
10-701: Introduction to 
Machine Learning
Lecture 24 - Support 
Vector Machines
Henry Chai
4/15/24



Front Matter � Announcements

� HW6 released 4/11, due 4/20 (Saturday) at 11:59 PM 
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Final 
Exam  
Logistics

� Format of questions:
� Multiple choice

� True / False (with justification)

� Derivations
� (Simple) Proofs

� Short answers
� Drawing & Interpreting figures

� Implementing algorithms on paper

� No electronic devices (you won’t need them!)

� You are allowed to bring one letter-/A4-size sheet of 
notes; you can put whatever you want on both sides
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Final 
Exam
Topics

� Covered material: Lectures 14 - 25

� Unsupervised Learning

� Reinforcement Learning

� Pretraining, fine-tuning and in-context learning

� Algorithmic Bias

� Learning Theory

� Ensemble Methods

� SVMs & Kernels

� Pre-midterm material may be referenced but will 
not be the primary focus of any question
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Final 
Exam 
Preparation

� Review the exam practice problems (to be released on 
4/22 to the course website, under the Recitations tab)

� Attend the dedicated final exam review recitation (4/26)

� Review HWs 5 - 6

� Review the key takeaways throughout the lecture slides

� Write your one-page cheat sheet (back and front)
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https://www.cs.cmu.edu/~hchai2/courses/10701/


Which linear separator is best?
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Which linear separator is best?
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Maximal 
Margin Linear 
Separators

� The margin of a linear separator is the distance between it 
and the nearest training data point

� Questions:
1. How can we efficiently find a maximal-margin linear 

separator?

2. Why are linear separators with larger margins better?

3. What can we do if the data is not linearly separable?
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Recall: 
Hyperplanes

� For linear models, decision boundaries are !-dimensional 
hyperplanes defined by a weight vector, ",$

$!% + " = 0
� Problem: there are infinitely many weight vectors that 

describe the same hyperplane
� )" + 2)# + 2 = 0 is the same line as                   
2)" + 4)# + 4 = 0, which is the same line as 
1000000)" + 2000000)# + 2000000 = 0

� Solution: normalize weight vectors w.r.t. the training data
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Normalizing 
Hyperplanes

� Given a dataset - = % $ , . $
$%"
&

 where . ∈ −1,+1 ,      

1. = sign $!% + " 	is a valid linear separator if 

. $ $!% $ + " > 0	∀ % $ , . $ ∈ -

� For SVMs, we’re only going to consider linear separators in 

ℋ = 1. = sign $!% + " : min
' ! ,) ! 	∈	, 

. $ $!% $ + " = 1

� If 1. = sign $!% + "  is a linear separator, then         

1. = sign -"
. % +

/
. ∈ ℋ where 

< = min
' ! ,) ! 	∈	, 

. $ $!% $ + "  

10Henry Chai - 4/15/24



! "! ""
-0.2 -0.6 1 ∉ ℋ
-0.4 -1.2 2 ∉ ℋ
-2 -6 10 ∉ ℋ
-10 -30 50 ∈ ℋ
0.2 -0.6 0.2 ∉ ℋ
0.1 -0.3 0.1 ∉ ℋ
1 -3 1 ∉ ℋ
2 -6 2 ∈ ℋ

Normalizing 
Hyperplanes: 
Example
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� Claim: $ is orthogonal to the hyperplane $!% + " = 0 
(the decision boundary)

� A vector is orthogonal to a hyperplane if it is orthogonal to 
every vector in that hyperplane

� Vectors = and > are orthogonal if =!> = 0Computing the 
Margin
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%”
$

$!% + " = 0
%′



Computing the 
Margin

� Let %′ be an arbitrary point on the hyperplane            
$!% + " = 0 and let %” be an arbitrary point

� The distance between %” and $!% + " = 0 is equal to 

the magnitude of the projection of %” − %′ onto -
- #

, 

the unit vector orthogonal to the hyperplane
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Computing the 
Margin

� Let %′ be an arbitrary point on the hyperplane            
$!% + " = 0 and let %” be an arbitrary point

