10-701: Introduction to Machine Learning Lecture 26 – Gaussian Processes

Henry Chai

4/22/24

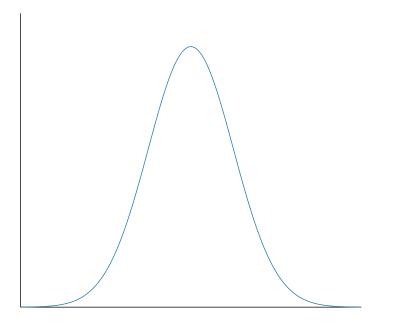
Front Matter

- Announcements:
 - Exam 2 on 5/6 from 1 PM 3 PM in TEP 1403
 - You are allowed to bring one letter-/A4-size sheet of notes; you can put *whatever* you want on *both sides*
 - Pre-midterm material may be referenced but will not be the primary focus of any question
 - Project Final Reports due on 4/26 (Friday) at 11:59 PM
 - No late days can be used on project deliverables
- Recommended Readings:
 - Murphy, Chapters 15.1-15.2

Gaussians

(Univariate) Gaussians:

 $x \sim \mathcal{N}(x; \mu = 0, \sigma^2 = 1)$



• Multivariate Gaussians:

$$\boldsymbol{x} = [x_1, \dots, x_D]^T$$

$$\sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu} = \boldsymbol{0}_D, \boldsymbol{\Sigma} = \boldsymbol{I}_D)$$

Some fun facts about Gaussians • Closure under linear transformations:

If $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $A\boldsymbol{x} + b \sim \mathcal{N}(A\boldsymbol{\mu} + b, A\boldsymbol{\Sigma}A^T)$

Closure under addition

If $\boldsymbol{x} \sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\boldsymbol{y} \sim \mathcal{N}(\boldsymbol{y}; \boldsymbol{m}, \boldsymbol{S})$, then $\boldsymbol{x} + \boldsymbol{y} \sim \mathcal{N}(\boldsymbol{\mu} + \boldsymbol{m}, \boldsymbol{\Sigma} + \boldsymbol{S})$

Closure under conditioning:

If
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}; \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$$
,
then $x_1 | x_2 = c \sim \mathcal{N}(x_1; \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (c - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$

Some old friends

Gaussian process =

Bayesian linear regression + Kernels

Some old friends

Gaussian process =

Bayesian linear regression + Kernels

Recall: MAP for Linear Regression • If we assume a linear model with additive Gaussian noise $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N) \rightarrow y \sim N(Xw, \sigma^2 I_N)$ and independent identical Gaussian priors on the weights...

$$\boldsymbol{w} \sim N\left(\boldsymbol{w}_{D+1}, \frac{\sigma^2}{\lambda} I_{D+1}\right) \rightarrow p(\boldsymbol{w}) \propto \exp\left(-\frac{1}{2\sigma^2}(\lambda \boldsymbol{w}^T \boldsymbol{w})\right)$$

• ... then, the MAP of **w** is the ridge regression solution!

 $\boldsymbol{w}_{MAP} = \underset{\boldsymbol{w}}{\operatorname{argmin}} (X\boldsymbol{w} - \boldsymbol{y})^T (X\boldsymbol{w} - \boldsymbol{y}) + \lambda \boldsymbol{w}^T \boldsymbol{w}$ $= (X^T X + \lambda I_{D+1})^{-1} X^T \boldsymbol{y}$

• Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $w \sim N(\mathbf{0}_{D+1}, \Sigma)$

then,

$$\boldsymbol{y} \sim N(X\boldsymbol{0}_{D+1} + \boldsymbol{0}_N = \boldsymbol{0}_N, X\Sigma X^T + \sigma^2 I_N)$$

• Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $w \sim N(\mathbf{0}_{D+1}, \Sigma)$

then,

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{y} \end{bmatrix} \sim N\left(\begin{bmatrix} \boldsymbol{0}_{D+1} \\ \boldsymbol{0}_N \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma} & ??? \\ ??? & \boldsymbol{X}\boldsymbol{\Sigma}\boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N \end{bmatrix} \right)$$

• Covariance between **y** and **w**:

 $Cov(\mathbf{y} = X\mathbf{w} + \boldsymbol{\epsilon}, \mathbf{w}) = Cov(X\mathbf{w}, \mathbf{w}) = XCov(\mathbf{w}, \mathbf{w}) = X\Sigma$

• Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $\mathbf{y} = X\mathbf{w} + \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon} \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $\mathbf{w} \sim N(\mathbf{0}_{D+1}, \Sigma)$

then,

$$\begin{bmatrix} \boldsymbol{w} \\ \boldsymbol{y} \end{bmatrix} \sim N\left(\begin{bmatrix} \boldsymbol{0}_{D+1} \\ \boldsymbol{0}_N \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{X}\boldsymbol{\Sigma} \\ \boldsymbol{X}\boldsymbol{\Sigma} & \boldsymbol{X}\boldsymbol{\Sigma}\boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N \end{bmatrix} \right)$$

• Covariance between **y** and **w**:

 $\operatorname{Cov}(\boldsymbol{y} = X\boldsymbol{w} + \boldsymbol{\epsilon}, \boldsymbol{w}) = \operatorname{Cov}(X\boldsymbol{w}, \boldsymbol{w}) = X\operatorname{Cov}(\boldsymbol{w}, \boldsymbol{w}) = X\Sigma$

 Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $w \sim N(\mathbf{0}_{D+1}, \Sigma)$

then,

 $\boldsymbol{w} \mid \boldsymbol{y} \sim N(\boldsymbol{\mu}_{POST}, \boldsymbol{\Sigma}_{POST})$

where

 $\boldsymbol{\mu}_{POST} = \boldsymbol{\Sigma} X^T (\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N)^{-1} \boldsymbol{y},$ $\boldsymbol{\Sigma}_{POST} = \boldsymbol{\Sigma} - \boldsymbol{\Sigma} X^T (\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N)^{-1} \boldsymbol{X} \boldsymbol{\Sigma}$

 Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $w \sim N(\mathbf{0}_{D+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = \mathbf{x}'^T \mathbf{w} \mid \mathbf{y} \sim N(\mathbf{x}'^T \boldsymbol{\mu}_{POST}, \mathbf{x}'^T \boldsymbol{\Sigma}_{POST} \mathbf{x}')$

where

 $\boldsymbol{\mu}_{POST} = \boldsymbol{\Sigma} X^T (\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N)^{-1} \boldsymbol{y},$ $\boldsymbol{\Sigma}_{POST} = \boldsymbol{\Sigma} - \boldsymbol{\Sigma} X^T (\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N)^{-1} \boldsymbol{X} \boldsymbol{\Sigma}$

 Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $w \sim N(\mathbf{0}_{D+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = {\mathbf{x}'}^T \mathbf{w} \mid \mathbf{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

where

$$\boldsymbol{\mu}_{PRED} = \boldsymbol{x'}^T \boldsymbol{\Sigma} \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N)^{-1} \boldsymbol{y},$$

$$\boldsymbol{\Sigma}_{PRED} = \boldsymbol{x'}^T \boldsymbol{\Sigma} \boldsymbol{x'} - \boldsymbol{x'}^T \boldsymbol{\Sigma} \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^T + \sigma^2 \boldsymbol{I}_N)^{-1} \boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{x'}$$

Some old friends

Gaussian process =

Bayesian linear regression + Kernels

Some old friends

Gaussian process =

Bayesian linear regression + Kernels

 Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = Xw + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $w \sim N(\mathbf{0}_{D+1}, \Sigma)$

then given a new test data point \boldsymbol{x}' , the prediction is $y' \mid \boldsymbol{y} = {\boldsymbol{x}'}^T \boldsymbol{w} \mid \boldsymbol{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

where

$$\boldsymbol{\mu}_{PRED} = \boldsymbol{x}'^{T} \Sigma X^{T} (X \Sigma X^{T} + \sigma^{2} I_{N})^{-1} \boldsymbol{y},$$

$$\boldsymbol{\Sigma}_{PRED} = \boldsymbol{x}'^{T} \Sigma \boldsymbol{x}' - \boldsymbol{x}'^{T} \Sigma X^{T} (X \Sigma X^{T} + \sigma^{2} I_{N})^{-1} X \Sigma \boldsymbol{x}'$$

