10-701: Introduction to Machine Learning Lecture 24 - Support Vector Machines

Front Matter

- Announcements
 - HW6 released 4/11, due 4/20 (Saturday) at 11:59 PM

Final Exam Logistics

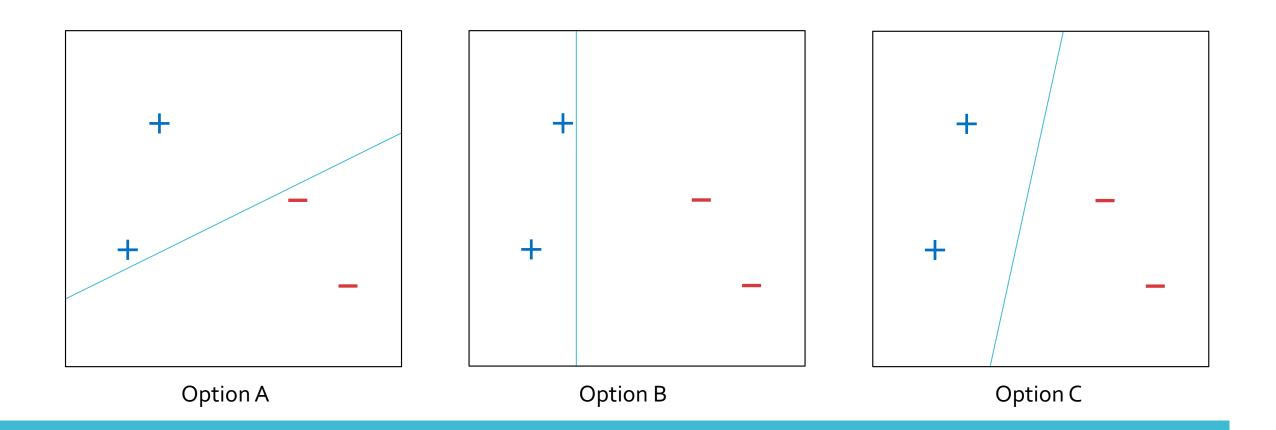
- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - (Simple) Proofs
 - Short answers
 - Drawing & Interpreting figures
 - Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-/A4-size sheet of notes; you can put whatever you want on both sides

Final Exam Topics

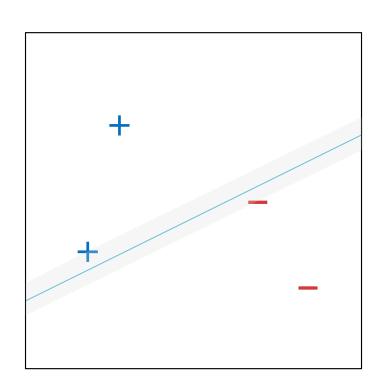
- Covered material: Lectures 14 25
 - Unsupervised Learning
 - Reinforcement Learning
 - Pretraining, fine-tuning and in-context learning
 - Algorithmic Bias
 - Learning Theory
 - Ensemble Methods
 - SVMs & Kernels
 - Pre-midterm material may be referenced but will not be the primary focus of any question

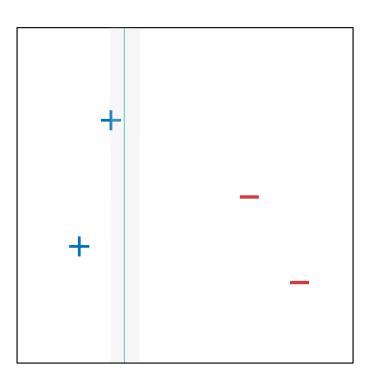
Final Exam Preparation

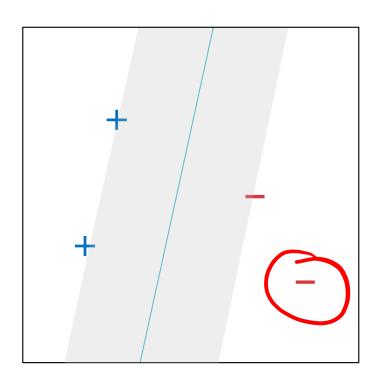
- Review the exam practice problems (to be released on 4/22 to the course website, under the <u>Recitations tab</u>)
- Attend the dedicated final exam review recitation (4/26)
- Review HWs 5 6
- Review the key takeaways throughout the lecture slides
- Write your one-page cheat sheet (back and front)



Which linear separator is best?