� The distance between %” and $!% + " = 0 is equal to 

the magnitude of the projection of %” − %′ onto -
- $

, 

the unit vector orthogonal to the hyperplane
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Computing the 
Margin
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� Let %′ be an arbitrary point on the hyperplane               
ℎ % = $!% + " = 0 and let %” be an arbitrary point

� The distance between %” and ℎ % = $!% + " = 0 is equal 

to the magnitude of the projection of %” − %′ onto -
- $

,    

the unit vector orthogonal to the hyperplane

B %”, ℎ = $! %” − %1
$ #

= $!%” − $!%′
$ #

B %”, ℎ = $!%” + "
$ #



Computing the 
Margin

� The margin of a linear separator is the distance between it and 
the nearest training data point

min
' ! ,) ! 	∈	, 

B % $ , ℎ = min
' ! ,) ! 	∈	,

$!% $ + "
$ #

min
' ! ,) ! 	∈	, 

B % $ , C = 1
$ #

min
' ! ,) ! 	∈	,

$!% $ + "

min
' ! ,) ! 	∈	, 

B % $ , C = 1
$ #

min
' ! ,) ! 	∈	, 

. $ $!% $ + "

min
' ! ,) ! 	∈	, 

B % $ , C = 1
$ #
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subject	to	 . $ $!% $ + " ≥ 1	∀ % $ , . $ ∈ -
minimize	 12$

!$

Maximizing the 
Margin
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subject	to	 min
' ! ,) ! 	∈	, 

. $ $!% $ + " = 1
maximize	 1

$ #

⇕

subject	to	 min
' ! ,) ! 	∈	, 

. $ $!% $ + " = 1
minimize	 $ #

⇕
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subject	to	 min
' ! ,) ! 	∈	, 

. $ $!% $ + " = 1
minimize	 12 $ ##

⇕



� If P", Q$  is the optimal solution, then ∃ at least one training 

data point % $ , . $ ∈ -	s.t . $ Q$!% $ + P" = 1
� All training data points % $ , . $ ∈ -	where 

. $ Q$!% $ + P" = 1 are known as support vectors

� Converting the non-linear constraint (involving the min) to 
S linear constraints means we can use quadratic 
programming (QP) to solve this problem in T !2  time

Maximizing the 
Margin
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subject	to	 . $ $!% $ + " ≥ 1	∀ % $ , . $ ∈ -
minimize	 12$

!$



� Define a model and model parameters

� Assume a linear decision boundary (with 
normalized weights)

ℎ % = $!% + " = 0 

� Parameters: $ = U", … , U3  and "

� Write down an objective function (with constraints)

 

� Optimize the objective w.r.t. the model parameters
� Solve using quadratic programming

Recipe 
for 
SVMs
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subject	to	 . $ $!% $ + " ≥ 1	∀ % $ , . $ ∈ -
minimize	 12$

!$



Why Maximal 
Margins?
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� Consider three binary data points in a bounded 2-D space

� Let ℋ = {all linear separators} and                                     
ℋ.= {all linear separators with minimum margin <} 



Why Maximal 
Margins?
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� Consider three binary data points in a bounded 2-D space

�ℋ = {all linear separators} can always correctly classify any 
three (non-colinear) data points in this space 



Why Maximal 
Margins?
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<

� Consider three binary data points in a bounded 2-D space

�ℋ. = {all linear separators with minimum margin <} cannot 
always correctly classify three non-colinear data points



Summary 
Thus Far 

� The margin of a linear separator is the distance between it 
and the nearest training data point

� Questions:
1. How can we efficiently find a maximal-margin linear 

separator? By solving a constrained quadratic 
optimization problem using quadratic programming

2. Why are linear separators with larger margins 
better? They’re simpler *waves hands*

3. What can we do if the data is not linearly 
separable? Next!
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Linearly 
Inseparable 
Data

� What can we do if the data is not linearly separable?

1. Accept some non-zero training error

� How much training error should we tolerate?

