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Front Matter

� Announcements: 

� HW1 released 1/24 (today!), due 2/2 at 11:59 PM 

� Recitations will be held on Fridays, at the same time and 
place as lecture

� HW1 recitation this Friday (1/26)

� Office hours will start 1/24 (today!)

� Recommended Readings:

� Mitchell, Section 8.1 – 8.2: 𝑘-Nearest Neighbor Learning

� Daumé III, Chapter 3: Geometry and Nearest Neighbors
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http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
http://ciml.info/dl/v0_99/ciml-v0_99-ch03.pdf


Recall:
Decision Tree 
Prediction -
Pseudocode
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def predict(𝒙!):

- walk from root node to a leaf node

while(true):

if current node is internal (non-leaf):

check the associated attribute, 𝑥"
go down branch according to 𝑥"!

if current node is a leaf node: 

return label stored at that leaf
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Recall:
Decision Tree 
Learning -
Pseudocode
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def train(𝒟):

store root = tree_recurse(𝒟)

def tree_recurse(𝒟!):

q = new node()

base case – if (SOME CONDITION):

recursion – else:

find best attribute to split on, 𝑥"
q.split = 𝑥"
for 𝑣 in 𝑉 𝑥" , all possible values of 𝑥":

𝒟# = 𝑥 $ , 𝑦 $ ∈ 𝒟! | 𝑥"
$ = 𝑣

q.children(𝑣) = tree_recurse(𝒟#)

return q
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Recall:
Decision Tree 
Learning -
Pseudocode
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def train(𝒟):

   store root = tree_recurse(𝒟)

def tree_recurse(𝒟!):

   q = new node()

   base case – if (𝒟!	 is empty OR

 all labels in 𝒟! are the same OR

 all features in 𝒟! are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟!)

  

   recursion – else:

   return q
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How is 
Henry 
Getting to 
Work?

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain Before Both Tired Drive

Rain During Both Not Tired Bus

Rain During Both Tired Drive

Rain After Backpack Not Tired Bus

Rain After Backpack Tired Bus

Rain After Lunchbox Tired Drive

No Rain Before Backpack Tired Bike

No Rain Before Lunchbox Not Tired Bus

No Rain Before Lunchbox Tired Drive

No Rain During Backpack Not Tired Bus

No Rain During Both Tired Drive

No Rain After Backpack Not Tired Bike

No Rain After Backpack Tired Bike

No Rain After Both Not Tired Bus

No Rain After Both Tired Drive

No Rain After Lunchbox Not Tired Bus
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𝒙𝟒

𝒙𝟑 𝒙𝟑

DriveBus 𝒙𝟏𝒙𝟏

Bike BusBus𝒙𝟐

Bike Bus

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After
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Decision 
Trees:
Inductive Bias

� The inductive bias of a machine learning algorithm is 

the principal by which it generalizes to unseen examples

� What is the inductive bias of the ID3 algorithm i.e., 
decision tree learning with mutual information 

maximization as the splitting criterion?

� Try to find the shortest tree that achieves  
zero training error with 
high mutual information features at the top 

� Occam’s razor: try to find the “simplest” (e.g., smallest 
decision tree) classifier that explains the training dataset  
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Decision 
Trees:
Pros & Cons

� Pros

� Interpretable

� Efficient (computational cost and storage)

� Can be used for classification and regression tasks

� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion

� Not guaranteed to find the smallest (fewest number 
of splits) tree that achieves a training error rate of 0. 

� Liable to overfit!
Henry Chai - 1/24/24 9



𝑥 < 38.5

Henry Chai - 1/24/24

𝒙 𝒚

74 Drive

55 Metro

63 Bike

33 Drive

80 Drive

81 Drive

44 Metro

45 Metro

78 Drive

51 Metro

𝒙 𝒚

33 Drive

44 Metro

45 Metro

51 Metro

55 Metro

63 Bike

74 Drive

78 Drive

80 Drive

81 Drive

Real-Valued 
Features: 
Example -
𝑥 =Outside
Temperature (℉) 
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𝑥 < 44.5
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Real-Valued 
Features: 
Example -
𝑥 =Outside
Temperature (℉) 