Which linear separator is best?

Maximal Margin Linear Separators

• The margin of a linear separator is the distance between it and the nearest training data point

- Questions:
 - 1. How can we efficiently find a maximal-margin linear separator?
 - 2. Why are linear separators with larger margins better?
 - 3. What can we do if the data is not linearly separable?

Recall: Hyperplanes

• For linear models, decision boundaries are D-dimensional hyperplanes defined by a weight vector, [b, w]

$$\mathbf{w}^T \mathbf{x} + b = 0$$

- Problem: there are infinitely many weight vectors that describe the same hyperplane
 - $x_1 + 2x_2 + 2 = 0$ is the same line as $2x_1 + 4x_2 + 4 = 0$, which is the same line as $1000000x_1 + 2000000x_2 + 2000000 = 0$
- Solution: normalize weight vectors w.r.t. the training data

Normalizing Hyperplanes

- Given a dataset $\mathcal{D} = \left\{ \left(x^{(i)}, y^{(i)} \right) \right\}_{i=1}^{N}$ where $y \in \{-1, +1\}$, $\hat{y} = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$ is a valid **linear separator** if $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0 \ \forall \ \left(\mathbf{x}^{(i)}, y^{(i)} \right) \in \mathcal{D}$
- For SVMs, we're only going to consider linear separators in

$$\mathcal{H} = \left\{ \hat{y} = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b) : \min_{\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right) \in \mathcal{D}} y^{(i)} \left(\mathbf{w}^T \mathbf{x}^{(i)} + b\right) = 1 \right\}$$

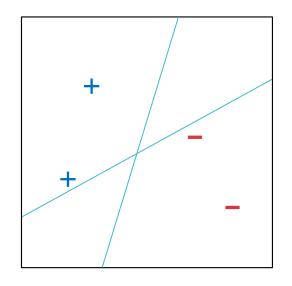
• If $\hat{y} = \text{sign}(\mathbf{w}^T \mathbf{x} + b)$ is a linear separator, then

$$\hat{y} = \operatorname{sign}\left(\frac{\mathbf{w}^T}{\rho}\mathbf{x} + \frac{b}{\rho}\right) \in \mathcal{H} \text{ where}$$

$$\rho = \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b)$$

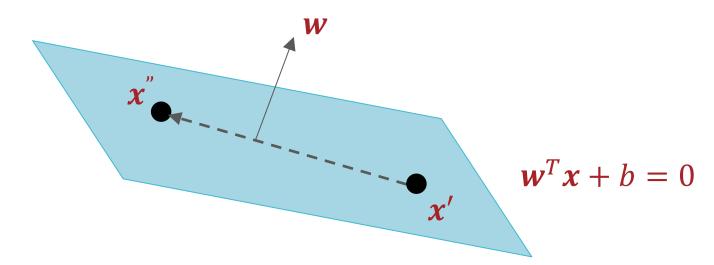
Normalizing Hyperplanes: Example

b	w_1	w_2	
-0.2	-0.6	1	$ otin \mathcal{H} $
-0.4	-1.2	2	$ otin \mathcal{H}$
-2	-6	10	$ otin \mathcal{H} $
-10	-30	50	$\in \mathcal{H}$
0.2	-0.6	0.2	$ otin \mathcal{H}$
0.1	-0.3	0.1	$ otin \mathcal{H}$
1	-3	1	$ otin \mathcal{H} $
2	-6	2	$\in \mathcal{H}$