2. Apply a non-linear transformation that shifts the 
data into a space where it is linearly separable

� How can we pick a non-linear transformation?
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� When - is not linearly separable, there are no feasible 
solutions to this optimization problemSVMs
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subject	to	 . $ $!% $ + " ≥ 1	∀ % $ , . $ ∈ -

minimize	 12$
!$



� When - is not linearly separable, there are no feasible 
solutions to this optimization problem

Hard-margin
SVMs
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subject	to	 . $ $!% $ + " ≥ 1	∀ % $ , . $ ∈ -

minimize	 12$
!$



Soft-margin 
SVMs
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subject	to	 . $ $!% $ + " ≥ 1 − W $ 	∀ % $ , . $ ∈ -

minimize	 12$
!$+ XY

$%"

&
W $

subject	to	 W $ ≥ 0	 _	_	 _	∀	[ ∈ 1,… ,S



� W $ 	is the “soft” error on the [45 training data point

� If W $ > 1, then . $ $!% $ + " < 0	 ⇒
% $ , . $  is incorrectly classified 

� If 0 < W $ < 1, then . $ $!% $ + " > 0	 ⇒	
% $ , . $  is correctly classified but inside the margin 

�                is the “soft” training error

Soft-margin 
SVMs
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Y
$%"

&
W $
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subject	to	 . $ $!% $ + " ≥ 1 − W $ 	∀ % $ , . $ ∈ -

minimize	 12$
!$+ XY

$%"

&
W $

subject	to	 W $ ≥ 0_	_	 _	∀	[ ∈ 1,… ,S



Soft-margin 
SVMs

30Henry Chai - 4/15/24

subject	to	 . $ $!% $ + " ≥ 1 − W $ 	∀ % $ , . $ ∈ -

minimize	 12$
!$+ XY

$%"

&
W $

subject	to	 W $ ≥ 0	 _	_	 _	∀	[ ∈ 1,… ,S

� Still solvable using quadratic programming 

� All training data points % $ , . $ ∈ -	where 

. $ Q$!% $ + P" ≤ 1	are known as support vectors



Interpreting ! !
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Interpreting ! !
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support 
vector

support 
vector

support 
vector
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Interpreting ! !
support 
vector

support 
vector

support 
vector

support 
vector

support 
vector
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Interpreting ! !

“margin”
support 
vector

“margin”
support 
vector

“margin”
support 
vector
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0 < 8 ! < 1

0 < 8 ! < 1

0 < 8 ! < 1

0 < 8 ! < 1
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Interpreting ! !
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8 ! > 1
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Interpreting ! !



Setting !

Smaller X

� X is a tradeoff parameter (much like 
the tradeoff parameter in 
regularization)
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Larger X Hard Margin
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Hard-margin 
SVMs vs. 
Regularization SVM Regularization

minimize
1
2$

!$ _4;<$=

subject to _4;<$= = 0 $!$ ≤ X
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subject	to	 $!$ ≤ X
minimize	 _4;<$=

Regularization 

subject	to	 . $ $!% $ + " ≥ 1	∀ % $ , . $ ∈ -
minimize	 12$

!$
SVMs



Primal-Dual 
Optimization 
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Primal 

Dual 
subject	to	 Y

$%"

&
` $ . $ = 0

subject	to	 −	 ` $ ≥ 0 ∀	[ ∈ 1,… ,S

maximize	 − 12Y$%"

&
Y
>%"

&
` $ ` > . $ . > % $ !% > +Y

$%"

&
` $
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subject	to	 . $ $!% $ +U? ≥ 1	∀ % $ , . $ ∈ -
minimize	 12$

!$

⇕



SVM
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⇕

minimize
$,U? 	 12$

!$+maximize` $ ≥ 0 	Y
$%"

&
` $ 1 − . $ $!% $ +U?

⇕

subject	to	 . $ $!% $ +U? ≥ 1	∀ % $ , . $ ∈ -
minimize	 12$

!$

subject	to	 1 − . $ $!% $ +U? ≤ 0	∀ % $ , . $ ∈ -
minimize	 12$

!$



SVM
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⇕

maximize
= ≥ 0 	minimize$,U? 	 a =,$,U?  

minimize
$,U? 	 12$

!$+maximize` $ ≥ 0 	Y
$%"

&
` $ 1 − . $ $!% $ +U?

minimize
$,U? 	 maximize` $ ≥ 0 	

1
2$

!$+Y
$%"

&
` $ 1 − . $ $!% $ +U?

⇕
maximize
` $ ≥ 0 	

minimize
$,U? 	 12$

!$+Y
$%"

&
` $ 1 − . $ $!% $ +U?

⇕