𝒙 𝒚

74 Drive

55 Metro

63 Bike

33 Drive

80 Drive

81 Drive

44 Metro

45 Metro

78 Drive

51 Metro

𝒙 𝒚

33 Drive

44 Metro

45 Metro

51 Metro

55 Metro

63 Bike

74 Drive

78 Drive

80 Drive

81 Drive
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𝒙 𝒚

74 Drive

55 Metro

63 Bike

33 Drive

80 Drive

81 Drive

44 Metro

45 Metro

78 Drive

51 Metro

𝒙 𝒚

33 Drive

44 Metro

45 Metro

51 Metro

55 Metro

63 Bike

74 Drive

78 Drive

80 Drive

81 Drive 𝑥
𝑥 ≥ 59𝑥 < 59
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Real-Valued 
Features: 
Example -
𝑥 =Outside
Temperature (℉) 
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𝒙 𝒚

74 Drive

55 Metro

63 Bike

33 Drive

80 Drive

81 Drive

44 Metro

45 Metro

78 Drive

51 Metro

𝒙 𝒚

33 Drive

44 Metro

45 Metro

51 Metro

55 Metro

63 Bike

74 Drive

78 Drive

80 Drive

81 Drive 𝑥
𝑥 ≥ 59𝑥 < 59

𝑥
𝑥 ≥ 38.5𝑥 < 38.5

𝑥
𝑥 ≥ 68.5𝑥 < 68.5

Drive BikeMetro Drive

Henry Chai - 1/24/24

Real-Valued 
Features: 
Example -
𝑥 =Outside
Temperature (℉) 

13



Decision 
Trees:
Pros & Cons

� Pros

� Interpretable

� Efficient (computational cost and storage)

� Can be used for classification and regression tasks

� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion

� Not guaranteed to find the smallest (fewest number 
of splits) tree that achieves a training error rate of 0. 

� Liable to overfit!
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Overfitting

� Overfitting occurs when the classifier (or model)…

� is too complex

� fits noise or “outliers” in the training dataset as 
opposed to the actual pattern of interest

� doesn’t have enough inductive bias pushing it to 
generalize (e.g., memorizer)

� Underfitting occurs when the classifier (or model)…

� is too simple

� can’t capture the actual pattern of interest in the 
training dataset

� has too much inductive bias (e.g., majority vote)
Henry Chai - 1/24/24 15



Different Kinds 
of Error

� Training error rate = 𝑒𝑟𝑟 ℎ, 𝒟)*+,$

� Test error rate = 𝑒𝑟𝑟 ℎ, 𝒟)-.)

� True error rate = 𝑒𝑟𝑟 ℎ
True error rate = the error rate of ℎ on all possible examples

� In machine learning, this is the quantity that we care 
about but, in most cases, it is unknowable.

� Overfitting occurs when 𝑒𝑟𝑟 ℎ > 𝑒𝑟𝑟 ℎ,𝒟)*+,$
� 𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟 ℎ,𝒟)*+,$ can be thought of as a 

measure of overfitting
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𝒙𝟒

𝒙𝟑 𝒙𝟑

DriveBus 𝒙𝟏𝒙𝟏

Bike BusBus𝒙𝟐

Bike Bus

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After
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𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike Bus

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

Henry Chai - 1/24/24

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Both Not Tired Bus

Rain After Backpack Not Tired Bus

No Rain Before Lunchbox Not Tired Bus

No Rain During Backpack Not Tired Bus

No Rain After Backpack Not Tired Bike

No Rain After Both Not Tired Bus

No Rain After Lunchbox Not Tired Bus
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𝒙𝟒

𝒙𝟑

Drive

Bus

𝒙𝟏

Bike Bus

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

This tree only misclassifies one training data point!
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Overfitting in 
Decision Trees

Henry Chai - 1/24/24 Figure courtesy of Tom Mitchell 20



Combatting
Overfitting in 
Decision Trees

� Intuition: deeper trees are “more complicated” and 

thus more liable to overfit

� Heuristics:

� Do not split leaves past a fixed depth, 𝛿

� Do not split leaves with fewer than 𝑐 data points

� Do not split leaves where the maximal information 
gain is less than 𝜏

� Take a majority vote in impure leaves

Henry Chai - 1/24/24 21



Combatting
Overfitting in 
Decision Trees

� Reduced Error Pruning:

