10-701: Introduction to Machine Learning Lecture 4 – Linear Regression

Henry Chai

1/29/24

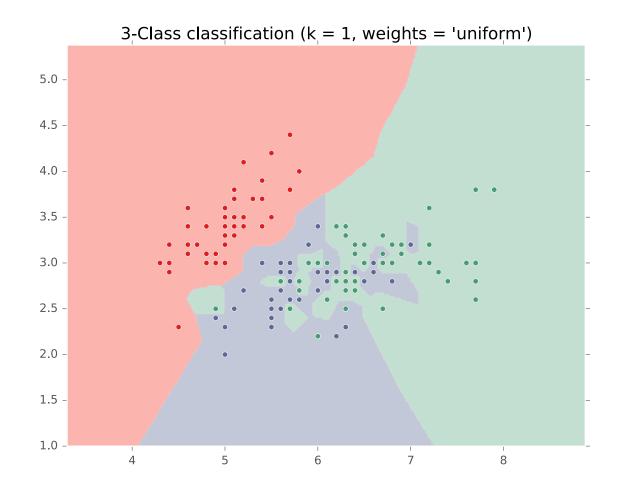
Front Matter

- Announcements:
 - HW1 released 1/24, due 2/2 at 11:59 PM
- Recommended Readings:
 - Murphy, Sections 7.1-7.3

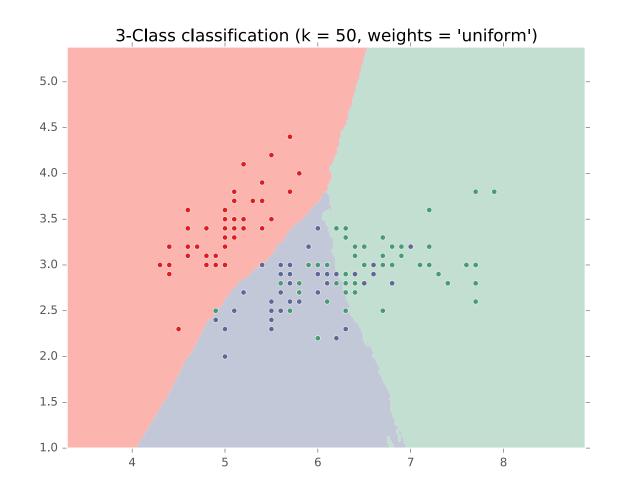
Recall: k-Nearest Neighbors (kNN)

- Classify a point as the most common label among the labels of the ${\it k}$ nearest training points
- Tie-breaking (in case of even k and/or more than 2 classes)
 - Weight votes by distance
 - Remove furthest neighbor
 - Add next closest neighbor
 - Use a different distance metric

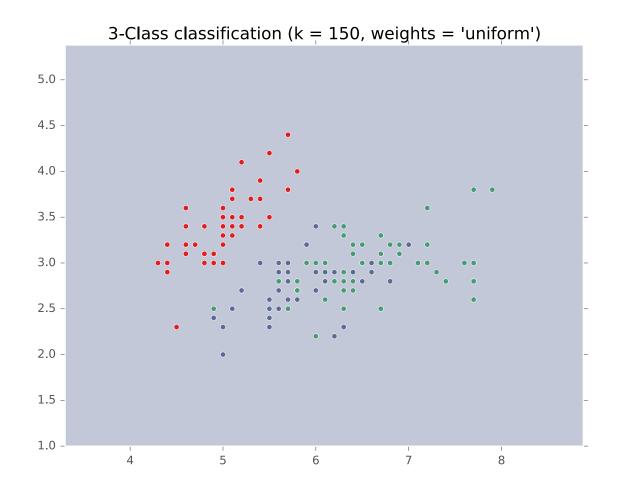
kNN on Fisher Iris Data



kNN on Fisher Iris Data



kNN on Fisher Iris Data



Setting *k*

- When k=1:
 - many, complicated decision boundaries
 - may overfit
- When k = N:
 - no decision boundaries; always predicts the most common label in the training data
 - may underfit
- k controls the complexity of the hypothesis set $\Longrightarrow k$ affects how well the learned hypothesis will generalize

