10-701: Introduction to
Machine Learning
Lecture 26 — Gaussian
Processes

Henry Chai
4/22/24



Front Matter
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- Anhouncements:

* Exam 2 on 5/6 from 1 PM -3 PM in TEP 1403

* You are allowed to bring one letter-/A4-size sheet of
notes; you can put whatever you want on both sides

° Pre-midterm material may be referenced but will
not be the primary focus of any question

* Project Final Reports due on 4/26 (Friday) at 11:59 PM

* No late days can be used on project deliverables

- Recommended Readings:

* Murphy, Chapters 15.1-15.2



(Univariate) Gaussians:
x ~N(O;u=00%=1)

CENNNERS

* Multivariate Gaussians:

X = [xl, ...,xD]T

NN(x,ﬂ= OD,Z =ID)
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* Closure under linear transformations:
Ifx ~NQ;upX),
then Ax + b ~ N(Au + b, AZAT)

Some fun
facts about

* Closure under addition
fx~Nx;u2)andy ~ N(y;m,S),
thenx+y~Nu+m,Z+5)

CENNNERS

* Closure under conditioning:

A (A e

then x;|x; = ¢ ~ N (xg; g + 212255 (€ — ), 211 — 212252 221)
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Some old Gaussian process =

friends

Bayesian linear regression + Kernels
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Some old Gaussian process =

friends

Bayesian linear regression + Kernels
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Recall:
MAP for

Linear
Regression
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* If we assume a linear model with additive Gaussian noise
y = Xw + ewhere e ~ N(0y,0%Iy) >y ~ N(Xw, c%Iy)
and independent identical Gaussian priors on the weights...

2
o 1
w~N (WD+1:71D+1> - p(w) o« exp (‘ 772 (AWTW)>
* ... then, the MAP of w is the ridge regression solution!
Wyap = argmin (Xw — )T (Xw — y) + Awlw

w
= (XTX + AMpy) XTy



* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0p, 6%Iy) andw ~ N(0p4q1,X)

then,
Bayesian y ~ N(X0p4q + Oy = 0y, XEXT + 021y)

Linear
Regression
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where € ~ N(0p,5%Iy) andw ~ N(0p,q, %)

then,
Bayesian

: w 0p.q 2727
Linear [y] NN( ] [??7 XZXT+021ND

Regression

* Covariance between y and w:
Cov(y = Xw + €,w) = Cov(Xw,w) = XCov(w,w) = XX
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where € ~ N(0p,5%Iy) andw ~ N(0p,q, %)

then,
Bayesian

| w 0p.4 x>
Linear [y] N N( ] [XZ xoxT + UZIND

Regression

* Covariance between y and w:
Cov(y = Xw + €,w) = Cov(Xw,w) = XCov(w,w) = XX
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(Op, 6%Iy) andw ~ N(0p4q1,X)

then,
Bayesian w |y ~ N(Upost)ZposT)

Linear
Regression

where

ppost = EXT(XEXT + a%Iy) ™y,
Ypost = 2 — XXT(XEXT + 021y) X2
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0p, 6%Iy) andw ~ N(0p41,X)

then given a new test data point x’, the prediction is
I / 1T 1T 1T /
Baye5|an Y |J’ =X W | y ~ N(x KHposT, X ZPOSTx)

Linear
Regression

where

Hpost = EXT(XZXT + o2Iy) ™y,
Ypost = 2 — XXT(XEXT + 021y) " 1X2
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0p, 0%Iy) andw ~ N(0p4q1,Z)

then given a new test data point x’, the prediction is
I / 1T
Bayesian ' |y=x"w|y~ NWprep, preD)

Linear
Regression

where

Uprep = X' IXT(XZXT + 02Iy) "y,
Soppp = X 2x — x' TEXT(XEXT + 021y) " 1XZx!
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Some old

friends
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(Gaussian process =

Bayesian linear regression + Kernels
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Some old

friends
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(Gaussian process =

Bayesian linear regression + Kernels
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Bayesian
Linear
Regression...
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = Xw + e where e ~ N(0p, 0%Iy) andw ~ N(0p4q1,Z)
then given a new test data point x’, the prediction is
v |y =x"w|y~ NWprep Zprep)
where
Hprep = &' EXT(XEXT + 02Iy) 1y,
Soppp = X 2x — x' TEXT(XEXT + 021y) " 1XZx!
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Bayesian
Linear
Regression can
be kernelized!
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®w + € where € ~ N(0y,0%Iy) and w ~ N(0pr, 4, 2)
then given a new test data point x’, the prediction is
v ly=¢&) ' w|y~ N(prep, Zprep)
where
tprep = ¢(X)'ZOT(DZPT + a2 Iy) "y,

ZPRED
= ()2 (x) — d(xXN)TZDPT(DZDT + 0%Iy) 1P (x")
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Bayesian
Linear
Regression can
be kernelized!
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®w + € where € ~ N(0y,0%Iy) and w ~ N(0pr, 4, 2)

then given a new test data point x’, the prediction is
' ly=¢&)'w|y~ N(prep, Zprep)
where
lppen = ¢ODNTEOT(OZOT + o71) 1y,
2PRED

= p(xXNTZP(x") — p(XNTZDPT (DZDT + 571,,) ' DLP(x')

* Define the kernel function to be

K(x,x") = p(x) 2 (x")