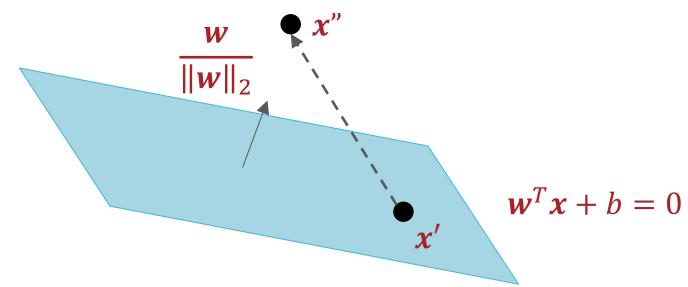


x_1	x_2	y	$y(\mathbf{w}^T\mathbf{x} + b)$
0.2	0.4	+1	1.6
0.3	0.8	+1	1.8
0.7	0.6	-1	1
8.0	0.3	-1	2.2

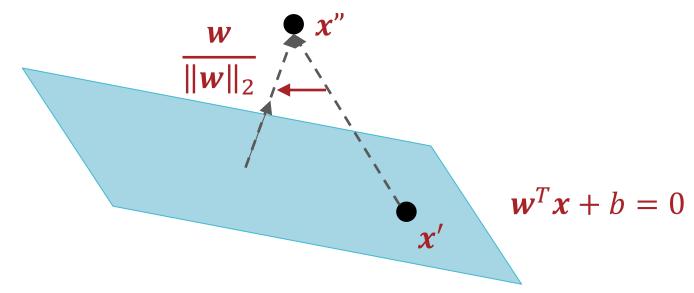
- Claim: \mathbf{w} is orthogonal to the hyperplane $\mathbf{w}^T \mathbf{x} + \dot{\mathbf{b}} = 0$ (the decision boundary)
- A vector is orthogonal to a hyperplane if it is orthogonal to every vector in that hyperplane
- Vectors α and β are orthogonal if $\alpha^T \beta = 0$



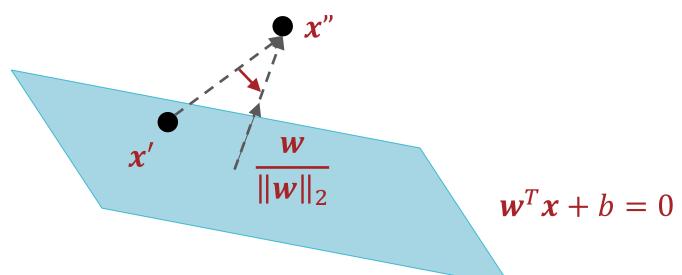
- Let x' be an arbitrary point on the hyperplane $w^T x + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane



- Let x' be an arbitrary point on the hyperplane $w^Tx + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane



- Let x' be an arbitrary point on the hyperplane $w^Tx + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $w^Tx + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane



- Let x' be an arbitrary point on the hyperplane $h(x) = w^T x + b = 0$ and let x'' be an arbitrary point
- The distance between x'' and $h(x) = w^T x + b = 0$ is equal to the magnitude of the projection of x'' x' onto $\frac{w}{\|w\|_2}$, the unit vector orthogonal to the hyperplane

the unit vector orthogonal to the hyperplane
$$\frac{d(x'',h)}{\|w\|_2} = \frac{|w^T(x''-x')|}{\|w\|_2} = \frac{|w^Tx''-w^Tx'|}{\|w\|_2} \Rightarrow \frac{|w^Tx''+b=0}{|w|_2}$$

$$= \frac{|w^Tx''+b|}{\|w\|_2}$$

 The margin of a linear separator is the distance between it and the nearest training data point

$$\min_{(x^{(i)},y^{(i)}) \in \mathcal{D}} d(x^{(i)},h) = \min_{(x^{(i)},y^{(i)}) \in \mathcal{D}} \frac{|w^T x^{(i)} + b|}{\|w\|_2}$$

$$= \frac{1}{\|w\|_2} \max_{(x^{(i)},y^{(i)}) \in \mathcal{D}} \frac{|w^T x^{(i)} + b|}{\|w\|_2}$$

$$= \frac{1}{\|w\|_2} \max_{(x^{(i)},y^{(i)}) \in \mathcal{D}} \frac{|w^T x^{(i)} + b|}{\|w\|_2}$$

$$= \frac{1}{\|w\|_2} \max_{(x^{(i)},y^{(i)}) \in \mathcal{D}} \frac{|w^T x^{(i)} + b|}{\|w\|_2}$$

