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Front Matter

� Announcements: 

� Exam 2 on 5/6 from 1 PM – 3 PM in TEP 1403

� You are allowed to bring one letter-/A4-size sheet of 
notes; you can put whatever you want on both sides

� Pre-midterm material may be referenced but will 
not be the primary focus of any question

� Project Final Reports due on 4/26 (Friday) at 11:59 PM

� No late days can be used on project deliverables

� Recommended Readings:

� Murphy, Chapters 15.1-15.2
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� (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎! = 1

� Multivariate Gaussians: lllllll

𝒙 = 𝑥", … , 𝑥# $	

∼ 𝒩 𝒙; 𝝁 = 𝟎#, Σ = 𝐼# 	

Gaussians
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Some fun   
facts about 
Gaussians

4Henry Chai - 4/22/24

� Closure under linear transformations:

If	𝒙 ∼ 𝒩 𝒙; 𝝁, Σ ,

then	𝐴𝒙 + 𝑏 ∼ 𝒩 𝐴𝝁 + 𝑏, 𝐴Σ𝐴$

� Closure under addition

If	𝒙 ∼ 𝒩 𝒙; 𝝁, Σ 	and	𝒚 ∼ 𝒩 𝒚;𝒎, 𝑆 ,

then	𝒙 + 𝒚 ∼ 𝒩 𝝁 +𝒎, Σ + 𝑆

� Closure under conditioning: 

If	𝒙 =
𝑥"
𝑥! ∼ 𝒩

𝑥"
𝑥! ;

𝜇"
𝜇! , Σ"" Σ"!

Σ!" Σ!!
,

then	𝑥"|𝑥! = 𝑐 ∼ 𝒩 𝑥"; 𝜇" + Σ"!Σ!!%" 𝑐 − 𝜇! , Σ"" − Σ"!Σ!!%"Σ!"



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels
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Recall: 
MAP for 
Linear 
Regression 
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� If we assume a linear model with additive Gaussian noise 

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& → 𝒚 ∼ 𝑁 𝑋𝒘, 𝜎!𝐼&  

and independent identical Gaussian priors on the weights…

𝒘	~	𝑁 𝒘#'",
𝜎!

𝜆 𝐼#'" → 𝑝 𝒘 ∝ exp −
1
2𝜎! 𝜆𝒘$𝒘

� … then, the MAP of 𝒘	is the ridge regression solution!

𝒘()* = argmin
𝒘

𝑋𝒘 − 𝒚 $ 𝑋𝒘 − 𝒚 + 𝜆𝒘$𝒘

	 −.	 = 𝑋$𝑋 + 𝜆𝐼#'" %"𝑋$𝒚



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then, 

𝒚 ∼ 𝑁 𝑋𝟎#'" + 𝟎& = 𝟎&, 𝑋𝛴𝑋$ + 𝜎!𝐼&



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then, 

𝒘
𝒚 ∼ 𝑁 𝟎#'"

𝟎&
, Σ ? ? ?
? ? ? 𝑋Σ𝑋$ + 𝜎!𝐼&

� Covariance between 𝒚	and 𝒘:
Cov 𝒚 = 𝑋𝒘 + 𝝐,𝒘 = Cov 𝑋𝒘,𝒘 = 𝑋Cov 𝒘,𝒘 = 𝑋Σ



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then, 

𝒘
𝒚 ∼ 𝑁 𝟎#'"

𝟎&
, Σ 𝑋Σ
𝑋Σ 𝑋Σ𝑋$ + 𝜎!𝐼&

� Covariance between 𝒚	and 𝒘:
Cov 𝒚 = 𝑋𝒘 + 𝝐,𝒘 = Cov 𝑋𝒘,𝒘 = 𝑋Cov 𝒘,𝒘 = 𝑋Σ



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then, 

𝒘	|	𝒚 ∼ 𝑁 𝝁*,-$, Σ*,-$

where

𝝁*,-$ = Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝒚, 

Σ*,-$ = Σ − Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝑋Σ



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then given a new test data point 𝒙., the prediction is  

𝑦. 	𝒚 = 𝒙.$𝒘	 𝒚 ∼ 𝑁 𝒙.$𝝁*,-$, 𝒙.
$Σ*,-$𝒙.

where

𝝁*,-$ = Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝒚, 
Σ*,-$ = Σ − Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝑋Σ



Bayesian
Linear 
Regression
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then given a new test data point 𝒙., the prediction is  

𝑦. 	𝒚 = 𝒙.$𝒘	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝒙.$Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝒚, 

Σ*/0# = 𝒙.$Σ𝒙. − 𝒙.1Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝑋Σ𝒙.
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Some old 
friends
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Bayesian
Linear 
Regression...
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = 𝑋𝒘 + 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝒘	~	𝑁 𝟎#'", Σ

then given a new test data point 𝒙., the prediction is  

𝑦. 	𝒚 = 𝒙.$𝒘	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝒙.$Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝒚, 

Σ*/0# = 𝒙.$Σ𝒙. − 𝒙.1Σ𝑋$ 𝑋Σ𝑋$ + 𝜎!𝐼& %"𝑋Σ𝒙.



