10-701: Introduction to Machine Learning Lecture 24 - Support Vector Machines

Henry Chai

4/15/24

Front Matter

Announcements

• HW6 released 4/11, due 4/20 (Saturday) at 11:59 PM

Final Exam Logistics

- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - (Simple) Proofs
 - Short answers
 - Drawing & Interpreting figures
 - Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-/A4-size sheet of notes; you can put *whatever* you want on *both sides*

Final Exam Topics

- Covered material: Lectures 14 25
 - Unsupervised Learning
 - Reinforcement Learning
 - Pretraining, fine-tuning and in-context learning
 - Algorithmic Bias
 - Learning Theory
 - Ensemble Methods
 - SVMs & Kernels
 - Pre-midterm material may be referenced but will not be the primary focus of any question

Final Exam Preparation

- Review the exam practice problems (to be released on 4/22 to the course website, under the <u>Recitations tab</u>)
- Attend the dedicated final exam review recitation (4/26)
- Review HWs 5 6
- Review the key takeaways throughout the lecture slides
- Write your one-page cheat sheet (back and front)

Which linear separator is best?

Which linear separator is best?

Maximal Margin Linear Separators • The margin of a linear separator is the distance between it and the nearest training data point

• Questions:

- How can we efficiently find a maximal-margin linear separator?
- 2. Why are linear separators with larger margins better?
- 3. What can we do if the data is not linearly separable?

Recall: Hyperplanes

• For linear models, decision boundaries are *D*-dimensional hyperplanes defined by a weight vector, [b, w] $w^T x + b = 0$

- Problem: there are infinitely many weight vectors that describe the same hyperplane
 - $x_1 + 2x_2 + 2 = 0$ is the same line as $2x_1 + 4x_2 + 4 = 0$, which is the same line as

 $100000x_1 + 200000x_2 + 200000 = 0$

• Solution: normalize weight vectors w.r.t. the training data

Normalizing Hyperplanes

• Given a dataset $\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}$ where $y \in \{-1, +1\}$, $\hat{y} = \operatorname{sign}(\mathbf{w}^{T}\mathbf{x} + b)$ is a valid **linear separator** if $y^{(i)}(\mathbf{w}^{T}\mathbf{x}^{(i)} + b) > 0 \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

• For SVMs, we're only going to consider linear separators in

$$\mathcal{H} = \left\{ \hat{y} = \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x} + b) : \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) = 1 \right\}$$

• If $\hat{y} = \operatorname{sign}(w^T x + b)$ is a linear separator, then

$$\hat{y} = \operatorname{sign}\left(\frac{w^{T}}{\rho}x + \frac{b}{\rho}\right) \in \mathcal{H}$$
 where

$$\rho = \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b)$$

Normalizing Hyperplanes: Example

b	<i>w</i> ₁	<i>w</i> ₂	
-0.2	-0.6	1	$\notin \mathcal{H}$
-0.4	-1.2	2	$\notin \mathcal{H}$
-2	-6	10	$\notin \mathcal{H}$
-10	-30	50	$\in \mathcal{H}$
0.2	-0.6	0.2	$\notin \mathcal{H}$
0.1	-0.3	0.1	$\notin \mathcal{H}$
1	-3	1	$\notin \mathcal{H}$
2	-6	2	$\in \mathcal{H}$

<i>x</i> ₁	<i>x</i> ₂	y	$y(\boldsymbol{w}^T\boldsymbol{x}+b)$
0.2	0.4	+1	1.6
0.3	0.8	+1	1.8
0.7	0.6	-1	1
0.8	0.3	-1	2.2

- Claim: **w** is orthogonal to the hyperplane $w^T x + b = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- Vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are orthogonal if $\boldsymbol{\alpha}^T \boldsymbol{\beta} = 0$

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of x'' - x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of x'' - x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane

- Let \mathbf{x}' be an arbitrary point on the hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of x'' - x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane

• Let \mathbf{x}' be an arbitrary point on the hyperplane $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$ and let \mathbf{x}'' be an arbitrary point

• The distance between x'' and $h(x) = w^T x + b = 0$ is equal to the magnitude of the projection of x'' - x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane

$$d(\mathbf{x}^{"}, h) = \left| \frac{\mathbf{w}^{T}(\mathbf{x}^{"} - \mathbf{x}^{'})}{\|\mathbf{w}\|_{2}} \right| = \frac{\|\mathbf{w}^{T}\mathbf{x}^{"} - \mathbf{w}^{T}\mathbf{x}^{'}\|}{\|\mathbf{w}\|_{2}}$$
$$= \frac{\|\mathbf{w}^{T}\mathbf{x}^{"} + b\|}{\|\mathbf{w}\|_{2}}$$

• The margin of a linear separator is the distance between it and the nearest training data point

$$\min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} d(\boldsymbol{x}^{(i)}, h) = \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} \frac{|\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b|}{||\boldsymbol{w}||_2}$$
$$= \frac{1}{||\boldsymbol{w}||_2} \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} |\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b|$$
$$= \frac{1}{||\boldsymbol{w}||_2} \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b)$$
$$= \frac{1}{||\boldsymbol{w}||_2}$$

Maximizing the Margin

maximize $\frac{1}{\|\boldsymbol{w}\|_2}$ subject to $\min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) = 1$ minimize $\|\boldsymbol{w}\|_2$ subject to $\min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) = 1$ minimize $\frac{1}{2} \|\boldsymbol{w}\|_2^2$ subject to $\min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) = 1$ $\mathbf{1}$ minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)}(w^T x^{(i)} + b) \ge 1 \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$

