10-701: Introduction to Machine Learning Lecture 24 - Support Vector Machines

Henry Chai

4/15/24

Front Matter

Announcements

HW6 released 4/11, due **4/20 (Saturday)** at 11:59 PM

Final Exam **Logistics**

- Format of questions:
	- Multiple choice
	- True / False (with justification)
	- Derivations
	- (*Simple*) Proofs
	- Short answers
	- Drawing & Interpreting figures
	- Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-/A4-size sheet of notes; you can put *whatever* you want on *both sides*

Final Exam **Topics**

- Covered material: Lectures 14 25
	- Unsupervised Learning
	- **· Reinforcement Learning**
	- Pretraining, fine-tuning and in-context learning
	- Algorithmic Bias
	- Learning Theory
	- Ensemble Methods
	- SVMs & Kernels
	- **Pre-midterm material may be referenced but will not be the primary focus of any question**

Final Exam Preparation

- Review the exam practice problems (to be released on 4/22 to the course website, under the [Recitations tab\)](https://www.cs.cmu.edu/~hchai2/courses/10701/)
- Attend the dedicated final exam review recitation (4/26)
- Review HWs 5 6
- Review the key takeaways throughout the lecture slides
- Write your one-page cheat sheet (back and front)

Which linear separator is best?

Which linear separator is best?

Maximal Margin Linear **Separators**

 The margin of a linear separator is the distance between it and the nearest training data point

Questions:

- 1. How can we efficiently find a maximal-margin linear separator?
- 2. Why are linear separators with larger margins better?
- 3. What can we do if the data is not linearly separable?

Recall: **Hyperplanes**

 \cdot For linear models, decision boundaries are D -dimensional *hyperplanes* defined by a weight vector, $[b, w]$ $\mathbf{w}^T \mathbf{x} + b = 0$

- Problem: there are infinitely many weight vectors that describe the same hyperplane
	- $\cdot x_1 + 2x_2 + 2 = 0$ is the same line as $2x_1 + 4x_2 + 4 = 0$, which is the same line as $1000000x_1 + 2000000x_2 + 2000000 = 0$

Solution: normalize weight vectors *w.r.t. the training data*

Normalizing **Hyperplanes**

• Given a dataset $\mathcal{D} = \{(\pmb{x}^{(i)}, y^{(i)})\}$ $\dot{i} = 1$ \overline{N} where $y \in \{-1, +1\}$, $\hat{y} = \text{sign}(w^T x + b)$ is a valid **linear separator** if $y^{(i)}(w^T x^{(i)} + b) > 0 \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$

For SVMs, we're *only* going to consider **linear separators** in

$$
\mathcal{H} = \left\{ \hat{y} = \text{sign}(\boldsymbol{w}^T \boldsymbol{x} + b) : \min_{\left(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \right) \in \mathcal{D}} y^{(i)} \left(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b \right) = 1 \right\}
$$

 \cdot If $\hat{v} = \text{sign}(w^T x + b)$ is a linear separator, then

$$
\hat{y} = \text{sign}\left(\frac{w^T}{\rho}x + \frac{b}{\rho}\right) \in \mathcal{H} \text{ where}
$$

$$
\rho = \min_{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b)
$$

Normalizing Hyperplanes: Example

Margin

- Claim: w is orthogonal to the hyperplane $w^T x + b = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- **Computing the** \cdot Vectors α and β are orthogonal if $\alpha^T \beta = 0$

- \cdot Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x" be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $\left.w\right\|_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x" be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $\left.w\right\|_2$,
, the unit vector orthogonal to the hyperplane

- \cdot Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x" be an arbitrary point
- The distance between x'' and $w^T x + b = 0$ is equal to the magnitude of the projection of $x'' - x'$ onto \boldsymbol{w} $\left.w\right\|_2$,
, the unit vector orthogonal to the hyperplane

 \cdot Let x' be an arbitrary point on the hyperplane $h(x) = w^T x + b = 0$ and let x" be an arbitrary point

• The distance between x'' and $h(x) = w^T x + b = 0$ is equal to the magnitude of the projection of $\pmb{x}''-\pmb{x}'$ onto $\pmb{\cdot}$ \dot{w} $\left.w\right\|_2$, the unit vector orthogonal to the hyperplane

$$
d(\mathbf{x}^{"}, h) = \left| \frac{\mathbf{w}^{T}(\mathbf{x}^{"} - \mathbf{x}^{'})}{\|\mathbf{w}\|_{2}} \right| = \frac{|\mathbf{w}^{T}\mathbf{x}^{"} - \mathbf{w}^{T}\mathbf{x}^{'}|}{\|\mathbf{w}\|_{2}}
$$

$$
= \frac{|\mathbf{w}^{T}\mathbf{x}^{''} + b|}{\|\mathbf{w}\|_{2}}
$$

 The margin of a linear separator is the distance between it and the nearest training data point

$$
\begin{aligned} \min_{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{D}} d(\mathbf{x}^{(i)}, h) &= \min_{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{D}} \frac{|\mathbf{w}^T \mathbf{x}^{(i)} + b|}{\|\mathbf{w}\|_2} \\ &= \frac{1}{\|\mathbf{w}\|_2} \min_{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{D}} |\mathbf{w}^T \mathbf{x}^{(i)} + b| \\ &= \frac{1}{\|\mathbf{w}\|_2} \min_{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) \in \mathcal{D}} y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \\ &= \frac{1}{\|\mathbf{w}\|_2} \end{aligned}
$$