1. Learn a decision tree

2. Evaluate each split using a “validation” dataset by 
comparing the validation error rate with and 

without that split

3. Greedily remove the split that most decreases the 
validation error rate

� Break ties in favor of smaller trees

4. Stop if no split is removed

Henry Chai - 1/24/24 22



𝒙𝟒

𝒙𝟑 𝒙𝟑

DriveBus 𝒙𝟏𝒙𝟏

Bike BusBus𝒙𝟐

Bike Bus

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟#+/ =
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive
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𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5
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Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ, 𝒟#+/  = 0.2
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𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠0
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Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠0, 𝒟#+/  = 0.2
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𝒟#+/ =

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝑠0

Henry Chai - 1/24/24

𝑒𝑟𝑟 ℎ − 𝑠0, 𝒟#+/  = 0.2
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𝒟#+/ =

Bus
𝑠0

Henry Chai - 1/24/24

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠0, 𝒟#+/  = 0.4
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𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠4
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

Bus

BusBus

Bus

𝑒𝑟𝑟 ℎ − 𝑠4, 𝒟#+/  = 0.2
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𝒙𝟒

𝒙𝟑

𝒙𝟏

𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠4
Drive
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Bus

Bus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠4, 𝒟#+/  = 0.2
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𝒙𝟒

𝒙𝟑

𝒙𝟏

𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠4
Drive
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Bus

Bus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ − 𝑠4, 𝒟#+/  = 0.4
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𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 𝒔𝟔

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.4 0.4 0 0 0.2
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Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive
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𝒙𝟒

𝒙𝟑 𝒙𝟑

Drive𝒙𝟏𝒙𝟏

Bike𝒙𝟐

Bike

TiredNot Tired

Both, LunchboxBackpackBoth, LunchboxBackpack

RainNo RainRainNo Rain

DuringBefore, After

𝒟#+/ =

𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5
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Bus

BusBus

Bus
𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 𝒔𝟔

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.4 0.4 0 0 0.2
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𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

𝒟#+/ =

Henry Chai - 1/24/24

Bus

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive𝑒𝑟𝑟 ℎ, 𝒟#+/  = 0
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𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

𝒟#+/ =

𝑠0

𝑠4

𝑠5
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Bus

Bus

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

Rain During Backpack Tired Bus

Rain After Both Not Tired Bus

No Rain Before Backpack Not Tired Bus

No Rain During Lunchbox Tired Drive

No Rain After Lunchbox Tired Drive

𝒔 𝒔𝟏 𝒔𝟐 𝒔𝟑

𝑒𝑟𝑟 ℎ − 𝑠, 𝒟'() 0.4 0.2 0.2
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𝒙𝟒

𝒙𝟑

Drive𝒙𝟏

Bike Bus

TiredNot Tired

Both, LunchboxBackpack

RainNo Rain

Bus
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Pruning
Decision Trees

Henry Chai - 1/24/24 Figure courtesy of Tom Mitchell 36



Key Takeaways

� Decision tree prediction algorithm

� Decision tree learning algorithm via recursion 

� Inductive bias of decision trees

� Overfitting vs. Underfitting 

� How to combat overfitting in decision trees

Henry Chai - 1/24/24 37



petal

Real-valued 
Features

Henry Chai - 1/24/24 38

petal

sepal



Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris virginica 
(1), Iris versicolor (2) collected by Anderson (1936)

39

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  Henry Chai - 1/24/24
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris virginica 
(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  Henry Chai - 1/24/24

https://en.wikipedia.org/wiki/Iris_flower_data_set


sepal width
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𝑦	 = 	1

Fisher Iris 
Dataset

Figure courtesy of Matt GormleyHenry Chai - 1/24/24 41



The Duck Test
Henry Chai - 1/24/24 42Source: https://en.wikipedia.org/wiki/Duck_test 

https://en.wikipedia.org/wiki/Duck_test


The Duck Test 
for Machine 
Learning

� Classify a point as the label of the “most similar” 

training point

� Idea: given real-valued features, we can use a distance 
metric to determine how similar two data points are

� A common choice is Euclidean distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙! 4 = C
";0

<

𝑥" − 𝑥"! 4

� An alternative is the Manhattan distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙! 0 = C
";0

<

𝑥" − 𝑥"!

