10-701: Introduction to Machine Learning Lecture 4 – Linear Regression

Henry Chai

1/29/24

Front Matter

- Announcements:
	- · HW1 released 1/24, due 2
- Recommended Readings:
	- Murphy, Sections 7.1-7.3

Recall: -Nearest **Neighbors** (kNN)

 Classify a point as the most common label among the labels of the k nearest training points

- \cdot Tie-breaking (in case of even k and/or more than 2 classes)
	- Weight votes by distance
	- **· Remove furthest neighbor**
	- Add next closest neighbor
	- Use a different distance metric

kNN on Fisher Iris Data

3-Class classification ($k = 1$, weights = 'uniform')

kNN on Fisher Iris Data

3-Class classification ($k = 50$, weights = 'uniform')

k NN on Fisher Iris Data

3-Class classification ($k = 150$, weights = 'uniform')

Setting k

- \cdot When $k = 1$:
	- many, complicated decision boundaries
	- may *overfit*
- \cdot When $k = N$:
	- no decision boundaries; always predicts the most common label in the training data
	- may *underfit*
- \cdot k controls the complexity of the hypothesis set \Longrightarrow k affects how well the learned hypothesis will generalize

Setting k

- Theorem:
	- \cdot If k is some function of N s.t. $k(N) \rightarrow \infty$ and $\frac{k(N)}{N}$ \overline{N} $\rightarrow 0$ as $N \to \infty$...
	- … then (under certain assumptions) the true error of a kNN model \rightarrow the Bayes error rate
- · Heuristics:
	- $\cdot k=|\sqrt{N}|$
	- $\cdot k = 3$
- This is fundamentally a question of **model selection**: each value of k corresponds to a different "model"

Model Selection

- A **model** is a (typically infinite) set of classifiers that a learning algorithm searches through to find the best one (the "hypothesis space")
- **Model parameters** are the numeric values or structure that are selected by the learning algorithm
- **Hyperparameters** are the tunable aspects of the model that are not selected by the learning algorithm

Example: Decision Trees

- Model = set of all possible trees, potentially narrowed down according to the hyperparameters (see below)
- Model parameters = structure of a specific tree e.g., splits, split order, predictions at leaf nodes,
- Hyperparameters = splitting criterion, max depth, tie -breaking procedures, etc …

Model Selection

- A **model** is a (typically infinite) set of classifiers that a learning algorithm searches through to find the best one (the "hypothesis space")
- **Model parameters** are the numeric values or structure that are selected by the learning algorithm
- **Hyperparameters** are the tunable aspects of the model that are not selected by the learning algorithm

Example: kNN

• Model = set of all possible nearest neighbors classifiers

 Model parameters = none! kNN is a "nonparametric model"

• Hyperparameters = k

Model **Selection** with Test Sets

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using D_{test} and choose the one with lowest test error:

> $\widehat{m} = \text{ argmin_err}(h_m, \mathcal{D}_{test})$ $m \in \{1,...,M\}$

Model **Selection** with Test Sets? Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

 $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \ldots, h_M \in \mathcal{H}_M$

Evaluate each one using D_{test} and choose the one with lowest test error:

> $\widehat{m} = \text{ argmin_err}(h_m, \mathcal{D}_{test})$ $m \in \{1,...,M\}$

Is $err(h_{\hat{m}}, D_{test})$ a good estimate of $err(h_{\hat{m}})$?

Model **Selection** with Validation Sets Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models: $\mathcal{H}_1, \mathcal{H}_2, ..., \mathcal{H}_M$

• Learn a classifier from each model using only \mathcal{D}_{train} : $h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$

Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

> $\widehat{m} = \arg\!\min\left[err(h_m, \mathcal{D}_{val}\right]$ $m \in \{1,...,M\}$

• Now $err(h_{\hat{m}}, D_{test})$ is a good estimate of $err(h_{\hat{m}})$!

Hyperparameter **Optimization** with Validation Sets

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings: $\theta_1, \theta_2, ..., \theta_M$

- Learn a classifier for each setting using only \mathcal{D}_{train} : $h_1, h_2, ..., h_M$
- Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\widehat{m} = \argmin_err(h_m, D_{val})$ $m \in \{1,...,M\}$

• Now $err(h_{\hat{m}}, \mathcal{D}_{test})$ is a good estimate of $err(h_{\hat{m}})$!

Pro tip: train your final model using *both* training and validation datasets

Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings: $\theta_1, \theta_2, ..., \theta_M$

- Learn a classifier for each setting using only D_{train} : $h_1, h_2, ..., h_M$
- Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

 $\widehat{m} = \text{ argmin}_{\ell} err(h_m, \mathcal{D}_{val})$ $m \in \{1,...,M\}$

• Train a new model on \mathcal{D}_{train} U \mathcal{D}_{val} using $\theta_{\widehat{m}}$, $h^+_{\widehat{m}}$

 $err(h_{\hat{m}}^{+}, \mathcal{D}_{test})$ is still a good estimate of $err(h_{\hat{m}}^{+})!$

Setting k for kNN with Validation Sets

k NN train and validation errors on Fisher Iris data

How should we partition our dataset?

Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

• Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$

Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
	- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

• Given D , split D into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$

Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

- Given $\mathcal D$, split $\mathcal D$ into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $D_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, D_i)$
- \cdot The K-fold cross validation error is

$$
err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i
$$

• Special case when $K = N$: Leave-one-out cross-validation

• Choosing between m candidates requires training mK times

Summary

Key Takeaways

- Real-valued features and decision boundaries
- Nearest neighbor model and generalization guarantees
- \cdot kNN "training" and prediction
- **Effect of** k **on model complexity**
- \cdot kNN inductive bias
- Differences between training, validation and test datasets in the model selection process
- Cross-validation for model selection
- Relationship between training, hyperparameter optimization and model selection

Recall: Regression

Decision Tree Regression

Learning to diagnose heart disease

1-NN Regression • Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$

Linear Regression • Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\boldsymbol{x} = [x_1, ..., x_D]^T \in \mathbb{R}^D$

Assume

$$
y = \boldsymbol{w}^T \boldsymbol{x} + w_0
$$

Linear Regression • Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\boldsymbol{x} = [1, x_1, ..., x_D]^T \in \mathbb{R}^{D+1}$

Assume

 $v = w^T x$

• Notation: given training data $\mathcal{D} = \{(\boldsymbol{x}^{(n)}, y^{(n)})\}$ $n=1$ \overline{N} \cdot X = 1 $x^{(1)}$ ^T 1 $x^{(2)}$ ^T $\ddot{\bullet}$ 1 $\boldsymbol{x}^{(N)}^T$ = 1 $x_1^{(1)}$... $x_D^{(1)}$ 1 $x_1^{(2)}$... $x_D^{(2)}$ \ddotsc \ddotsc \ddotsc 1 $x_1^{(N)}$ … $x_D^{(N)}$ $\in \mathbb{R}^{N \times D+1}$ is the *design matrix* $\boldsymbol{y} = \left[y^{(1)}, ..., y^{(N)} \right]^T \in \mathbb{R}^N$ is the *target vector*

General Recipe for Machine **Learning**

1. Define a model and model parameters

2. Write down an objective function

3. Optimize the objective w.r.t. the model parameters

Recipe for Linear Regression

- Define a model and model parameters
	- 1. Assume $y = w^T x$
	- 2. Parameters: $w = [w_0, w_1, ..., w_D]$
- 2. Write down an objective function 1. Minimize the mean squared error $\ell_{\mathcal{D}}(w) =$ 1 $\frac{1}{N}\sum$ $\overline{n=1}$ \overline{N} $w^T x^{(n)} - y^{(n)}$ ²
- 3. Optimize the objective w.r.t. the model parameters
	- 1. Solve in *closed form*: take partial derivatives, set to 0 and solve

Minimizing the Squared Error

$$
\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{(n)} - \mathbf{y}^{(n)})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)}^{T} \mathbf{w} - \mathbf{y}^{(n)})^{2}
$$

$$
= \frac{1}{N} ||X\mathbf{w} - \mathbf{y}||_{2}^{2} \text{ where } ||\mathbf{z}||_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\mathbf{z}^{T} \mathbf{z}}
$$

$$
= \frac{1}{N} (X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y})
$$

$$
= \frac{1}{N} (\mathbf{w}^{T} X^{T} X \mathbf{w} - 2\mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y})
$$

$$
\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\widehat{\mathbf{w}}) = \frac{1}{N} (2X^{T} X \widehat{\mathbf{w}} - 2X^{T} \mathbf{y}) = 0
$$

$$
\rightarrow X^{T} X \widehat{\mathbf{w}} = X^{T} \mathbf{y}
$$

$$
\rightarrow \widehat{\mathbf{w}} = (X^{T} X)^{-1} X^{T} \mathbf{y}
$$

Minimizing the Squared Error

$$
\ell_{\mathcal{D}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{T} \mathbf{x}^{(n)} - \mathbf{y}^{(n)})^{2} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} \mathbf{w} - \mathbf{y}^{(n)})^{2}
$$

$$
= \frac{1}{N} ||X\mathbf{w} - \mathbf{y}||_{2}^{2} \text{ where } ||\mathbf{z}||_{2} = \sqrt{\sum_{d=1}^{D} z_{d}^{2}} = \sqrt{\mathbf{z}^{T} \mathbf{z}}
$$

$$
= \frac{1}{N} (X\mathbf{w} - \mathbf{y})^{T} (X\mathbf{w} - \mathbf{y})
$$

$$
= \frac{1}{N} (\mathbf{w}^{T} X^{T} X \mathbf{w} - 2\mathbf{w}^{T} X^{T} \mathbf{y} + \mathbf{y}^{T} \mathbf{y})
$$

$$
\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\widehat{\mathbf{w}}) = \frac{1}{N} (2X^{T} X \widehat{\mathbf{w}} - 2X^{T} \mathbf{y}) = 0
$$

$$
H_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) = \frac{2}{N} X^{T} X \rightarrow H_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}) \text{ is positive semi-definite}
$$

Closed Form **Solution**

1. Is $X^T X$ invertible? $\widehat{\mathbf{w}} = (X^T X)^{-1} X^T \mathbf{y}$

2. If so, how computationally expensive is inverting $X^T X$?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

Closed Form Solution

$\widehat{\mathbf{W}} = (X^T X)^{-1} X^T \mathbf{y}$

- 1. Is $X^T X$ invertible?
	- When $N \gg D + 1$, X^TX is (almost always) full rank and therefore, invertible
	- If $X^T X$ is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.
- 2. If so, how computationally expensive is inverting $X^T X$?
	- $X^T X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^T X$ takes $O(D^3)$ time...
		- Computing $X^T X$ takes $O(ND^2)$ time
	- What alternative optimization method can we use to minimize the mean squared error?

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

