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* Announcements:

* HW1 released 1/24, due 2/2 at 11:59 PM

Front Matter

- Recommended Readings:

* Murphy, Sections 7.1-7.3
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https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=248

Recall:
k-Nearest

Neighbors
(kKNN)
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* Classify a point as the most common label among the

labels of the k nearest training points
* Tie-breaking (in case of even k and/or more than 2 classes)
- Weight votes by distance
* Remove furthest neighbor
- Add next closest neighbor

* Use a different distance metric



3-Class classification (k = 1, weights = 'uniform')
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3-Class classification (k = 50, weights = 'uniform’)
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3-Class classification (k = 150, weights = 'uniform’)

kNN on

Fisher Iris
Data
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Setting k
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*Whenk = 1:

- many, complicated decision boundaries

* may overfit

*Whenk = N:

* no decision boundaries; always predicts the most

common label in the training data

* may underfit

* k controls the complexity of the hypothesis set = k

affects how well the learned hypothesis will generalize



* Theorem:

k(N)

* If k is some function of N s.t. k(N) — oo and — = 0

as N —» oo ...

* ... then (under certain assumptions) the true error of a

kNN model — the Bayes error rate

Setting k
* Heuristics:
= VA
k=3

* This is fundamentally a question of model selection: each

III

value of k corresponds to a different “mode
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Example: Decision Trees

- A model is a (typically * Model = set of all
infinite) set of classifiers possible trees,
that a learning algorithm potentially narrowed
searches through to find down according to the
the best one (the hyperparameters (see
”hypothesis space”) below)

- Model parameters are * Model parameters =

Model the numeric values or structure of a specific

Selection structure that are tree e.g., splits, split
selected by the learning order, predictions at leaf
algorithm nodes,

* Hyperparameters are * Hyperparameters =
the tunable aspects of splitting criterion, max-
the model that are not depth, tie-breaking
selected by the learning procedures, etc...

algorithm
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Model

Selection
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- A model is a (typically

infinite) set of classifiers
that a learning algorithm
searches through to find
the best one (the
"hypothesis space”)

- Model parameters are

the numeric values or
structure that are
selected by the learning
algorithm

* Hyperparameters are

the tunable aspects of
the model that are not
selected by the learning
algorithm

Example: kNN

* Model = set of all
possible nearest
neighbors classifiers

* Model parameters =
none! kNN is a “non-
parametric model”

* Hyperparameters = k

10



Model
Selection

with
Test Sets
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* Given D = Diygin U Diest, SUpPOSe we have multiple

candidate models:
Hy, Hy, ..., Hy

° Learn a classifier from each model using only D¢y qin:

hl (S Hl,hz S 7’[2, !hM (S }[M

* Evaluate each one using D;,s+ and choose the one with

lowest test error:

M = argmin err (R, Diest)
me{1,...,M}
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Model
Selection

with
Test Sets?
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* Given D = Diygin U Diest, SUpPOSe we have multiple

candidate models:
Hiy, Hs, ..., Hy

° Learn a classifier from each model using only D¢y qin:

hl (S Hl,hz S 7’[2, !hM (S }[M

* Evaluate each one using D;,s+ and choose the one with

lowest test error:

M = argmin err(hy, Diest)
me{1,...,M}

*Is err(his, Diest) a good estimate of err(hs)?
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Model
Selection

with
Validation Sets
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* Given D = Diygin U Dy U Dipsr, SUppose we have

multiple candidate models:
Hiy, Hs, ..., Hy

° Learn a classifier from each model using only D¢y qin:

hl (S Hl,hz S 7’[2, !hM (S }[M

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

M = argmin err(h,,, Dyyy)
me{1,..,M}

* Now err(hs, Diest) is a good estimate of err(hs)!

13



Hyperparameter
Optimization

with
Validation Sets
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* Given D = Diygin U Dygr U Diest, SUppOSe we have

multiple candidate hyperparameter settings:
64,0,,...,0y

* Learn a classifier for each setting using only D¢,-gin:

hi Ry, ..., Ry

* Evaluate each one using D,,,; and choose the one with

lowest validation error:

m = argmin err(hm, Dval)
me{1,..,M}

* Now err(hz, Diest) is a good estimate of err(hz)!

14



Pro tip: train
your final model
using both

training and
validation
datasets
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» err(h}, Diest) is still a good estimate of err(h7)!

* Given D = Diygin U Dygr U Diest, SUPPOSe we have

multiple candidate hyperparameter settings:
04,05, ...,0y

* Learn a classifier for each setting using only D¢y qin:

hi Ry, o) hay

* Evaluate each one using D,,;; and choose the one with

lowest validation error:

m = argmin err(hm, Dval)
me{1,..,M}

. . . +
Train a new model on Dyygin U Dy using O, s

15



Setting k
for kNN

with
Validation Sets
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0.7 -

kNN train and validation errors on Fisher Iris data

® train
v validation

100

:
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Figure courtesy of Matt Gormley




How should

we partition
our dataset?
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0.7 -

kNN train and validation errors on Fisher Iris data

® train
v validation

100

:

10t 1072

Figure courtesy of Matt Gormley




K-fold

cross-validation
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* Given D, split D into K equally sized datasets or folds:

Dy, Dy, ..., Dy

* Use each one as a validation set once:

* Let h_; be the classifier learned using

> Fold 1 D_; = D\D; (all folds other than D;)

Fold 2 and let e; = err(h_;, D;)

b
> Fold 3
b

- The K-fold cross validation error is

1
ertey, =— ) e
Fold 4 “Vk KZ '
=

18



* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is

K
1
eTTevy =3 ) €i
i=1

Henry Chai - 1/29/24 19
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D4,D,, ..., Dy
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* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is
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* Given D, split D into K equally sized datasets or folds:
D4,D,, ..., Dy

