idea: resample the data multiple times *with replacement*

/lovieID	•••	MovielD			MovielD
1	•••	1	•••		4
2	•••	1	•••		4
3	•••	1	•••		5
:	:	:	:		:
19		14			16
20	•••	19	•••		16
Training data		Bootstrap Sample			Bootstrap Sample

Bootstrapping

- Idea: resample the data multiple times *with replacement*
 - Each bootstrapped sample has the same number of data points as the original data set
 - Duplicated points cause different decision trees to focus on different parts of the input space



- Issue: decision trees trained on bootstrapped samples still tend to behave similarly...
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

RuntimeGenreBudgetYearIMDBRating

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

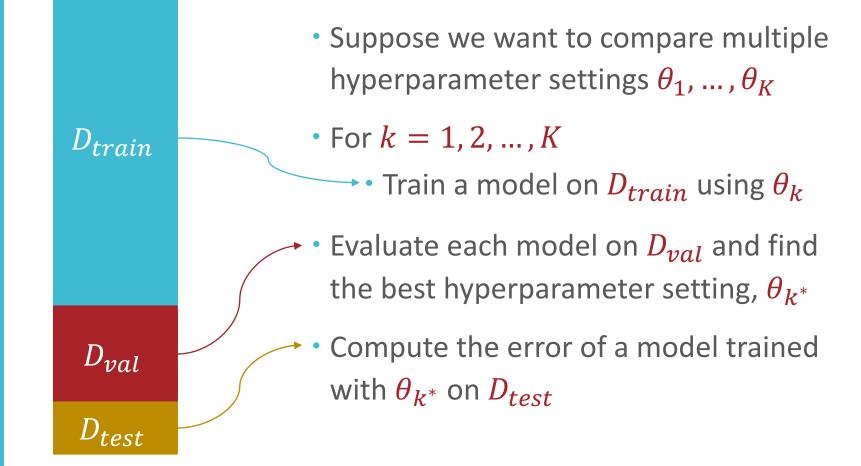
- Issue: decision trees trained on bootstrapped samples still behave similarly
- Idea: in addition to sampling the data points (i.e., the rows), also sample the features (i.e., the columns)
- Each time a split is being considered, limit the possible features to a randomly sampled subset

Random Forests

- Input: $\mathcal{D} = \{ (x^{(n)}, y^{(n)}) \}_{n=1}^{N}, B, \rho$
- For b = 1, 2, ..., B
 - Create a dataset, \mathcal{D}_b , by sampling N points from the original training data \mathcal{D} with replacement
 - Learn a decision tree, t_b , using \mathcal{D}_b and the ID3 algorithm with split-feature randomization, sampling ρ features for each split

• Output: $\overline{t} = f(t_1, \dots, t_B)$, the aggregated hypothesis

Recall: Validation Sets



Out-of-bag Error

• For each training point, $x^{(n)}$, there are some decision trees which $x^{(n)}$ was not used to train (roughly B/e trees or 37%)

• Let these be
$$t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N_{-n}}^{(-n)} \right\}$$

• Compute an aggregated prediction for each $x^{(n)}$ using the trees in $t^{(-n)}$, $\overline{t}^{(-n)}(x^{(n)})$

• Compute the out-of-bag (OOB) error, e.g., for regression $E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} (\bar{t}^{(-n)} (\boldsymbol{x}^{(n)}) - y^{(n)})^2$

Out-of-bag Error

• For each training point, $x^{(n)}$, there are some decision trees which $x^{(n)}$ was not used to train (roughly B/e trees or 37%)

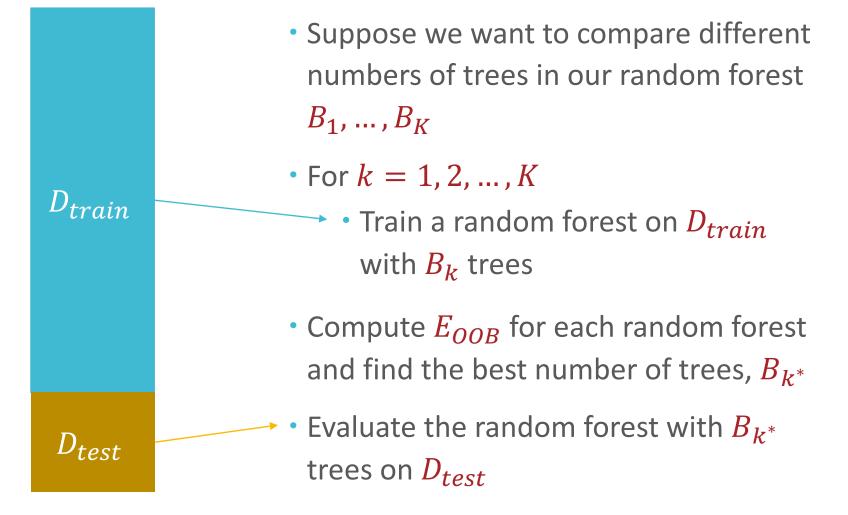
• Let these be
$$t^{(-n)} = \left\{ t_1^{(-n)}, t_2^{(-n)}, \dots, t_{N_{-n}}^{(-n)} \right\}$$