Bayesian Linear **Regression** can be kernelized! $\Phi = \begin{bmatrix} 1 & \phi(\boldsymbol{x}^{(1)})^T \\ 1 & \phi(\boldsymbol{x}^{(2)})^T \\ \vdots & \vdots \\ 1 & \phi(\boldsymbol{x}^{(N)})^T \end{bmatrix}$ • Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = \Phi \omega + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $\omega \sim N(\mathbf{0}_{D'+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = \phi(\mathbf{x}')^T \boldsymbol{\omega} \mid \mathbf{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

where

$$\boldsymbol{\mu}_{PRED} = \boldsymbol{\phi}(\boldsymbol{x}')^T \boldsymbol{\Sigma} \boldsymbol{\Phi}^T (\boldsymbol{\Phi} \boldsymbol{\Sigma} \boldsymbol{\Phi}^T + \sigma^2 I_N)^{-1} \boldsymbol{y},$$

 Σ_{PRED}

 $= \phi(\boldsymbol{x}')^T \Sigma \phi(\boldsymbol{x}') - \phi(\boldsymbol{x}')^T \Sigma \Phi^T (\Phi \Sigma \Phi^T + \sigma^2 I_N)^{-1} \Phi \Sigma \phi(\boldsymbol{x}')$

Bayesian Linear **Regression** can be kernelized! $\Phi = \begin{bmatrix} 1 & \phi(\boldsymbol{x}^{(1)})^T \\ 1 & \phi(\boldsymbol{x}^{(2)})^T \\ \vdots & \vdots \\ 1 & \phi(\boldsymbol{x}^{(N)})^T \end{bmatrix}$ • Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = \Phi \omega + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $\omega \sim N(\mathbf{0}_{D'+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = \phi(\mathbf{x}')^T \boldsymbol{\omega} \mid \mathbf{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

where

$$\boldsymbol{\mu}_{PRED} = \boldsymbol{\phi}(\boldsymbol{x}')^T \boldsymbol{\Sigma} \boldsymbol{\Phi}^T (\boldsymbol{\Phi} \boldsymbol{\Sigma} \boldsymbol{\Phi}^T + \sigma^2 I_N)^{-1} \boldsymbol{y},$$

 Σ_{PRED}

 $= \phi(\mathbf{x}')^T \Sigma \phi(\mathbf{x}') - \phi(\mathbf{x}')^T \Sigma \Phi^T (\Phi \Sigma \Phi^T + \sigma^2 I_N)^{-1} \Phi \Sigma \phi(\mathbf{x}')$

Define the kernel function to be

 $K(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\Sigma} \boldsymbol{\phi}(\boldsymbol{x}')$

Bayesian Linear Regression can be kernelized! Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = \Phi \omega + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $\omega \sim N(\mathbf{0}_{D'+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = \phi(\mathbf{x}')^T \boldsymbol{\omega} \mid \mathbf{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

where

 $\boldsymbol{\mu}_{PRED} = K(\boldsymbol{x}', \boldsymbol{X})(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 I_N)^{-1}\boldsymbol{y},$

 $\Sigma_{PRED} = K(\boldsymbol{x}', \boldsymbol{x}') - K(\boldsymbol{x}', \boldsymbol{X})(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 I_N)^{-1}K(\boldsymbol{X}, \boldsymbol{x}')$

• Define the kernel function to be

 $K(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\Sigma} \boldsymbol{\phi}(\boldsymbol{x}')$

Wait, what happened to the weights? Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = \Phi \omega + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $\omega \sim N(\mathbf{0}_{D'+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = \phi(\mathbf{x}')^T \boldsymbol{\omega} \mid \mathbf{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

where

 $\boldsymbol{\mu}_{PRED} = K(\boldsymbol{x}', \boldsymbol{X})(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 I_N)^{-1}\boldsymbol{y},$

 $\Sigma_{PRED} = K(\boldsymbol{x}', \boldsymbol{x}') - K(\boldsymbol{x}', \boldsymbol{X})(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 I_N)^{-1}K(\boldsymbol{X}, \boldsymbol{x}')$

Define the kernel function to be

 $K(\boldsymbol{x},\boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\Sigma} \boldsymbol{\phi}(\boldsymbol{x}')$