- Use each one as a validation set once:
* Let h_; be the classifier learned using
D_; = D\D; (all folds other than D)

and let e; = err(h_;, D;)

K-fold

cross-validation

- The K-fold cross validation error is

K
1
eTTevy =3 ) €i
i=1

Henry Chai - 1/29/24 22



K-fold

cross-validation
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* Given D, split D into K equally sized datasets or folds:

Dy, Dy, ..., Dy

* Use each one as a validation set once:

* Let h_; be the classifier learned using
> Fold 1 D_; = D\D; (all folds other than D;)
> Fold 2 and let e; = err(h_;, D;)

* The K-fold cross validation error is
> Fold 3

K
1
> Fold 4 CMMev = EZ i
=

* Special case when K = N: Leave-one-out cross-validation

- Choosing between m candidates requires training mK times
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Summary
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best model
parameters

Training

Hyperparameter
Optimization

Cross-Validation

Testing

* training dataset
hyperparameters

training dataset
validation dataset

training dataset
validation dataset

test dataset
classifier

best
hyperparameters

cross-validation
error

test error
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\CAELCEENR
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* Real-valued features and decision boundaries

* Nearest neighbor model and generalization guarantees
* kNN “training” and prediction

* Effect of kK on model complexity

* kNN inductive bias

* Differences between training, validation and test

datasets in the model selection process
* Cross-validation for model selection

* Relationship between training, hyperparameter

optimization and model selection

25



Recall:

Regression
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* Learning to diagnose heart disease

as a (supervised) regression task

features targets

Family

History | Pressure
5 " Yes Low Normal $0
o+
= No Medium Normal $20
@
Q-'< No Low Abnormal $30
©
o Yes Medium Normal $100
©

_ Yes High Abnormal | $5000
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Decision Tree

Regression
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* Learning to diagnose heart disease

as a (supervised) regression task

features targets

Family

History | Pressure
5 " Yes Low Normal $0
o+
= No Medium Normal $20
@
Q-'< No Low Abnormal $30
©
o Yes Medium Normal $100
©

_ Yes High Abnormal | $5000
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1-NN

Regression
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* Suppose we have real-valued targets y € R and
one-dimensional inputs x € R

y

A

28



Linear

Regression
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* Suppose we have real-valued targets y € R and
D-dimensional inputs x = [ x4, ...,xp]" € RP

- Assume
y =wlx+w,

29



xl()l) |

XD

* Suppose we have real-valued targets y € R and
D-dimensional inputs x = [1, x4, ..., xp]T € RP*1

€ IRNXD-H"

* Assume
y=wlx
: jon: gi ini = [(x™ y@N"
Linear Notation: given training data D = {(x"™,y™)} _
. - T - i (1)
Regression 1 xW 1 x
11 )T 11 x(z)
c X = X _ N
1 ™1 xiN)

is the design matrix
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X0

cy = [yW, ...,y(N)]T € RY is the target vector

30



General
Recipe

for
Machine
Learning
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1. Define a model and model parameters

2. Write down an objective function

3. Optimize the objective w.r.t. the model parameters

31



Recipe

for
Linear
Regression
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1. Define a model and model parameters
1. Assumey =wlx

2. Parameters: w = [wy, Wy, ..., wp]

2. Write down an objective function
1. Minimize the mean squared error

N
1 2
tp(w) =+ z (WTx® — y™)
n=1

3. Optimize the objective w.r.t. the model parameters

1. Solve in closed form: take partial derivatives,
set to 0 and solve

32



Minimizing the

Squared Error
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1
Lp(w) = NZ(W xM — y(")) = N

n=1

D
1
= < lIXw = yII3 where lzll, = | ) 23 =+/2"z

~ L oxw—y)Tw - y)
= y y

1[M]=
~ N
%
2
ﬂ
S
|
\<f'\
s
N———"
(\)

1
= WIXTXw —2wTXTy + yTy)

A\ 1 A\
V(W) = ~ XTxw—-2XTy) =0
> XTXxXw=X"y
»w=X"X)"x"y

33



Minimizing the

Squared Error
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1
Lo(w) = NZ(W x(M — y(n)) = N

n=1

D
1
= < |1Xw = yII3 where lizl, = | ) 23 =2z

~ L oxw—y)Tw - y)
= y y

1[M]=
~ N
%
2
ﬂ
S
|
\</"\
s
N———"
(\)

1
= WIXTXw —2wTXTy + yTy)

o - Ty T
Vo fp(W) = N(ZX Xw—-2X"y)=0

2
H,fp(w) = NXTX — H,,£5(w) is positive semi-definite

34



Closed Form

Solution
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1.

2.

w=X"X)"1xTy

Is XT X invertible?

If so, how computationally expensive is inverting X7 X?

35



Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset?

Y a

=Y

36



Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset?

Y a

=Y
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Linear

Regression:
Unigqueness

Henry Chai - 1/29/24

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset?

Y a

=Y
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* Consider a 2D linear
regression model trained
to minimize the mean

Linear
squared error: how many

Regression:
Unigqueness

optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

Henry Chai - 1/29/24




Linear

Regression:
Unigqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset? X,
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Linear

Regression:
Unigqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset? X,

41



Closed Form

Solution
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w=X"X)"1xTy

Is XTX invertible?

« When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others) then
there are infinitely many solutions.

If so, how computationally expensive is inverting X7 X?

« XTX € RPH1XP+1 o5 inverting XT X takes O(D3) time...

« Computing XT X takes O(ND?) time
* What alternative optimization method can we use to

minimize the mean squared error?

42



Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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