10-701: Introduction to Machine Learning Lecture 3 –KNNs

Henry Chai 1/24/24

Front Matter

- Announcements:
	- · HW1 released 1/24 (toda
	- · Recitations will be held on place as lecture
		- HW1 recitation this Fr
	- · Office hours will start 1/2
- Recommended Readings:
	- Mitchell, Section 8.1 8.2
	- · Daumé III, Chapter 3: Geo

Recall: Decision Tree Prediction - Pseudocode

def $predict(x')$:

- walk from root node to a leaf node while(true):
	- if current node is internal (non-leaf):
		- check the associated attribute, x_d
		- go down branch according to x_d'
	- if current node is a leaf node:
		- return label stored at that leaf

Recall: Decision Tree Learning - Pseudocode

def $train(D)$: store root = tree recurse(D) def tree_recurse (D') : $q = new node()$ base case – if (SOME CONDITION): recursion – else: find best attribute to split on, x_d q.split = x_d for v in $V(x_d)$, all possible values of x_d : $\mathcal{D}_{v} = \left\{ (x^{(n)}, y^{(n)}) \in \mathcal{D}' \mid x_{d}^{(n)} = v \right\}$ q.children(v) = tree recurse(\mathcal{D}_v) return q Recall: Decision Tree Learning - Pseudocode

def train (D) : store root = tree recurse(D) def tree_recurse (D') : $q = new node()$ base case - if $(D'$ is empty OR all labels in \mathcal{D}' are the same OR all features in \mathcal{D}' are identical OR some other stopping criterion): q.label = majority_vote(\mathcal{D}')

recursion – else:

How is **Henry** Getting to Work?

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
	- Try to find the **shortest** tree that achieves
	- **zero training error** with

high mutual information features at the top

 Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

Decision Trees: Pros & Cons

• Pros

- · Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features

Cons

Real -Valued Features: Example $x =$ Outside Temperature (°F)

Real -Valued Features: Example $x =$ Outside Temperature (°F)

Real -Valued Features: Example $x =$ Outside Temperature (°F)

Real-Valued Features: Example $x =$ Outside Temperature (℉)

Decision Trees: Pros & Cons

• Pros

- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features
- Cons
	- Learned greedily: each split only considers the immediate impact on the splitting criterion
		- Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
	- Liable to overfit!

Overfitting

- Overfitting occurs when the classifier (or model)…
	- **· is too complex**
	- \cdot fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
	- doesn't have enough inductive bias pushing it to generalize (e.g., memorizer)
- Underfitting occurs when the classifier (or model)…
	- is too simple
	- can't capture the actual pattern of interest in the training dataset
	- has too much inductive bias (e.g., majority vote)

Different Kinds of Error

- Training error rate = $err(h, D_{train})$
- Test error rate = $err(h, D_{test})$
- True error rate = $err(h)$
	- = the error rate of h on all possible examples
	- In machine learning, this is the quantity that we care about but, in most cases, it is unknowable.

Overfitting occurs when $err(h) > err(h, D_{train})$ • $err(h) - err(h, D_{train})$ can be thought of as a measure of overfitting

This tree only misclassifies one training data point!

Overfitting in Decision Trees

Combatting Overfitting in Decision Trees

- Intuition: deeper trees are "more complicated" and thus more liable to overfit
- · Heuristics:
	- \cdot Do not split leaves past a fixed depth, δ
	- \cdot Do not split leaves with fewer than c data points
	- Do not split leaves where the maximal information gain is less than τ
- Take a majority vote in impure leaves

Combatting Overfitting in Decision Trees

- Reduced Error Pruning:
	- 1. Learn a decision tree
	- 2. Evaluate each split using a "validation" dataset by comparing the validation error rate with and without that split
	- 3. Greedily remove the split that most decreases the validation error rate
		- Break ties in favor of smaller trees
	- 4. Stop if no split is removed

x_1	x_2	x_3	x_4	y	
Rain	During	Backpack	Tired	Bus	
2 val	Rain	After	Both	NotTired	Bus
2 val	No Rain	Before	Backpack	NotTired	Bus
2 $err(h - s_1, D_{val})$	No Rain	During	Lunchbox	Tired	Dirive
No Rain	After	Lunchbox	Tired	Dirive	

x_1	x_2	x_3	x_4	y	
Rain	During	Backpack	Tired	Bus	
D_{val}	Rain	After	Both	NotTired	Bus
$err(h - s_1, D_{val}) = 0.4$	No Rain	During	Lunchbox	Tired	Dirive
No Rain	After	Lunchbox	Tired	Dirive	

Pruning Decision Trees

Key Takeaways

- Decision tree prediction algorithm
- Decision tree learning algorithm via recursion
- Inductive bias of decision trees
- Overfitting vs. Underfitting
- How to combat overfitting in decision trees