Henry Chai - 1/24/24 43



Nearest 
Neighbor 
Model

Henry Chai - 1/24/24 44

� Classify a point as the label of the “most similar” 

training point

� Given a training dataset 𝒟)*+,$ = 𝒙 $ , 𝑦 $
$;0
=

Let	 ̂𝚤 𝒙′ = argmin
,	∈ 0,…,=

𝑑 𝒙 , , 𝒙!

� Then the nearest neighbor classifier can be written as

ℎ 𝒙! = 𝑦 B̂ 𝒙/



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-
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Nearest 
Neighbor: 
Example



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-
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Nearest 
Neighbor: 
Example



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
-

--

-
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Nearest 
Neighbor: 
Example



The Nearest 
Neighbor 
Model

� Requires no training!

� Always has zero training error! 

� A data point is always its own nearest neighbor

⋮

� Always has zero training error…

Henry Chai - 1/24/24 48



Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)

Henry Chai - 1/24/24 49Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 

� Claim: under certain conditions, as 𝑛 → ∞, with high 

probability, the true error rate of the nearest neighbor 
model ≤ 2	 ∗ the Bayes error rate (the optimal classifier)

� Proof: 

� Assume a binary classification problem: 𝒴 = 1, 0

� Assume data points are drawn independently from 

some probability distribution 

� Assume labels are stochastic: let 𝜋 𝒙 = 𝑃 𝑦 = 1 𝒙

� Assume 𝜋 𝒙  is continuous 

� As 𝑁 → ∞, 𝒙 B̂ 𝒙/ → 𝒙! ⟹ 𝜋 𝒙 B̂ 𝒙/ → 𝜋 𝒙!  

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964


Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)

� Claim: under certain conditions, as 𝑛 → ∞, with high 

probability, the true error rate of the nearest neighbor 
model ≤ 2 ∗ the Bayes error rate (the optimal classifier)

� Proof (cont.): 

� 𝑒𝑟𝑟 ℎ = 𝔼D/ 𝟙 ℎ 𝒙! ≠ 𝑦! = 𝑃 ℎ 𝒙! ≠ 𝑦!

� 𝑒𝑟𝑟 ℎ = 𝑃 ℎ 𝒙! = 1, 𝑦′ = 0 + 𝑃 ℎ 𝒙! = 0, 𝑦′ = 1

� 𝑒𝑟𝑟 ℎ = 𝜋 𝒙 B̂ 𝒙/ 1 − 𝜋 𝒙! + 1 − 𝜋 𝒙 B̂ 𝒙/ 𝜋 𝒙!

� 𝑒𝑟𝑟 ℎ → 𝜋 𝒙! 1 − 𝜋 𝒙! + 1 − 𝜋 𝒙! 𝜋 𝒙!

� 𝑒𝑟𝑟 ℎ = 2𝜋 𝒙! 1 − 𝜋 𝒙!

� 𝑒𝑟𝑟 ℎ ≤ 2min 𝜋 𝒙! , 1 − 𝜋 𝒙! = 2𝑒𝑟𝑟 ℎ∗ ∎
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Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)
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� Claim: under certain conditions, as 𝑛 → ∞, with high 
probability, the true error rate of the nearest neighbor 
model ≤ 2	 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 
contained in the nearest neighbor.”

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964


But why limit 
ourselves to 
just one 
neighbor?
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� Claim: under certain conditions, as 𝑛 → ∞, with high 
probability, the true error rate of the nearest neighbor 
model ≤ 2	 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 
contained in the nearest neighbor.”

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964


𝑘-Nearest 
Neighbors 
(𝑘NN)

� Classify a point as the most common label among the 

labels of the 𝑘 nearest training points

� Tie-breaking (in case of even 𝑘 and/or more than 2 classes) 

� Weight votes by distance

� Remove furthest neighbor

� Add next closest neighbor

� Use a different distance metric
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𝑘NN on 
Fisher Iris 
Data
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� What is the inductive bias of a 𝑘NN model that uses the 
Euclidean distance metric?

� Similar points should have similar labels and all features 
are equivalently important for determining similarity

� Feature scale can dramatically influence results!

𝑘NN: 
Inductive Bias
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Setting 𝑘

� When 𝑘 = 1:

� many, complicated decision boundaries 

� may overfit

� When 𝑘 = 𝑁:

� no decision boundaries; always predicts the most 
common label in the training data 

� may underfit

� 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘
affects how well the learned hypothesis will generalize
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