Maximizing the Margin

subject to $y^{(i)}(w^T x^{(i)} + b) \geq 1 \; \forall \; (x^{(i)}, y^{(i)}) \in \mathcal{D}$ minimize $\frac{1}{2}$ $\boldsymbol{w}^T\boldsymbol{w}$ subject to $\lim_{n\to\infty}$ $x^{(i)}, y^{(i)} \in \mathcal{D}$ $y^{(i)}(w^T x^{(i)} + b) = 1$ maximize $\frac{1}{\|w\|_2}$ \hat{U} subject to $\lim_{n\to\infty}$ $\mathbf{x}^{(i)}, \mathbf{y}^{(i)}$ $\in \mathcal{D}$ $y^{(i)}(w^T x^{(i)} + b) = 1$ minimize $\|\pmb{w}\|_2$ \hat{U} subject to min $\mathbf{x}^{(i)}, \mathbf{y}^{(i)}$ $\in \mathcal{D}$ $y^{(i)}(w^T x^{(i)} + b) = 1$ minimize $\frac{1}{2}$ $w\|_2^2$ \mathcal{D}

Maximizing the Margin

subject to $y^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b) \geq 1$ \forall $\left(\boldsymbol{x}^{(i)},y^{(i)}\right) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w$

 \cdot If $\left[\hat{b}, \hat{w}\right]$ is the optimal solution, then ∃ at least one training data point $\big(\pmb{x}^{(i)}, y^{(i)} \big) \in \mathcal{D}$ s.t $y^{(i)} \big(\widehat{\pmb{w}}^T \pmb{x}^{(i)} + \widehat{b} \big) = 1$ • All training data points $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)}(\widehat{\mathbf{w}}^T\mathbf{x}^{(i)} + \widehat{b}) = 1$ are known as **support vectors**

 Converting the non-linear constraint (involving the min) to N linear constraints means we can use quadratic programming (QP) to solve this problem in $O(D^3)$ time

Recipe for SVMs

- Define a model and model parameters
	- Assume a linear decision boundary (with normalized weights)

 $h(x) = w^T x + b = 0$

- Parameters: $w = [w_1, ..., w_D]$ and b
- Write down an objective function (with constraints) subject to $y^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)} + b) \geq 1$ \forall $(\boldsymbol{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w$
- Optimize the objective w.r.t. the model parameters
	- Solve using quadratic programming

Why Maximal Margins?

- Consider three binary data points in a **bounded** 2-D space
- Let $\mathcal{H} = \{$ all linear separators} and
	- \mathcal{H}_{ρ} = {all linear separators with minimum margin ρ }

Why Maximal Margins?

- Consider three binary data points in a **bounded** 2-D space
- $\cdot \mathcal{H} =$ {all linear separators} can always correctly classify any three (non-colinear) data points in this space

Why Maximal Margins?

- Consider three binary data points in a **bounded** 2-D space
- $\mathcal{H}_{\rho} = \{\text{all linear separators with minimum margin } \rho \}$ cannot always correctly classify three non-colinear data points

Summary Thus Far

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
	- 1. How can we efficiently find a maximal-margin linear separator? By solving a constrained quadratic optimization problem using quadratic programming
	- 2. Why are linear separators with larger margins better? They're simpler *waves hands*
	- 3. What can we do if the data is not linearly separable? Next!

Linearly Inseparable Data

- What can we do if the data is not linearly separable?
	- 1. Accept some non-zero training error
		- How much training error should we tolerate?
	- 2. Apply a non-linear transformation that shifts the data into a space where it is linearly separable
		- How can we pick a non-linear transformation?

minimize
$$
\frac{1}{2} \mathbf{w}^T \mathbf{w}
$$

subject to $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \ \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

 \cdot When $\mathcal D$ is not linearly separable, there are no feasible SVMs solutions to this optimization problem

Hard-margin SVMs

subject to $y^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b) \geq 1$ \forall $\left(\boldsymbol{x}^{(i)},y^{(i)}\right) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w$

 \cdot When D is not linearly separable, there are no feasible solutions to this optimization problem

