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* Announcements

- HW6 released 4/11, due 4/20 (Saturday) at 11:59 PM

Front Matter
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* Format of questions:

- Multiple choice

* True / False (with justification)
* Derivations

Final - (Simple) Proofs

Exam * Short answers

Logistics ° Drawing & Interpreting figures

 Implementing algorithms on paper
* No electronic devices (you won’t need them!)

* You are allowed to bring one letter-/A4-size sheet of
notes; you can put whatever you want on both sides
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* Covered material: Lectures 14 - 25

- Unsupervised Learning

* Reinforcement Learning

* Pretraining, fine-tuning and in-context learning
* Algorithmic Bias

* Learning Theory

* Ensemble Methods

- SVMs & Kernels

* Pre-midterm material may be referenced but will

not be the primary focus of any question
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Final

Exam
Preparation
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* Review the exam practice problems (to be released on

4/22 to the course website, under the Recitations tab)

- Attend the dedicated final exam review recitation (4/26)
* Review HWs 5 - 6
 Review the key takeaways throughout the lecture slides

* Write your one-page cheat sheet (back and front)


https://www.cs.cmu.edu/~hchai2/courses/10701/

Option A Option B Option C

Which linear separator is best?
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Which linear separator is best?
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Maximal

Margin Linear
Separators
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* The margin of a linear separator is the distance between it

and the nearest training data point

* Questions:

1. How can we efficiently find a maximal-margin linear
separator?

2. Why are linear separators with larger margins better?

3. What can we do if the data is not linearly separable?



* For linear models, decision boundaries are D-dimensional

hyperplanes defined by a weight vector, [b, w]

wix+b=0
Recall: * Problem: there are infinitely many weight vectors that
Hyperplanes describe the same hyperplane

* X1 + 2x, + 2 = 0is the same line as
2x1 + 4x, + 4 = 0, which is the same line as
1000000x; + 2000000x, + 2000000 =0

* Solution: normalize weight vectors w.r.t. the training data
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Normalizing

Hyperplanes
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. N N
* Given a dataset D = {(x(l),y(l))}i=1 wherey € {—1, +1},
y = sign(w'x + b) is a valid linear separator if

yOwlx® +p)>0v (x0,yD) e D

-

* For SVMs, we’re only going to consider linear separators in

(o — cion(uT | - @) (T +(0) _
H {y sign(w x+b).(x(i),rﬁ%geﬂ y O (wlxW + b) 1}

J

V
- If § = sign(w” x + b) is a linear separator, then ~ ¢¢7
5 — sion ("2 x 4+ 2
y = sngn(p x+p) € H where

_ : (D) (yarT (D)
= min w'x\" +b
p=omn_, ¥y )
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Normalizing
Hyperplanes:

Example N I

0.1 -0.3 0.1 ¢ H 0.2 0.4 +1

0.3 0.8 +1 1.8
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2 -6 2
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Computing the

Margin
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- Claim: w is orthogonal to the hyperplane w! x(+ b)= 0

(the decision boundary)

* A vector is orthogonal to a hyperplane if it is orthogonal to

every vector in that hyperplane

» Vectors a and B are orthogonal if a’ 8 = 0

12



- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x' onto

Iwll2’

Computlng the the unit vector orthogonal to the hyperplane

Margin

Henry Chai - 4/15/24 13



- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x’ onto T
2

Computlng the the unit vector orthogonal to the hyperplane
Margin w X

lwll, ,'4—\\

\

wix+b=0

14

Henry Chai - 4/15/24



- Let x' be an arbitrary point on the hyperplane

wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and wlx + b = 0 is equal to

the magnitude of the projection of x” — x' onto

Iwll2’

CompUtmg the the unit vector orthogonal to the hyperplane

Margin
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Computing the

Margin
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- Let x' be an arbitrary point on the hyperplane

h(x) = wlx + b = 0 and let x” be an arbitrary point

- The distance between x” and h(x) = wlx + b = 0 is equal

to the magnitude of the projection of x” — x’ onto T
2

the unit vector orthogonal to the hyperplane

T( ”» I) | ”» T I| X/ € L\
W X —X W X —W X
d(x", h) = = T b=
O = 1w W, ~ WX +b=0
=> _wa):lQ
~ (w4 L
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* The margin of a linear separator is the distance between it and
the nearest training data point

T (1)
min d(x(i) h) = min |W * T bl
(x0,y D) e D Y (x0yD)en  lwll
Computing the — \ T (0,0
Margin Z Tl (o vt
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Maximizing the

Margin
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A o
- v, b
Iwll

subjectto min  yO(w'x® +p) =1
(x(l),y(l)) €D

maximize

minimize ||w]||,
subjectto  min  yO(wlx® +p) =1
(x(l),y(l)) eD

N T
minimize E”W”z

subjectto  min  yO(wlx® +p) =1
(x(l),y(l)) eD
()
1

minimize E w

subject to y(i) (wa(i) + b) >1V (x(i),y(i)) €D

Tw
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Maximizing the

Margin

Henry Chai - 4/15/24

minimize @

subject to y(i) (wa(i) + b) =1V (x(i), y(i)) €D

° If [B, W] is the optimal solution, then 3 at least one training
data point (x®,y®) € DstyO(wTxW + b) = 1
* All training data points (x(i),y(i)) € D where
y(i) (WTx(i) + B) = 1 are known as support vectors
* Converting the non-linear constraint (involving the min) to