Maximizing the Margin

```
maximize \frac{1}{\|\mathbf{w}\|_2}
     subject to \min_{\left(x^{(i)}, y^{(i)}\right) \in \mathcal{D}} y^{(i)} \left(w^{T} x^{(i)} + b\right) = 1
     minimize \|\mathbf{w}\|_2
     subject to \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)}(\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) = 1
     minimize \frac{1}{2} \|\mathbf{w}\|_2^2
     subject to \min_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{D}} y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + b) = 1
minimize \frac{1}{2} \mathbf{w}^T \mathbf{w}
     subject to y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \ \forall \ (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}
```

Maximizing the Margin

minimize
$$\frac{1}{2} (w^T w)$$

subject to $y^{(i)} (w^T x^{(i)} + b) \ge 1 \,\forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$

- If $[\hat{b}, \widehat{w}]$ is the optimal solution, then \exists at least one training data point $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ s.t $y^{(i)}(\widehat{w}^T x^{(i)} + \widehat{b}) = 1$
 - All training data points $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)}(\widehat{w}^T x^{(i)} + \widehat{b}) = 1$ are known as **support vectors**
- Converting the non-linear constraint (involving the min) to N linear constraints means we can use quadratic programming (QP) to solve this problem in $O(D^3)$ time

Recipe for SVMs

- Define a model and model parameters
 - Assume a linear decision boundary (with normalized weights)

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = 0$$

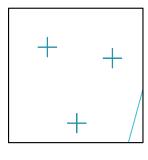
- Parameters: $\mathbf{w} = [w_1, ..., w_D]$ and b
- Write down an objective function (with constraints) minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$ subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \ \forall \ (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$
- Optimize the objective w.r.t. the model parameters

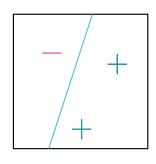
20

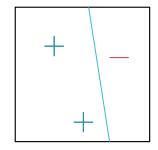
Solve using quadratic programming

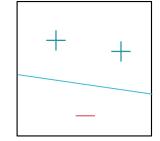
Why Maximal Margins?

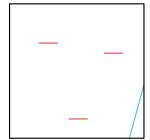
- Consider three binary data points in a <u>bounded</u> 2-D space
- Let $\mathcal{H}=$ {all linear separators} and $\mathcal{H}_{\rho}=$ {all linear separators with minimum margin ρ }

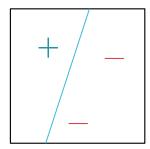


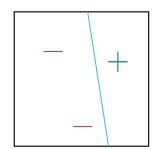


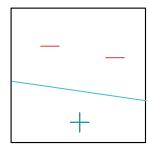






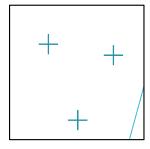


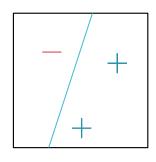


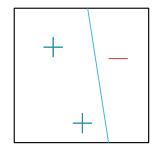


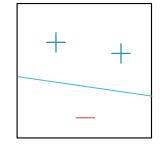
Why Maximal Margins?

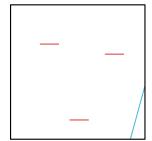
- Consider three binary data points in a **bounded** 2-D space
- \mathcal{H} = {all linear separators} can always correctly classify any three (non-colinear) data points in this space

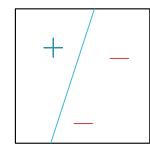


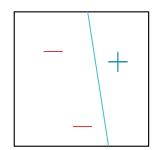


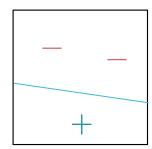






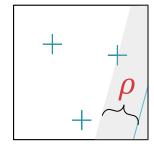


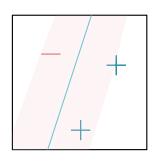


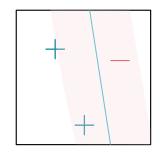


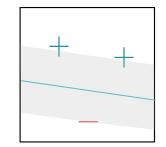
Why Maximal Margins?