Bayesian
Linear 
Regression can 
be kernelized!
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Φ =

1 𝜙 𝒙 ! "

1 𝜙 𝒙 # "

⋮ ⋮
1 𝜙 𝒙 $ "

� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = Φ𝝎+ 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝝎	~	𝑁 𝟎#!'", Σ

then given a new test data point 𝒙., the prediction is  
𝑦. 	𝒚 = 𝜙 𝒙. $𝝎	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝜙 𝒙. $ΣΦ$ ΦΣΦ$ + 𝜎!𝐼& %"𝒚, 
Σ*/0#
= 𝜙 𝒙. $Σ𝜙 𝒙. − 𝜙 𝒙. $ΣΦ$ ΦΣΦ$ + 𝜎!𝐼& %"ΦΣ𝜙 𝒙.



Bayesian
Linear 
Regression can 
be kernelized!
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Φ =

1 𝜙 𝒙 ! "

1 𝜙 𝒙 # "

⋮ ⋮
1 𝜙 𝒙 $ "

� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = Φ𝝎+ 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝝎	~	𝑁 𝟎#!'", Σ

then given a new test data point 𝒙., the prediction is  
𝑦. 	𝒚 = 𝜙 𝒙. $𝝎	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝜙 𝒙. $ΣΦ$ ΦΣΦ$ + 𝜎!𝐼& %"𝒚, 
Σ*/0#
= 𝜙 𝒙. $Σ𝜙 𝒙. − 𝜙 𝒙. $ΣΦ$ ΦΣΦ$ + 𝜎!𝐼& %"ΦΣ𝜙 𝒙.

� Define the kernel function to be 
𝐾 𝒙, 𝒙. = 𝜙 𝒙 $Σ𝜙 𝒙.



Bayesian
Linear 
Regression can 
be kernelized!
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = Φ𝝎+ 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝝎	~	𝑁 𝟎#!'", Σ

then given a new test data point 𝒙., the prediction is  
𝑦. 	𝒚 = 𝜙 𝒙. $𝝎	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝐾 𝒙., 𝑋 𝐾 𝑋, 𝑋 + 𝜎!𝐼& %"𝒚, 

Σ*/0# = 𝐾 𝒙., 𝒙. − 𝐾 𝒙., 𝑋 𝐾 𝑋, 𝑋 + 𝜎!𝐼& %"𝐾 𝑋, 𝒙.

� Define the kernel function to be 
𝐾 𝒙, 𝒙. = 𝜙 𝒙 $Σ𝜙 𝒙.



Wait, what 
happened to 
the weights?
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = Φ𝝎+ 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝝎	~	𝑁 𝟎#!'", Σ

then given a new test data point 𝒙., the prediction is  
𝑦. 	𝒚 = 𝜙 𝒙. $𝝎	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝐾 𝒙., 𝑋 𝐾 𝑋, 𝑋 + 𝜎!𝐼& %"𝒚, 

Σ*/0# = 𝐾 𝒙., 𝒙. − 𝐾 𝒙., 𝑋 𝐾 𝑋, 𝑋 + 𝜎!𝐼& %"𝐾 𝑋, 𝒙.

� Define the kernel function to be 
𝐾 𝒙, 𝒙. = 𝜙 𝒙 $Σ𝜙 𝒙.



Some old 
friends

Gaussian process = 

Bayesian linear regression + Kernels
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A new 
perspective
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Gaussian process = 

The extension of a Gaussian 

distribution to functions



� (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎! = 1

� Multivariate Gaussians: lllllll

𝒙 = 𝑥", … , 𝑥# $	

∼ 𝒩 𝒙; 𝝁 = 𝟎#, Σ = 𝐼# 	

Gaussians
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Gaussian 
Process (GP)

25

𝑓:ℝ2 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥. = exp − 𝑥 − 𝑥. !

x

Mean ±2 Standard Deviations

𝑓	~	𝒢𝒫 𝜇, Σ → 𝑓 𝑥 	~	𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥
Henry Chai - 4/22/24



Gaussians
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� (Univariate) Gaussians:

𝑥 ∼ 𝒩 𝑥; 𝜇 = 0, 𝜎! = 1

� Multivariate Gaussians: lllllll

𝒙 = 𝑥", … , 𝑥# $	

∼ 𝒩 𝒙; 𝝁 = 𝟎#, Σ = 𝐼# 	



Gaussian 
Process (GP)
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x

Samples Mean ±2 Standard Deviations

𝑓:ℝ2 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥. = exp − 𝑥 − 𝑥. !