19



Bayesian
Linear
Regression can
be kernelized!
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®w + € where € ~ N(0y,0%Iy) and w ~ N(0pr, 4, 2)

then given a new test data point x’, the prediction is
v ly=¢&)'w|y ~ N@prep, Zprep)

where

pprep = K(x', X)(K(X, X) + o%Iy) ™y,

Sprep = K(x',x") — K(x', X)(K(X, X) + 0%Iy) 'K (X, x")

* Define the kernel function to be

K(x,x') = p(x) 2 (x")
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* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:

Wait, what y = ®w + € where € ~ N(0y,0%Iy) and w ~ N(0pr, 4, 2)

happened to then given a new test data point x’, the prediction is
the weights? v'ly=¢(&)"wly~ NWprep, ZpreD)

where

pprep = K(x', X)(K(X, X) + o%Iy) ™y,

Sprep = K(x',x") — K(x', X)(K(X, X) + 0%Iy) 'K (X, x")

* Define the kernel function to be

K(x,x') = p(x) 2 (x")
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Some old

friends
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Gaussian process =

Bayesian linear regression + Kernels
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A new

perspective
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Gaussian process =

The extension of a Gaussian

distribution to functions
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CENNNERS
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* (Univariate) Gaussians:
x ~N(x;u=00%=1)

* Multivariate Gaussians:

X = [xl, ...,.X'D]T

"’N(x,ﬂ= OD»Z=ID)

24



CEINSELR

Process (GP)
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fiRP > R~ GP(f;ulx) ,2(x,x")

—— Mean 1+2 Standard Deviations

X

f~GPW2) = fx) ~ N (u(x), 2(x, x))

25



CENNNERS
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* (Univariate) Gaussians:
x ~N(x;u=00%=1)

* Multivariate Gaussians:

X = [xl, ...,.X'D]T

"’N(x,ﬂ= OD»Z=ID)
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CEINSELR

Process (GP)
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fiRP > R~ GP(f;u(x) = 0,2(x,x") = exp(—(x —x")%))

K

—— Samples — Mean  C33+42 Standard Deviations

==

X

f~GPW2) = fx) ~ N (u(x), 2(x, x))
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fiRP = R~ GP(f; u(x) = 0,2(x,x") = exp(~|x — x']))

—— Samples — Mean  C33+42 Standard Deviations

\
Gaussian ‘«(

#,v‘“‘mlwwuvt‘iv'lm ' A ; VA

X

f~GPW2) = fx) ~ N (u(x), 2(x, x))

Process (GP)
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GP Prior
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fiRP > R~ GP(f;u(x) = 0,2(x,x") = exp(—(x —x")%))

—— Mean 1+2 Standard Deviations
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GP Posterior
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f 1D~ GP(f; up, Zp)

oD = Data — Mean

1+2 Standard Deviations
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GP Posterior
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f 1D~ GP(f; up, Zp)

—— Samples D = Data  —— Mean

1+2 Standard Deviations
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GP Posterior
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f 1D~ GP(f; up, Zp)

——Samples oD =Data —Mean  [3+2 Standard Deviations

f(x*) ~ N(HPRED (x*), XpRED (X*»X*))

i ZB*

32



Active

Learning
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®D = Data —— Mean 142 Standard Deviations

—

33



Suppose you
can add one
data point to
your training

®D = Data —— Mean 142 Standard Deviations

data. \_\,\/

Which value of

x would you
add and why?
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——Samples oD = Data —Mean C=3+2 Standard Deviations ——Samples oD = Data —Mean =342 Standard Deviations

Log-Likelihood of D:
log N(y; u(X), 2(X,X)) = —6.82 log N(y; u(X), 2(X,X)) = —8.26

X - . - i N
f~GP <f: 0,(12) exp (— — )) f~GP (f; 0, (22) exp (_ — ))

Can be set via MILE

Ke r n e | Aslongas and are differentiable,

H y p e r p a ra m ete rS the log-likelihood is differentiable with

respect to the kernel hyperparameters
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/ Log-Likelihood of D:
log N(y; u(X), 2(X,X)) = —6.82

Log-Likelihood of D:
log N(y; u(X), 2(X,X)) = —8.26

X X

— »N)2 N2
f~97’<f: o,<12>exp(—(x = )) f~g?(f; o,<22)exp(_(x - ))

Wait doesn’t this always get zero

training error???




* Assume a linear model with additive Gaussian noise and a

zero-mean Gaussian prior on the weights:
y = ®w + e where € ~ N(0y,0%Iy) and w ~ N (0, 2)

then given a new test data point x', the prediction is
v y=¢&x) " w|y~ Nprep, Zprep)

where

Mprep = K(xX', X)(K(X,X) + oIy) ™y,

Sprep = K(x', x") — K(x', X)(K(X, X) + 0%Iy) 'K (X, x)

- g2 is another hyperparameter we can tune

- g% = 0 is a noiseless fit: the mean will always pass through

Henry Chai - 4/22/24 the observations exactly; a2 > 0 allows for deviations -



——Samples oD = Data —Mean =342 Standard Deviations ——Samples oD = Data —Mean =342 Standard Deviations

og-Likelihood of

: og-Likelihood of D:
log N(y; u(X), 2(X,X)) = —5.11

log N(y; u(X), 2(X,X)) = —7.84

X X

g% =0.1 g% =0.5
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