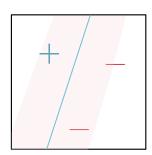
- Consider three binary data points in a <u>bounded</u> 2-D space
- $\mathcal{H}_{\rho}=\{ \text{all linear separators with minimum margin } \rho \}$ cannot always correctly classify three non-colinear data points

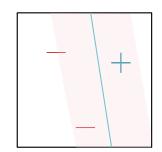


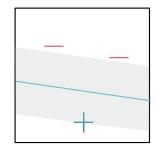












Summary Thus Far

- The margin of a linear separator is the distance between it and the nearest training data point
- Questions:
 - 1. How can we efficiently find a maximal-margin linear separator? By solving a constrained quadratic optimization problem using quadratic programming
 - 2. Why are linear separators with larger margins better? They're simpler *waves hands*
 - 3. What can we do if the data is not linearly separable? Next!

Linearly Inseparable Data

- What can we do if the data is not linearly separable?
 - 1. Accept some non-zero training error
 - How much training error should we tolerate?
 - 2. Apply a non-linear transformation that shifts the data into a space where it is linearly separable
 - How can we pick a non-linear transformation?

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \, \forall \, (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

SVMs

• When ${\mathcal D}$ is not linearly separable, there are no feasible solutions to this optimization problem

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \, \forall \, (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$

Hard-margin SVMs

• When ${\mathcal D}$ is not linearly separable, there are no feasible solutions to this optimization problem

Soft-margin SVMs

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{N} \xi^{(i)}$$

subject to
$$y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 - \xi^{(i)} \ \forall \ (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$$

$$\xi^{(i)} \ge 0 \qquad \forall i \in \{1, ..., N\}$$

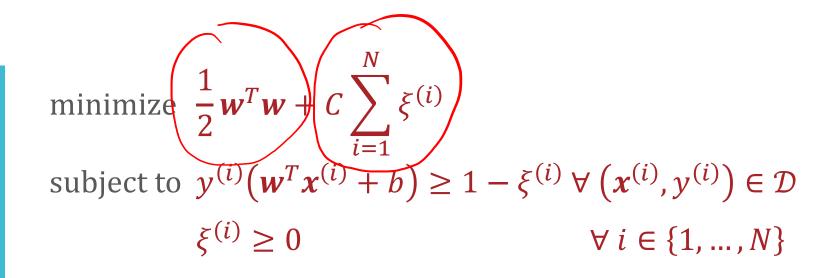
Soft-margin SVMs

minimize $\frac{1}{2}w^{T}w + C\sum_{i=1}^{N} \xi^{(i)}$ subject to $y^{(i)}(w^{T}x^{(i)} + b) \ge 1 - \xi^{(i)} \forall (x^{(i)}, y^{(i)}) \in \mathcal{D}$ $\xi^{(i)} \ge 0 \qquad \forall i \in \{1, ..., N\}$