Maximizing the Margin

minimize $\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$ subject to $y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) \ge 1 \forall (\boldsymbol{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

• If $[\hat{b}, \hat{w}]$ is the optimal solution, then \exists at least one training data point $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ s.t $y^{(i)}(\hat{w}^T x^{(i)} + \hat{b}) = 1$ • All training data points $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)}(\hat{w}^T x^{(i)} + \hat{b}) = 1$ are known as **support vectors**

• Converting the non-linear constraint (involving the min) to N linear constraints means we can use quadratic programming (QP) to solve this problem in $O(D^3)$ time

Recipe for SVMs

- Define a model and model parameters
 - Assume a linear decision boundary (with normalized weights)

 $h(\boldsymbol{x}) = \boldsymbol{w}^T \boldsymbol{x} + b = 0$

- Parameters: $\boldsymbol{w} = [w_1, \dots, w_D]$ and \boldsymbol{b}
- Write down an objective function (with constraints) minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$
- Optimize the objective w.r.t. the model parameters
 - Solve using quadratic programming

Why Maximal Margins?

- Consider three binary data points in a **bounded** 2-D space
- Let $\mathcal{H} = \{ all \ linear \ separators \} and$
 - $\mathcal{H}_{\rho} = \{ all \ linear \ separators \ with \ minimum \ margin \ \rho \} \}$

Why Maximal Margins?

- Consider three binary data points in a **bounded** 2-D space
- $\mathcal{H} = \{all \text{ linear separators}\}\ can always correctly classify any three (non-colinear) data points in this space$

Why Maximal Margins?

- Consider three binary data points in a <u>bounded</u> 2-D space
- $\mathcal{H}_{\rho} = \{ all \text{ linear separators with minimum margin } \rho \}$ cannot always correctly classify three non-colinear data points

Summary Thus Far

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
 - How can we efficiently find a maximal-margin linear separator? By solving a constrained quadratic optimization problem using quadratic programming
 - Why are linear separators with larger margins better? They're simpler *waves hands*
 - 3. What can we do if the data is not linearly separable? Next!

Linearly Inseparable Data

- What can we do if the data is not linearly separable?
 - 1. Accept some non-zero training error
 - How much training error should we tolerate?
 - 2. Apply a non-linear transformation that shifts the data into a space where it is linearly separable
 - How can we pick a non-linear transformation?

SVMs

minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

 When D is not linearly separable, there are no feasible solutions to this optimization problem Hard-margin SVMs minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

 When D is not linearly separable, there are no feasible solutions to this optimization problem

Soft-margin SVMs

minimize
$$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{N} \xi^{(i)}$$

subject to
$$y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) \ge 1 - \xi^{(i)} \forall (\boldsymbol{x}^{(i)}, y^{(i)}) \in \mathcal{D}$$
$$\xi^{(i)} \ge 0 \qquad \forall i \in \{1, \dots, N\}$$

Soft-margin SVMs

minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{i} \xi^{(i)}$ subject to $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi^{(i)} \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$ $\xi^{(i)} \ge 0 \qquad \forall i \in \{1, \dots, N\}$ • $\xi^{(i)}$ is the "soft" error on the i^{th} training data point • If $\xi^{(i)} > 1$, then $y^{(i)}(w^T x^{(i)} + b) < 0 \Rightarrow$ $(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})$ is incorrectly classified • If $0 < \xi^{(i)} < 1$, then $y^{(i)}(w^T x^{(i)} + b) > 0 \Rightarrow$ $(x^{(i)}, y^{(i)})$ is correctly classified but inside the margin • $\sum \xi^{(i)}$ is the "soft" training error

Soft-margin SVMs

minimize
$$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + C \sum_{i=1}^{N} \xi^{(i)}$$

subject to
$$y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) \ge 1 - \xi^{(i)} \forall (\boldsymbol{x}^{(i)}, y^{(i)}) \in \mathcal{D}$$
$$\xi^{(i)} \ge 0 \qquad \forall i \in \{1, \dots, N\}$$

Still solvable using quadratic programming

• All training data points $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)}(\widehat{w}^T x^{(i)} + \widehat{b}) \leq 1$ are known as **support vectors**

Setting C

C is a tradeoff parameter (much like the tradeoff parameter in regularization)

Hard-margin SVMs

minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ minimize E_{train} subject to $\mathbf{w}^T \mathbf{w} \le C$ Regularization

	SVM	Regularization
minimize	$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$	E _{train}
subject to	$E_{train} = 0$	$\boldsymbol{w}^T \boldsymbol{w} \leq C$

Primal-Dual Optimization

SVM

minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)}(w^T x^{(i)} + w_0) \ge 1 \forall (x^{(i)}, y^{(i)}) \in D$ $\mathbf{1}$ minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $1 - y^{(i)}(w^T x^{(i)} + w_0) \le 0 \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$ $\mathbf{1}$ $\begin{array}{l} \text{minimize} \\ \mathbf{w}, w_0 \end{array} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \frac{\text{maximize}}{\alpha^{(i)} \ge 0} \quad \sum_{i=1}^N \alpha^{(i)} \left(1 - y^{(i)} \left(\mathbf{w}^T \mathbf{x}^{(i)} + w_0 \right) \right) \end{array}$

SVM