Soft-margin SVMs

subject to $y^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b) \geq 1-\xi^{(i)}$ \forall $(\boldsymbol{x}^{(i)},y^{(i)}) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w + C \sum$ $\overline{i=1}$ \overline{N} $\xi^{(i)}$ $\xi^{(i)} \ge 0$ $\forall i \in \{1, ..., N\}$

Soft-margin SVMs

 $\cdot \xi^{(i)}$ is the "soft" error on the i^{th} training data point \cdot If $\xi^{(i)} > 1$, then $y^{(i)}(w^T x^{(i)} + b) < 0 \Rightarrow$ $\bm{x}^{(i)}, y^{(i)})$ is incorrectly classified \cdot If $0 < \xi^{(i)} < 1$, then $y^{(i)}(w^T x^{(i)} + b) > 0 \Rightarrow$ $\bm{x}^{(i)}, y^{(i)})$ is correctly classified but inside the margin \cdot $\sum_{i} \xi^{(i)}$ is the "soft" training error $\overline{i=1}$ \overline{N} $\xi^{(i)}$ subject to $y^{(i)}(w^T x^{(i)} + b) \geq 1 - \xi^{(i)} \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w + C \sum$ $\overline{i=1}$ \overline{N} $\xi^{(i)}$ $\xi^{(i)} \geq 0$ $\forall i \in \{1, ..., N\}$

Soft-margin SVMs

subject to $y^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b) \geq 1-\xi^{(i)}$ \forall $(\boldsymbol{x}^{(i)},y^{(i)}) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w + C \sum$ $\overline{i=1}$ \overline{N} $\xi^{(i)}$ $\xi^{(i)} \geq 0$ $\forall i \in \{1, ..., N\}$

Still solvable using quadratic programming

• All training data points $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)}(\widehat{\mathbf{w}}^T\mathbf{x}^{(i)} + \widehat{b}) \leq 1$ are known as **support vectors**

Setting C

 C is a tradeoff parameter (much like the tradeoff parameter in regularization)

Hard-margin SVMs

subject to $w^T w \leq C$ minimize E_{train} \searrow Regularization subject to $y^{(i)}(\boldsymbol{w}^T\boldsymbol{x}^{(i)}+b) \geq 1$ \forall $\left(\boldsymbol{x}^{(i)},y^{(i)}\right) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w$ SVMs

Primal-Dual Optimization

minimize
$$
\frac{1}{2} \mathbf{w}^T \mathbf{w}
$$

\nsubject to $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + w_0) \ge 1 \forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$
\n \emptyset
\nmaximize $-\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha^{(i)} \alpha^{(j)} y^{(i)} y^{(j)} \mathbf{x}^{(i)}^T \mathbf{x}^{(j)} + \sum_{i=1}^N \alpha^{(i)}$
\nsubject to $\sum_{i=1}^N \alpha^{(i)} y^{(i)} = 0$
\n $\alpha^{(i)} \ge 0 \forall i \in \{1, ..., N\}$

SVM

 \mathbf{D} minimize w, w_0 $\frac{1}{2}\mathbf{w}^T\mathbf{w} + \frac{\text{maximize}}{\alpha^{(i)}} \geq 0$ $i = 1$ \overline{N} $\alpha^{(i)} (1 - y^{(i)} (w^T x^{(i)} + w_0))$ \mathbb{I} subject to $y^{(i)}\big(\pmb{w}^T\pmb{x}^{(i)} + w_0\big) \geq 1$ $\forall\left(\pmb{x}^{(i)},y^{(i)}\right) \in \mathcal{D}$ minimize 1 $\frac{1}{2} w^T w$ subject to $\ 1-y^{(i)}\big(\pmb{w}^T\pmb{x}^{(i)}+\pmb{w}_0\big)\leq 0$ $\forall\left(\pmb{x}^{(i)},y^{(i)}\right)\in\mathcal{D}$ minimize 1 $\frac{1}{2} w^T w$

SVM

minimize
\n
$$
\frac{1}{w, w_0} \frac{1}{2} w^T w + \frac{\text{maximize}}{\alpha^{(i)}} \sum_{i=1}^N \alpha^{(i)} (1 - y^{(i)} (w^T x^{(i)} + w_0))
$$
\n
$$
\emptyset
$$
\nminimize
\n
$$
\frac{1}{w, w_0} \frac{w^{(i)}}{\alpha^{(i)}} \geq 0 \frac{1}{2} w^T w + \sum_{i=1}^N \alpha^{(i)} (1 - y^{(i)} (w^T x^{(i)} + w_0))
$$
\n
$$
\text{maximize } \text{minimize} \quad \frac{1}{2} w^T w + \sum_{i=1}^N \alpha^{(i)} (1 - y^{(i)} (w^T x^{(i)} + w_0))
$$
\n
$$
\emptyset
$$
\nmaximize
\n
$$
\alpha \geq 0 \qquad w, w_0
$$
\n
$$
\alpha \geq 0 \qquad w, w_0
$$