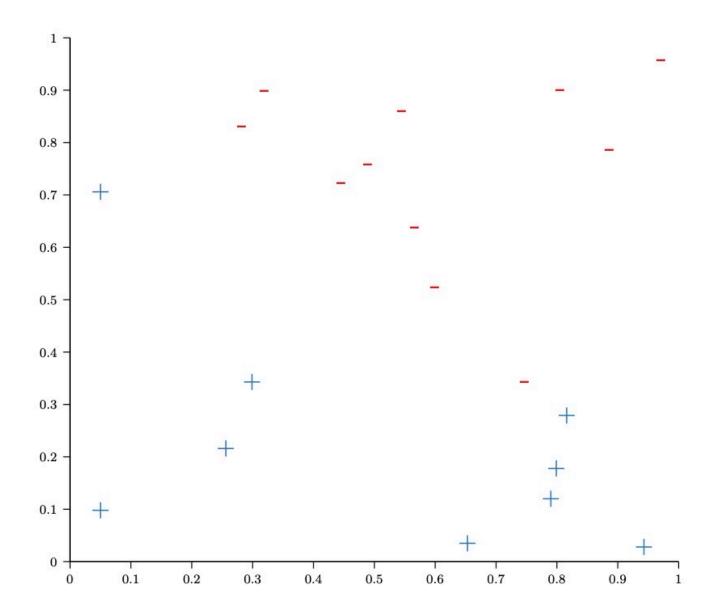
- $\xi^{(i)}$ is the "soft" error on the i^{th} training data point
 - If $\xi^{(i)} > 1$, then $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) < 0 \Rightarrow$ $(\mathbf{x}^{(i)}, y^{(i)})$ is incorrectly classified
 - If $0 < \xi^{(i)} < 1$, then $y^{(i)}(\mathbf{w}^T \mathbf{x}^{(i)} + b) > 0 \Rightarrow$ $(\mathbf{x}^{(i)}, y^{(i)})$ is correctly classified but inside the margin

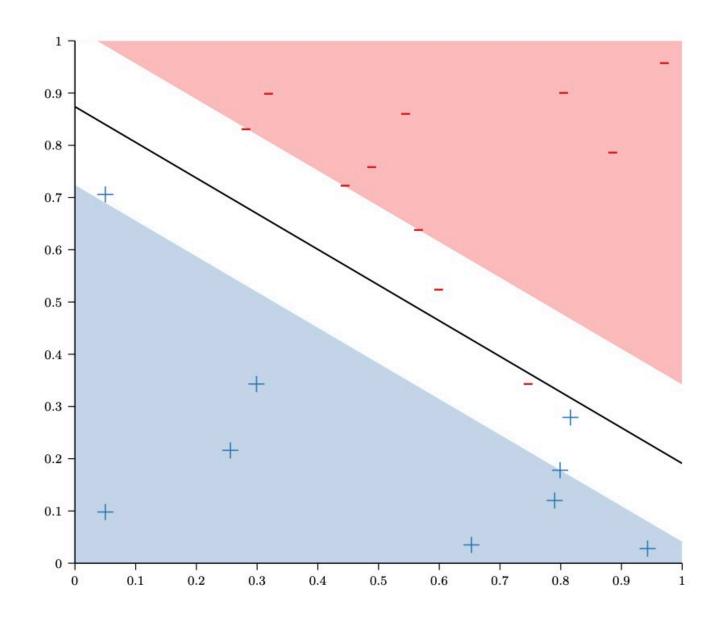
•
$$\sum_{i=1}^{N} \xi^{(i)}$$
 is the "soft" training error