Real-valued Features

Fisher Iris Dataset

Fisher (1936) used 150 meas from 3 different species: Iris (1), Iris versicolor (2) collecte

Fisher Iris Dataset

Fisher (1936) used 150 meas from 3 different species: Iris (1), Iris versicolor (2) collecte

Fisher Iris Dataset

The Free Encyclopedia

Main page **Contents**

Featured content Current events

Random article

Article Talk

Duck test

From Wikipedia, the free encyclopedia

For the use of "the duck test" within the Wikiped

The duck test is a form of abductive reasoning. Thi

If it looks like a duck, swims like a duck, and

The Duck Test

The Duck Test for Machine **Learning**

- Classify a point as the label of the "most similar" training point
- · Idea: given real-valued features, we can use a distance metric to determine how similar two data points are
- A common choice is Euclidean distance:

$$
d(x, x') = ||x - x'||_2 = \sqrt{\sum_{d=1}^{D} (x_d - x'_d)^2}
$$

An alternative is the Manhattan distance:

$$
d(x, x') = ||x - x'||_1 = \sum_{d=1}^{D} |x_d - x'_d|
$$

Nearest Neighbor Model

- Classify a point as the label of the "most similar" training point
- Given a training dataset $\mathcal{D}_{train} = \{ (\mathbf{x}^{(n)}, y^{(n)}) \}$ $n=1$ \overline{N} Let $\hat{\iota}(\boldsymbol{x}') = \operatorname{argmin}$ $i \in \{1,...,N\}$ $d\big(\pmb{\chi}^{(i)}, \pmb{\chi}^\prime$

• Then the nearest neighbor classifier can be written as $h(x') = y$ $\hat{\imath} (\vec{x}')$

Nearest Neighbor: Example

Nearest Neighbor: Example

Nearest Neighbor: Example

The Nearest Neighbor Model

Requires no training!

- Always has zero training error!
	- *A data point is always its own nearest neighbor*

 $\ddot{\bullet}$

Always has zero training error…

Generalization of Nearest Neighbor (Cover and Hart, 1967)

- Claim: under certain condition probability, the true error rate model ≤ 2 $*$ the Bayes error
- Proof:
	- Assume a binary classifica
	- · Assume data points are d some probability distribut
	- \cdot Assume labels are *stochas*
	- Assume $\pi(\pmb{x})$ is continuous

 $\chi^{(1)(X)}$

 $\Rightarrow \pi$

 A s N

Generalization of Nearest Neighbor (Cover and Hart, 1967)

- Claim: under certain condition probability, the true error rate model ≤ 2 * the Bayes error
- Proof (cont.): $err(h) = P(h(x))$ $=$ $P(h(x') = c$ \int , \int $\ddot{}$ $1 - 1$ $\frac{1}{1}$ $\overline{1}$ $\overline{2}$ $\overline{$

 \leq 7

Generalization of Nearest **Neighbor** (Cover and Hart, 1967)

- Claim: under certain condition probability, the true error rate model ≤ 2 * the Bayes error
- · Interpretation: "In this sense, classification information in a contained in the nearest neigh

But why limit ourselves to just one neighbor?

- Claim: under certain condition probability, the true error rate model ≤ 2 * the Bayes error
- · Interpretation: "In this sense, classification information in a contained in the nearest neigh

-Nearest **Neighbors** (kNN)

- Classify a point as the most common label among the labels of the k nearest training points
- \cdot Tie-breaking (in case of even k and/or more than 2 classes) - look of the next nearest meighbor $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ μ_{α} and μ_{α} Henry Chai - 1/24/24 **53**

3-Class classification ($k = 2$, weights = 'uniform')

 $3 - Class classification (k = 3, weights = 'uniform')$

3-Class classification ($k = 5$, weights = 'uniform')

3-Class classification ($k = 10$, weights = 'uniform')

3-Class classification ($k = 20$, weights = 'uniform')

3-Class classification ($k = 30$, weights = 'uniform')

3-Class classification ($k = 100$, weights = 'uniform')

3-Class classification ($k = 120$, weights = 'uniform')

3-Class classification ($k = 150$, weights = 'uniform') $5.0 4.5 4.0 \bullet$ $3.5 3.0 2.5 2.0 1.5 1.0$ $\overline{5}$ 6 $\overline{7}$ $\,8\,$ $\overline{4}$

kNN : Inductive Bias

- \cdot What is the inductive bias of a kNN model that uses the Euclidean distance metric?
- Similar points should have similar labels and *all features are equivalently important for determining similarity*

Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- may *overfit*
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data
	- may *underfit*
- \cdot k controls the complexity of the hypothesis set \Longrightarrow k affects how well the learned hypothesis will generalize