Some old friends

Gaussian process =

Bayesian linear regression + Kernels

A new perspective

Gaussian process =

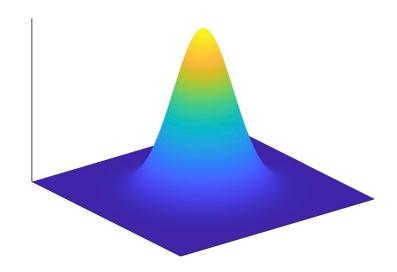
The extension of a Gaussian

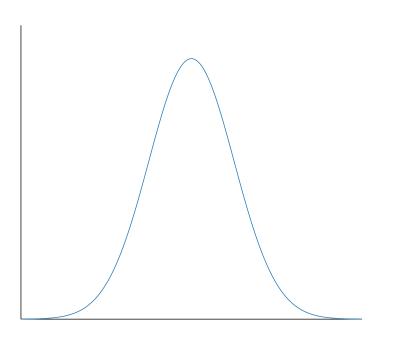
distribution to functions

Gaussians

• (Univariate) Gaussians:

 $x \sim \mathcal{N}(x; \mu = 0, \sigma^2 = 1)$





• Multivariate Gaussians:

$$\boldsymbol{x} = [x_1, \dots, x_D]^T$$

$$\sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu} = \boldsymbol{0}_D, \boldsymbol{\Sigma} = \boldsymbol{I}_D)$$

Gaussian Process (GP)

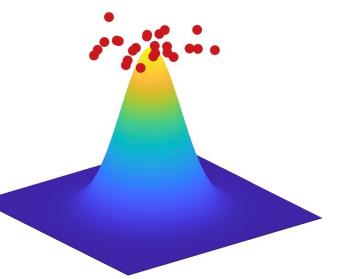
$$f: \mathbb{R}^{p} \mapsto \mathbb{R} \sim \mathcal{GP}(f; \mu(x)), \Sigma(x, x')$$
--Nean =±2 Standard Deviations

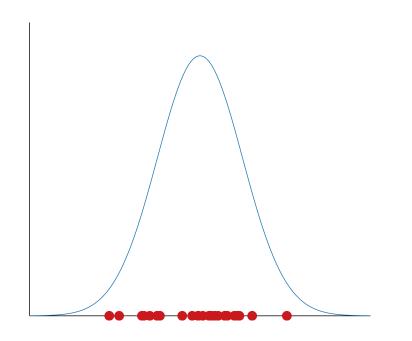
 $f \sim \mathcal{GP}(\mu, \Sigma) \to f(x) \sim \mathcal{N}(\mu(x), \Sigma(x, x))$

Gaussians

• (Univariate) Gaussians:

 $x \sim \mathcal{N}(x; \mu = 0, \sigma^2 = 1)$



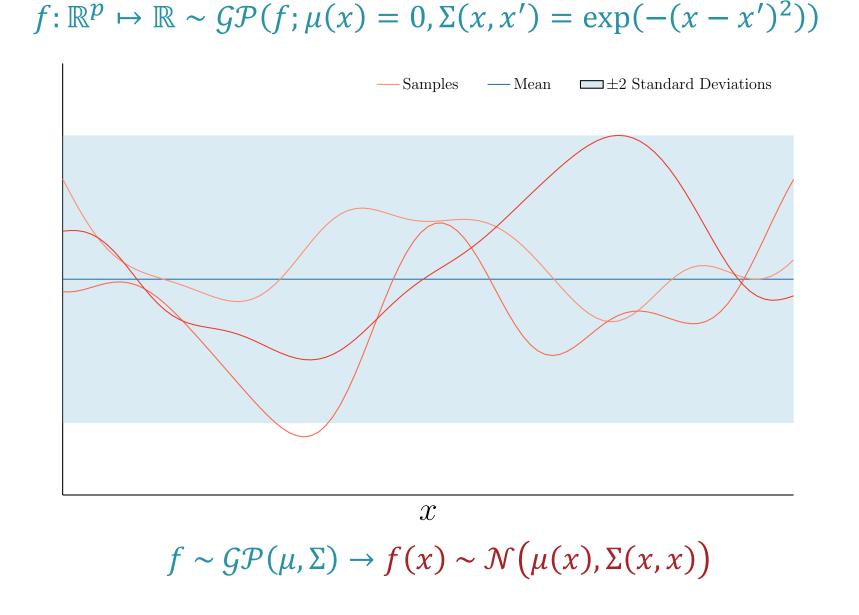


• Multivariate Gaussians:

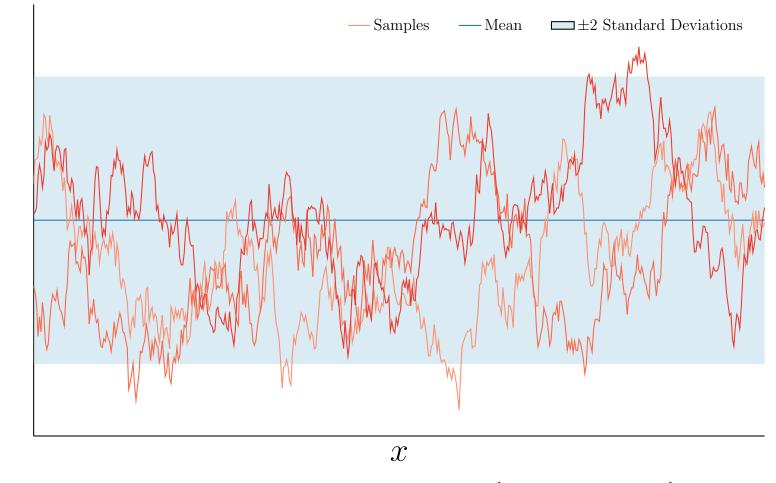
$$\boldsymbol{x} = [x_1, \dots, x_D]^T$$

$$\sim \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu} = \boldsymbol{0}_D, \boldsymbol{\Sigma} = \boldsymbol{I}_D)$$

Gaussian Process (GP)

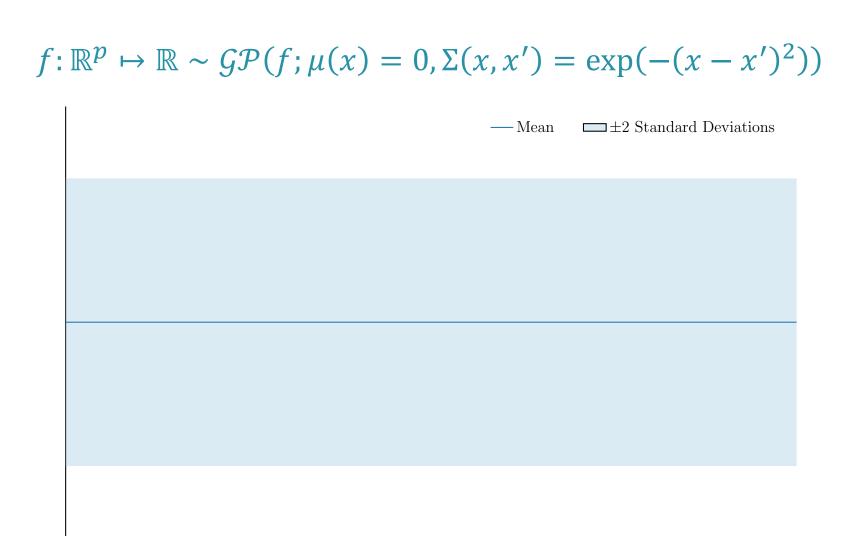


Gaussian Process (GP)