Henry Chai - 4/22/24
𝑓	~	𝒢𝒫 𝜇, Σ → 𝑓 𝑥 	~	𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥



Gaussian 
Process (GP)

28

x

Samples Mean ±2 Standard Deviations

Henry Chai - 4/22/24
𝑓	~	𝒢𝒫 𝜇, Σ → 𝑓 𝑥 	~	𝒩 𝜇 𝑥 , Σ 𝑥, 𝑥

𝑓:ℝ2 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥. = exp − 𝑥 − 𝑥.



GP Prior
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𝑓:ℝ2 ↦ ℝ ∼ 𝒢𝒫 𝑓; 𝜇 𝑥 = 0, Σ 𝑥, 𝑥. = exp − 𝑥 − 𝑥. !

x

Mean ±2 Standard Deviations
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GP Posterior

30

x

D = Data Mean ±2 Standard Deviations

𝑓	|	𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟
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GP Posterior

31

𝑓	|	𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟

x

Samples D = Data Mean ±2 Standard Deviations
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GP Posterior

32

x⇤x

Samples D = Data Mean ±2 Standard Deviations

𝑓 𝑥∗ 	~	𝒩 𝜇*/0# 𝑥∗ , Σ*/0# 𝑥∗, 𝑥∗

𝑓	|	𝒟 ∼ 𝒢𝒫 𝑓; 𝜇𝒟, Σ𝒟
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Active 
Learning
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Suppose you 
can add one 
data point to 
your training 
data. 

Which value of 
𝑥 would you 
add and why?
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Kernel 
Hyperparameters

x

Samples D = Data Mean ±2 Standard Deviations

x

Samples D = Data Mean ±2 Standard Deviations

35

Log-Likelihood of 𝒟:
log𝑁 𝒚; 𝜇 𝑋 , 𝛴 𝑋, 𝑋 = −6.82

Log-Likelihood of 𝒟:
log𝑁 𝒚; 𝜇 𝑋 , 𝛴 𝑋, 𝑋 = −8.26

𝑓 ∼ 𝒢𝒫 𝑓; 	0, 1! exp −
𝑥 − 𝑥. !

1!
𝑓 ∼ 𝒢𝒫 𝑓; 	0, 2! exp −

𝑥 − 𝑥. !

2!
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• Can be set via MLE
• As long as 𝜇	and 𝛴	are differentiable, 

the log-likelihood is differentiable with 
respect to the kernel hyperparameters



Wait doesn’t this always get zero 
training error??? 

x

Samples D = Data Mean ±2 Standard Deviations

x

Samples D = Data Mean ±2 Standard Deviations

36

𝑓 ∼ 𝒢𝒫 𝑓; 	0, 1! exp −
𝑥 − 𝑥. !

1!
𝑓 ∼ 𝒢𝒫 𝑓; 	0, 2! exp −

𝑥 − 𝑥. !

2!
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Log-Likelihood of 𝒟:
log𝑁 𝒚; 𝜇 𝑋 , 𝛴 𝑋, 𝑋 = −6.82

Log-Likelihood of 𝒟:
log𝑁 𝒚; 𝜇 𝑋 , 𝛴 𝑋, 𝑋 = −8.26



Noise
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� Assume a linear model with additive Gaussian noise and a  

zero-mean Gaussian prior on the weights:

𝒚 = Φ𝝎+ 𝝐 where 𝝐	~	𝑁 𝟎&, 𝜎!𝐼& 	and 𝝎	~	𝑁 𝟎#!'", Σ

then given a new test data point 𝒙., the prediction is  
𝑦. 	𝒚 = 𝜙 𝒙. $𝝎	 𝒚 ∼ 𝑁 𝝁*/0#, Σ*/0#

where

𝝁*/0# = 𝐾 𝒙., 𝑋 𝐾 𝑋, 𝑋 + 𝜎!𝐼& %"𝒚, 

Σ*/0# = 𝐾 𝒙., 𝒙. − 𝐾 𝒙., 𝑋 𝐾 𝑋, 𝑋 + 𝜎!𝐼& %"𝐾 𝑋, 𝒙

� 𝜎! is another hyperparameter we can tune 

� 𝜎! = 0 is a noiseless fit: the mean will always pass through 
the observations exactly; 𝜎! > 0 allows for deviations



Noise

x

Samples D = Data Mean ±2 Standard Deviations

x

Samples D = Data Mean ±2 Standard Deviations

38

𝜎! = 0.5
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x

Samples D = Data Mean ±2 Standard Deviations

0 2 4 6 8 10

�2

0

2

x
0 2 4 6 8 10

�2

0

2

x

observations µ(x) ��% CI

x

Samples D = Data Mean ±2 Standard Deviations

𝜎! = 0.1

Log-Likelihood of 𝒟:
log𝑁 𝒚; 𝜇 𝑋 , 𝛴 𝑋, 𝑋 = −5.11

Log-Likelihood of 𝒟:
log𝑁 𝒚; 𝜇 𝑋 , 𝛴 𝑋, 𝑋 = −7.84