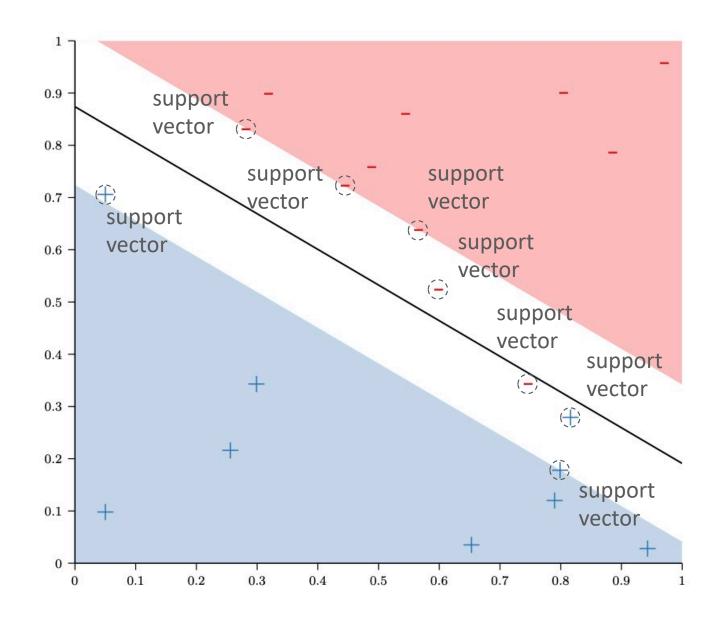
Soft-margin SVMs

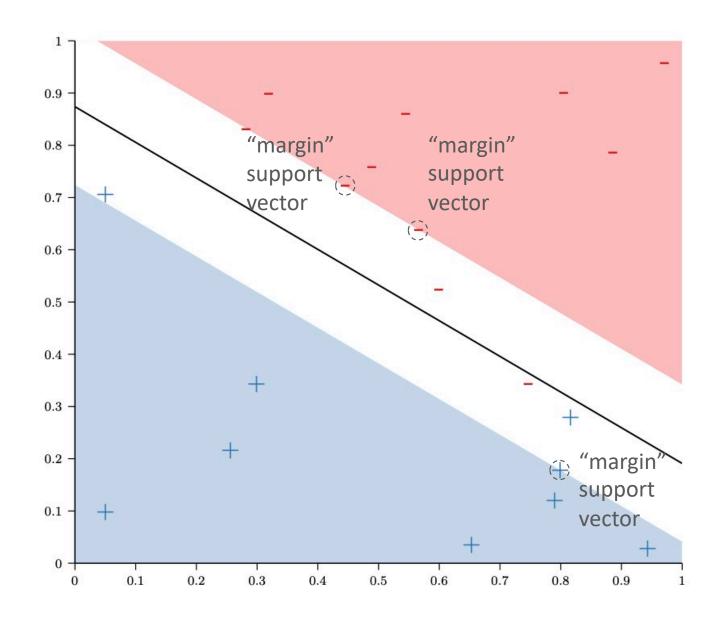


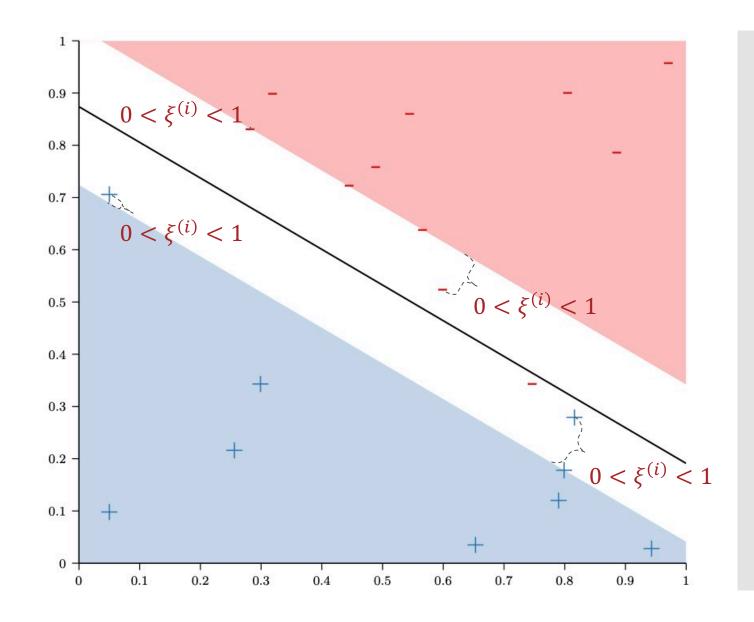
- Still solvable using quadratic programming
- All training data points $(x^{(i)}, y^{(i)}) \in \mathcal{D}$ where $y^{(i)}(\widehat{w}^T x^{(i)} + \widehat{b}) \leq 1$ are known as support vectors