N linear constraints means we can use quadratic

programming (QP) to solve this problem in O(D?) time

19
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* Define a model and model parameters

* Assume a linear decision boundary (with

normalized weights)
h(x) =wix+b=0

* Parameters: w = [wy, ..., wp|] and b

* Write down an objective function (with constraints)

1

minimize 5 wl

w

subject to y(i) (WTx(i) + b) >1V (x(i), y(i)) €D

- Optimize the objective w.r.t. the model parameters

* Solve using quadratic programming

20



* Consider three binary data points in a bounded 2-D space

* Let H = {all linear separators} and

H,= {all linear separators with minimum margin p}

Why Maximal T4 T/ B
Margins? + + n _
- +/ - |4 -
\
— — — +
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* Consider three binary data points in a bounded 2-D space

- H = {all linear separators} can always correctly classify any

three (non-colinear) data points in this space

Why Maximal T4 T/ B
Margins? + + n _
- +/ - |4 -
\
— — — +
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* Consider three binary data points in a bounded 2-D space

* H,, = {all linear separators with minimum margin p} cannot

always correctly classify three non-colinear data points

Why Maximal T A - J—
p I
+”#

Margins?

+ + -
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* The margin of a linear separator is the distance between it

and the nearest training data point

* Questions:

1. How can we efficiently find a maximal-margin linear
Summary separator? By solving a constrained quadratic
Thus Far optimization problem using quadratic programming

2. Why are linear separators with larger margins

better? They’re simpler *waves hands*

3. What can we do if the data is not linearly

separable? Next!

24
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- What can we do if the data is not linearly separable?

1. Accept some non-zero training error

Linearl
Y * How much training error should we tolerate?

Inseparable
Data 2. Apply a non-linear transformation that shifts the

data into a space where it is linearly separable

* How can we pick a non-linear transformation?

Henry Chai - 4/15/24 25
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1
minimize E w

subject to y(i) (wa(i) + b) =1V (x(i), y(i)) €D

Tw

* When D is not linearly separable, there are no feasible

solutions to this optimization problem

26



Hard-margin

SVMs

Henry Chai - 4/15/24

1
minimize E w

subject to y(i) (wa(i) + b) =1V (x(i), y(i)) €D

Tw

* When D is not linearly separable, there are no feasible

solutions to this optimization problem
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Soft-margin

SVMs
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1
minimize =w'w + C z 130,

2
subject to y@ (w x(‘) + b) >1-¢Dy (x(‘),y(‘)) €ED
£ >0 vie{l,.., N}
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Soft-margin

SVMs

Henry Chai - 4/15/24

/

1 .
minimize . wiw + C z g)

=1

. .\"-h'V_J . . .
subjectto " (wa(l) + b) >1-¢Dy (x(‘),y(‘)) €ED

. g(i)

£ >0 vie{l.. N}
is the “soft” error on the it" training data point

1fEW > 1, then y O (wTx® + ) <0 =

(x(i), y(i)) is incorrectly classified

10 < ED < 1, thenyO(wTx® +b) >0 =

N

1=1

(x(i),y(i)) is correctly classified but inside the margin

Zf(),ls e”s @raml’qngcernr(j crrof™
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Soft-margin

SVMs
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subjectto y (wa(‘ >1—-¢ OBV (x(i),y(i)) €D
£ >0 vie{l,.., N}

- Still solvable using quadratic programming

* All training data points (x(i),y(i)) € D where

yO(WTxW + b) < 1 are known as support vectors

30



Interpreting ¢ (0)
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Interpreting ¢ (0)
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Interpreting ¢ (0)
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Interpreting ¢ (0)
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Interpreting ¢ (0)

+ 0<e® 1
+

+ +

0 T T T T T T T T T 1
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Interpreting ¢ (0)
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Smaller C

Setting C

Larger C Hard Margin

C is a tradeoff parameter (much like
the tradeoff parameter in

regularization)
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Hard-margin
SVMs
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N S
minimize —w'w
z | o SVMs
subject to y® (wa(‘) + b) >1V (x(‘),y(‘)) €D

minimize E;pqin .
Regularization
subjectto wiw < C

SVM Regularization

1

subject to [EEEEN) wiw < C
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Primal-Dual

Optimization
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1 ~
minimize —w'w

2 . o  Primal
subject to y(‘)(wa(‘) + Wo) >1V (x(‘),y(‘)) = D/

)

1 N N N
maximize —> ) » a®aDyOyDx® xD + o®

L i=1j=1 i=1

v g ~Dual
subject to z a@y® =

=1
a®>0vie(l,.., N} D
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1
minimize E w

subject to y(i) (wa(i) + WO) >1V (x(i),y(i)) €D
)
1

minimize E w

Tw

Tw

subjectto 1 — y(i) (wa(i) + wo)f 0V (x(i),y(i)) €D

0 Z
A N 2O
minimize/ 1 . maximize D) (1 — @D (T )
W, W, 2W w + a® > 0 a (1 y (W XM T WO))
1 i=1 )

— aY,
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O\,

minimize 1 . maximize @D (1 — @D (T +(D)
W, W, 2W w + a® > 0 a (1 y (W XM T WO))
i=1
()
v D

minimize maximize 1
W, W C((l) >0 2

)

maximize minimize 1
C((l) 2 O w, WO 2

maximize minimize
a=>0 W, Wg

—w w+2a(l) 1 yOwlx® +w ))

—w w+2a(l) 1 yOwlx® +w ))

=

L(a,w,wp)
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