Setting *k*

- Theorem:
 - If k is some function of N s.t. $k(N) \to \infty$ and $\frac{k(N)}{N} \to 0$ as $N \to \infty$...
 - ... then (under certain assumptions) the true error of a kNN model \rightarrow the Bayes error rate
- Heuristics:

•
$$k = \left| \sqrt{N} \right|$$

- k = 3
- This is fundamentally a question of **model selection**: each value of k corresponds to a different "model"

Model Selection

- A model is a (typically infinite) set of classifiers that a learning algorithm searches through to find the best one (the "hypothesis space")
- Model parameters are the numeric values or structure that are selected by the learning algorithm
- Hyperparameters are the tunable aspects of the model that are not selected by the learning algorithm

Example: Decision Trees

- Model = set of all possible trees, potentially narrowed down according to the hyperparameters (see below)
- Model parameters = structure of a specific tree e.g., splits, split order, predictions at leaf nodes,
- Hyperparameters = splitting criterion, maxdepth, tie-breaking procedures, etc...

Model Selection

- A model is a (typically infinite) set of classifiers that a learning algorithm searches through to find the best one (the "hypothesis space")
- Model parameters are the numeric values or structure that are selected by the learning algorithm
- Hyperparameters are the tunable aspects of the model that are not selected by the learning algorithm

Example: kNN

 Model = set of all possible nearest neighbors classifiers

 Model parameters = none! kNN is a "nonparametric model"

· Hyperparameters = k,

distance metric,

tie-breaking, etc.,

Model Selection with Test Sets

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

$$\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$$

• Learn a classifier from each model using only \mathcal{D}_{train} :

$$h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$$

• Evaluate each one using \mathcal{D}_{test} and choose the one with lowest test error:

$$\widehat{m} = \underset{m \in \{1, \dots, M\}}{\operatorname{argmin}} \operatorname{err}(h_m, \mathcal{D}_{test})$$

Model Selection with Test Sets?

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

$$\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$$

• Learn a classifier from each model using only \mathcal{D}_{train} :

$$h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$$

• Evaluate each one using \mathcal{D}_{test} and choose the one with lowest test error:

$$\widehat{m} = \underset{m \in \{1, \dots, M\}}{\operatorname{argmin}} \operatorname{err}(h_m, \mathcal{D}_{test})$$

• Is $err(h_{\widehat{m}}, \mathcal{D}_{test})$ a good estimate of $err(h_{\widehat{m}})$?

Model Selection with Validation Sets

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

$$\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$$

• Learn a classifier from each model using only \mathcal{D}_{train} :

$$h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$$

• Evaluate each one using \mathcal{D}_{val} and choose the one with lowest validation error:

$$\widehat{m} = \underset{m \in \{1,...,M\}}{\operatorname{argmin}} \underbrace{err(h_m, \mathcal{D}_{val})}$$

Hyperparameter Optimization with Validation Sets

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings:

$$\theta_1, \theta_2, \dots, \theta_M$$

• Learn a classifier for each setting using only \mathcal{D}_{train} :

$$h_1, h_2, ..., h_M$$

• Evaluate each one using \mathcal{D}_{val} and choose the one with lowest validation error:

$$\widehat{m} = \underset{m \in \{1, \dots, M\}}{\operatorname{argmin}} err(h_m, \mathcal{D}_{val})$$

Pro tip: train your final model using both training and validation datasets

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings:

$$\theta_1, \theta_2, \dots, \theta_M$$

• Learn a classifier for each setting using only \mathcal{D}_{train} :