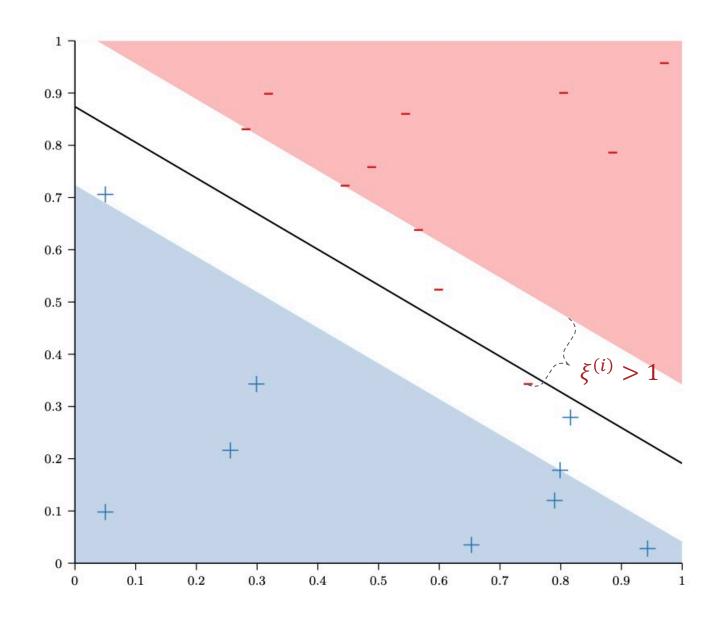


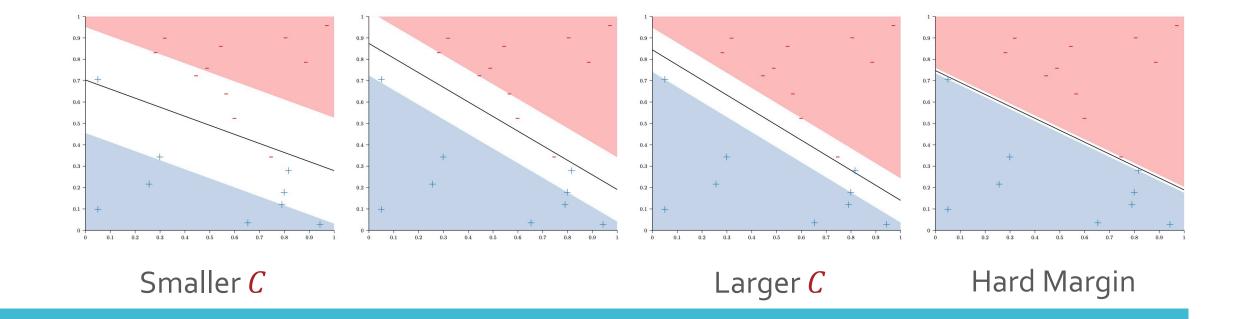












Setting C

C is a tradeoff parameter (much like the tradeoff parameter in regularization)

Hard-margin SVMs

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$
 subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1 \ \forall \ (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ minimize E_{train} Regularization subject to $\mathbf{w}^T \mathbf{w} \le C$

	SVM	Regularization
minimize	$\frac{1}{2} \boldsymbol{w}^T \boldsymbol{w}$	E_{train}
subject to	$E_{train} = 0$	$\mathbf{w}^T \mathbf{w} \leq C$

Primal-Dual Optimization

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + w_0) \ge 1 \, \forall \, (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$ Primal

maximize
$$-\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}\alpha^{(i)}\alpha^{(j)}y^{(i)}y^{(j)}x^{(i)^{T}}x^{(j)} + \sum_{i=1}^{N}\alpha^{(i)}$$
 Dual subject to
$$\sum_{i=1}^{N}\alpha^{(i)}y^{(i)} = 0$$

$$\alpha^{(i)} \geq 0 \ \forall \ i \in \{1, ..., N\}$$

SVM

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

subject to $y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + w_0) \ge 1 \,\forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$
 \updownarrow
minimize $\frac{1}{2} \mathbf{w}^T \mathbf{w}$
subject to $1 - y^{(i)} (\mathbf{w}^T \mathbf{x}^{(i)} + w_0) \le 0 \,\forall (\mathbf{x}^{(i)}, y^{(i)}) \in \mathcal{D}$
 \updownarrow
minimize \mathbf{v}, w_0 \mathbf{v} \mathbf{v}

SVM