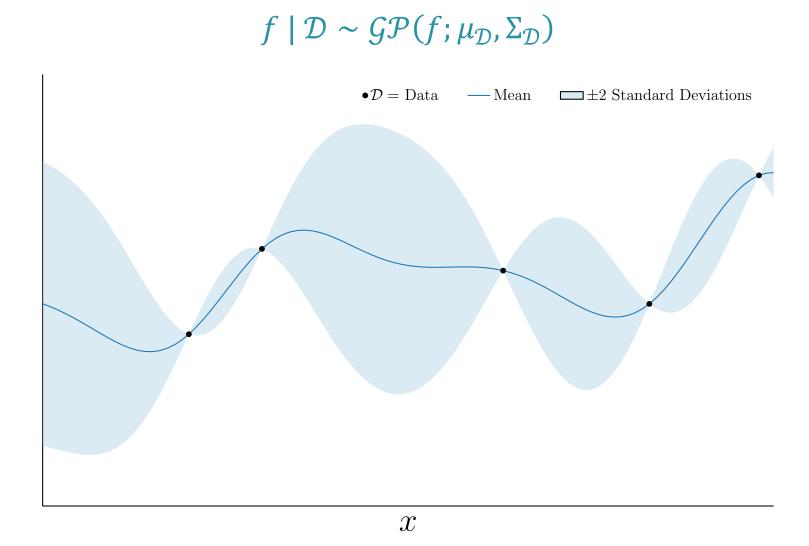
 $f \sim \mathcal{GP}(\mu, \Sigma) \to f(x) \sim \mathcal{N}(\mu(x), \Sigma(x, x))$