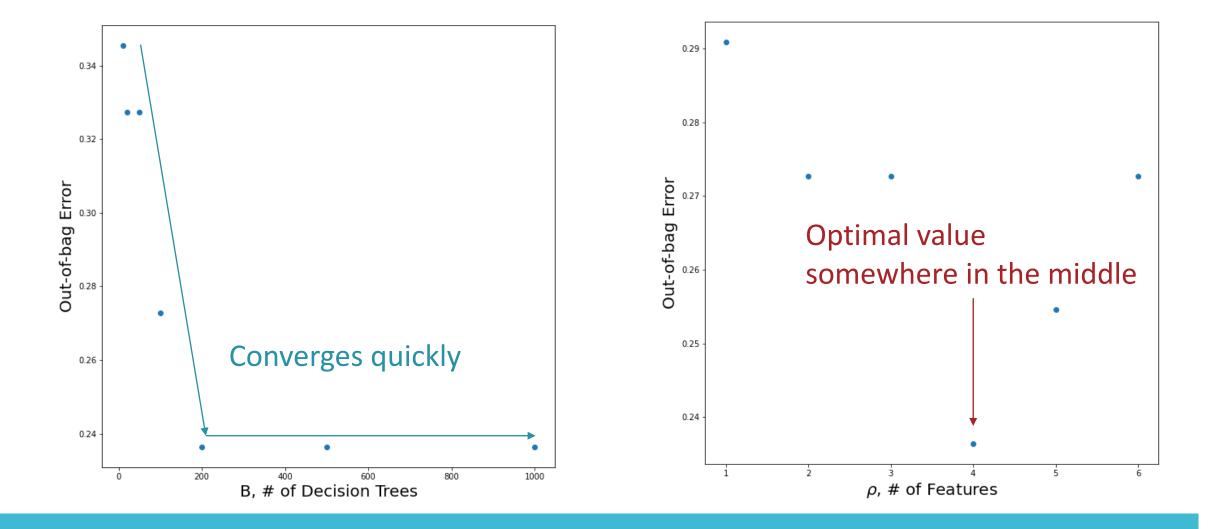
• Compute an aggregated prediction for each $x^{(n)}$ using the trees in $t^{(-n)}$, $\overline{t}^{(-n)}(x^{(n)})$

• Compute the out-of-bag (OOB) error, e.g., for classification $E_{OOB} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}(\bar{t}^{(-n)}(\boldsymbol{x}^{(n)}) \neq y^{(n)})$

• *E*_{00B} can be used for hyperparameter optimization!

Out-of-bag Error



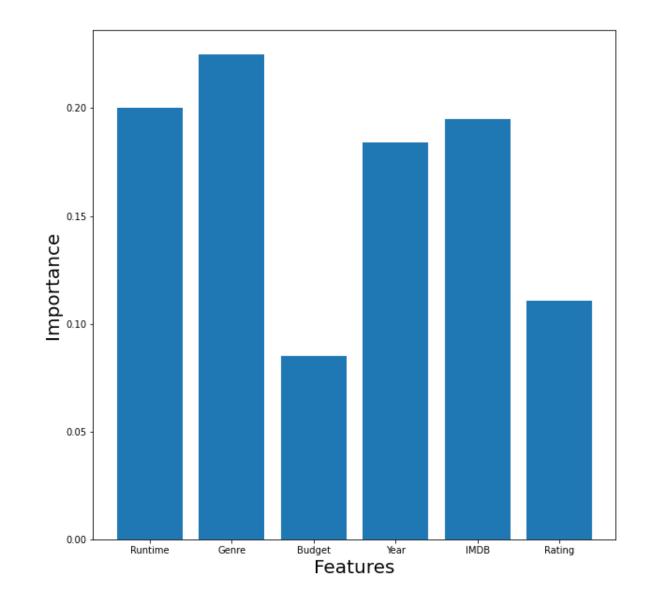


Setting Hyperparameters

Feature Importance

- Some of the interpretability of decision trees gets lost when switching to random forests
- Random forests allow for the computation of "feature importance", a way of ranking features based on how useful they are at predicting the target
- Initialize each feature's importance to zero
- Each time a feature is chosen to be split on, add the reduction in Gini impurity (weighted by the number of data points in the split) to its importance

Feature Importance



Key Takeaways

- Ensemble methods employ a "wisdom of crowds" philosophy
 - Can reduce the variance of high variance methods
- Random forests = bagging + split-feature randomization
 - Aggregate multiple decision trees together
 - Bootstrapping and split-feature randomization increase diversity in the decision trees
 - Use out-of-bag errors for hyperparameter optimization