GP Prior

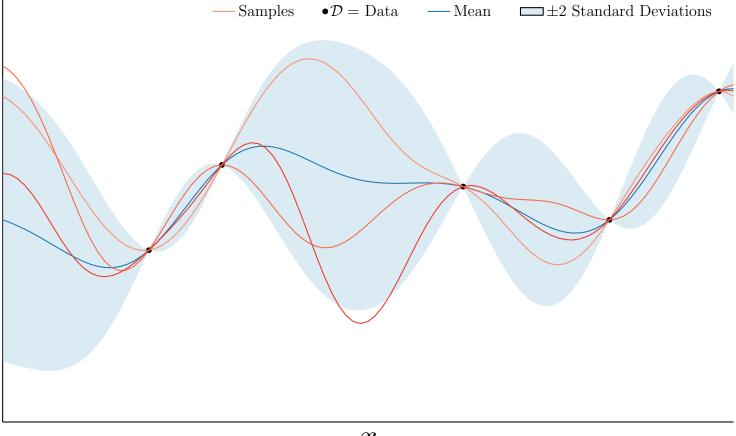


 \mathcal{X}

GP Posterior



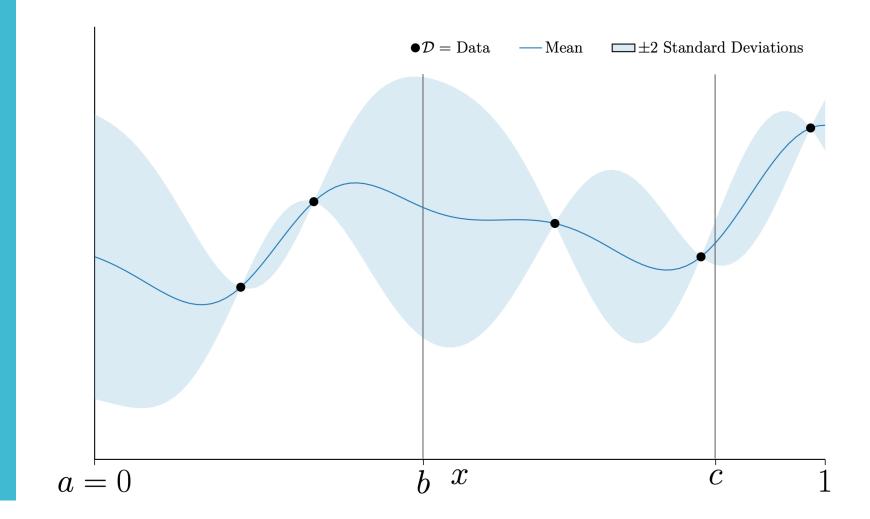
GP Posterior



GP Posterior

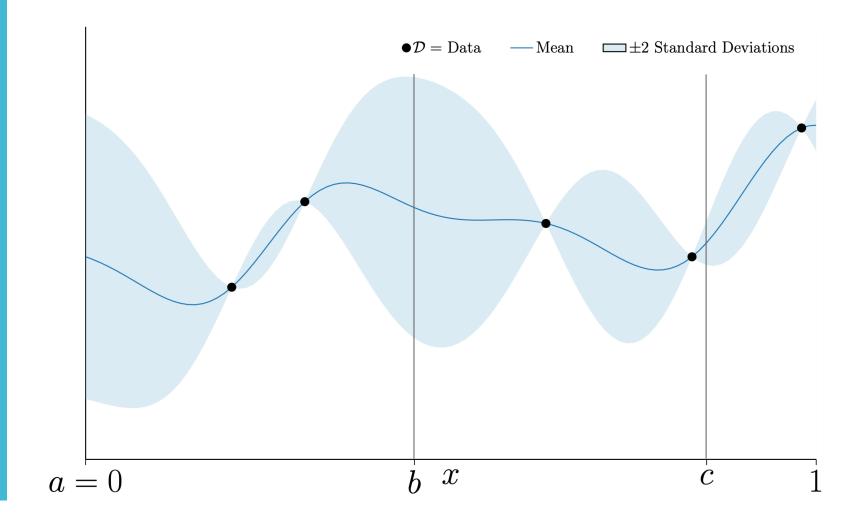


Active Learning



Suppose you can add one data point to your training data.

Which value of x would you add and why?



$$\int e^{-\delta x + \beta - \delta x + \delta x} e^{-\delta x + \delta x$$

Surple
$$v^{p}$$
 has defined between the standard be

Noise

• Assume a linear model with additive Gaussian noise and a zero-mean Gaussian prior on the weights:

 $y = \Phi \omega + \epsilon$ where $\epsilon \sim N(\mathbf{0}_N, \sigma^2 I_N)$ and $\omega \sim N(\mathbf{0}_{D'+1}, \Sigma)$

then given a new test data point \mathbf{x}' , the prediction is $y' \mid \mathbf{y} = \boldsymbol{\phi}(\mathbf{x}')^T \boldsymbol{\omega} \mid \mathbf{y} \sim N(\boldsymbol{\mu}_{PRED}, \boldsymbol{\Sigma}_{PRED})$

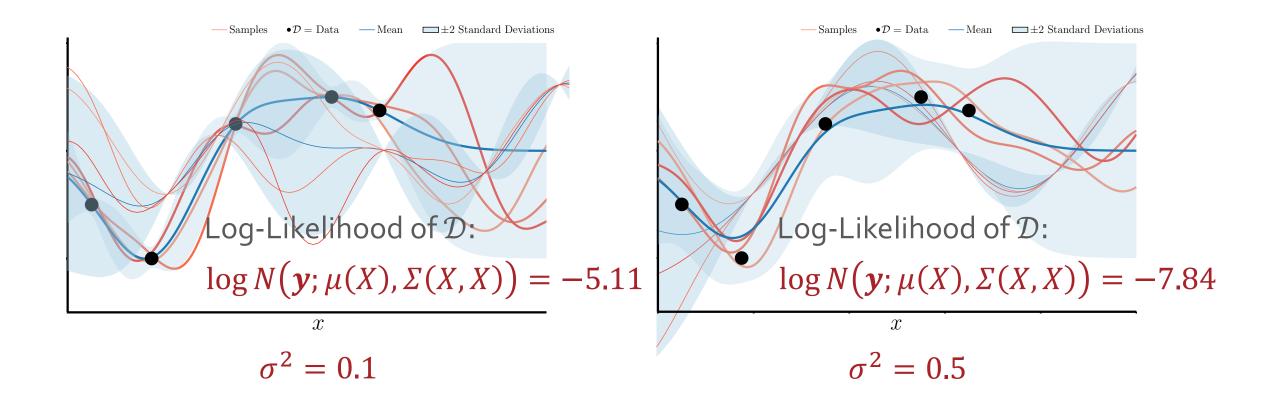
where

 $\boldsymbol{\mu}_{PRED} = K(\boldsymbol{x}', \boldsymbol{X})(K(\boldsymbol{X}, \boldsymbol{X}) + \sigma^2 \boldsymbol{I}_N)^{-1}\boldsymbol{y},$

 $\Sigma_{PRED} = K(\mathbf{x}', \mathbf{x}') - K(\mathbf{x}', \mathbf{X})(K(\mathbf{X}, \mathbf{X}) + \sigma^2 I_N)^{-1} K(\mathbf{X}, \mathbf{x})$

• σ^2 is another hyperparameter we can tune

• $\sigma^2 = 0$ is a noiseless fit: the mean will always pass through the observations exactly; $\sigma^2 > 0$ allows for deviations



Noise