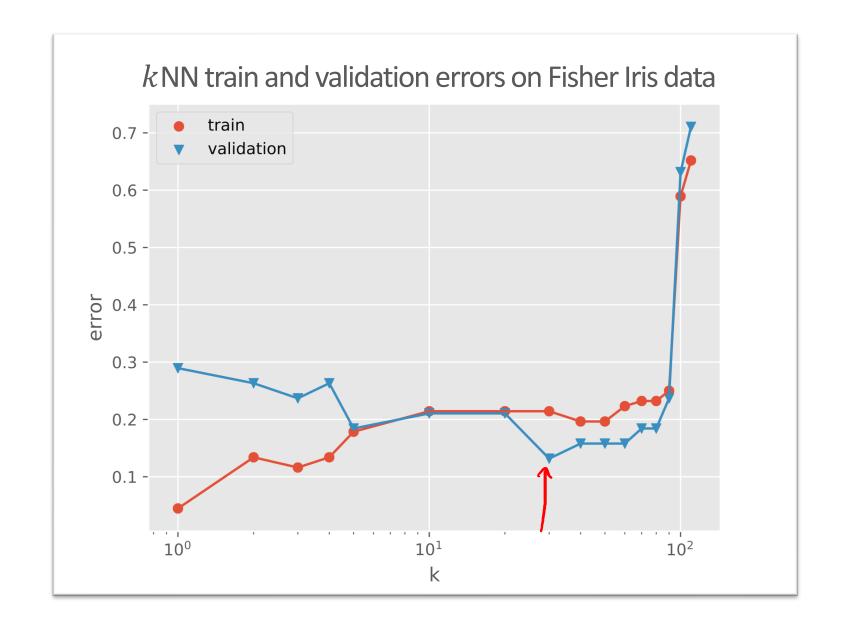
$$h_1, h_2, ..., h_M$$

• Evaluate each one using \mathcal{D}_{val} and choose the one with lowest *validation* error:

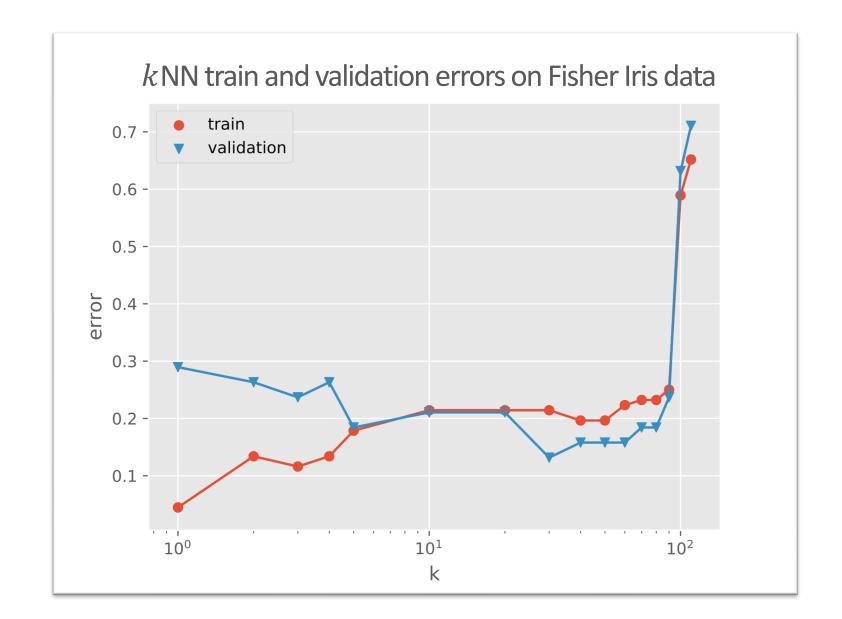
$$\widehat{m} = \underset{m \in \{1, \dots, M\}}{\operatorname{argmin}} err(h_m, \mathcal{D}_{val})$$

- Train a new model on $\mathcal{D}_{train} \cup \mathcal{D}_{val}$ using $\theta_{\widehat{m}}$, $h_{\widehat{m}}^+$
- $err(h_{\widehat{m}}^+, \mathcal{D}_{test})$ is still a good estimate of $err(h_{\widehat{m}}^+)$!

Setting k for k NN with Validation Sets

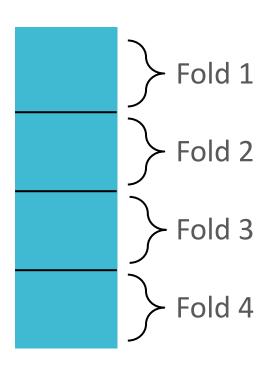


How should we partition our dataset?



• Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds:

$$\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$$



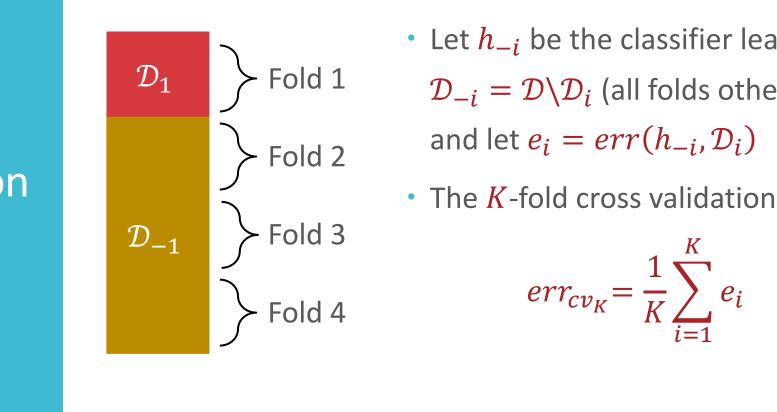
- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- The *K*-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

• Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds:

$$\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$$

Use each one as a validation set once:

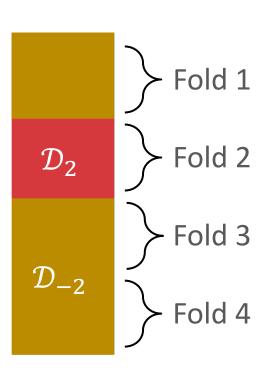


- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \setminus \mathcal{D}_i$ (all folds other than \mathcal{D}_i)
- The *K*-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

• Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds:

$$\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$$

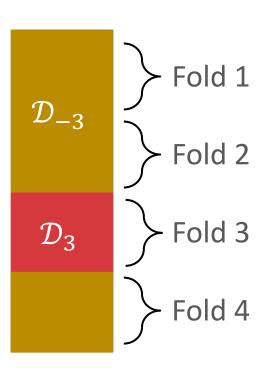


- Fold 1 $\mathcal{D}_{-i} = \mathcal{D} \setminus \mathcal{D}_i \text{ (all folds otherwise)}$ Fold 2 $\text{and let } e_i = err(h_{-i}, \mathcal{D}_i)$ • Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i)
 - The *K*-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

• Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds:

$$\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$$

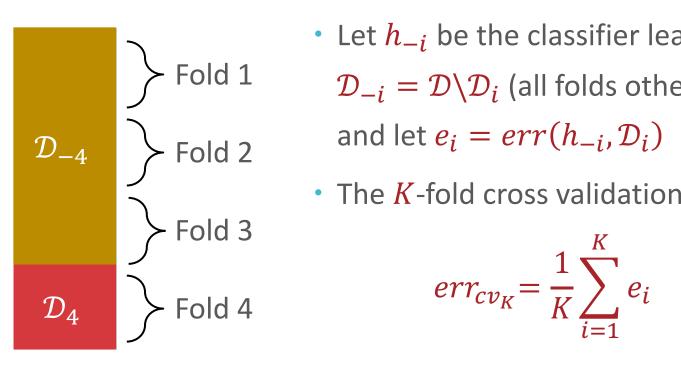


- Fold 1 $\mathcal{D}_{-i} = \mathcal{D} \setminus \mathcal{D}_i \text{ (all folds other than } \mathcal{D}_i)$ and let $e_i = err(h_{-i}, \mathcal{D}_i)$
 - The *K*-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

• Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds:

$$\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$$



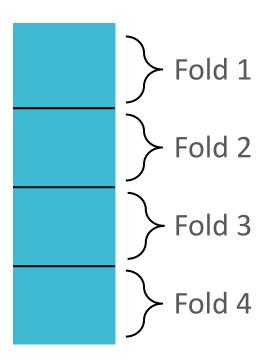
- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i)
- The *K*-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

• Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds:

$$\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$$

Use each one as a validation set once:



- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- The *K*-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

- Special case when K = N: Leave-one-out cross-validation
- Choosing between m candidates requires training mK times

Summary

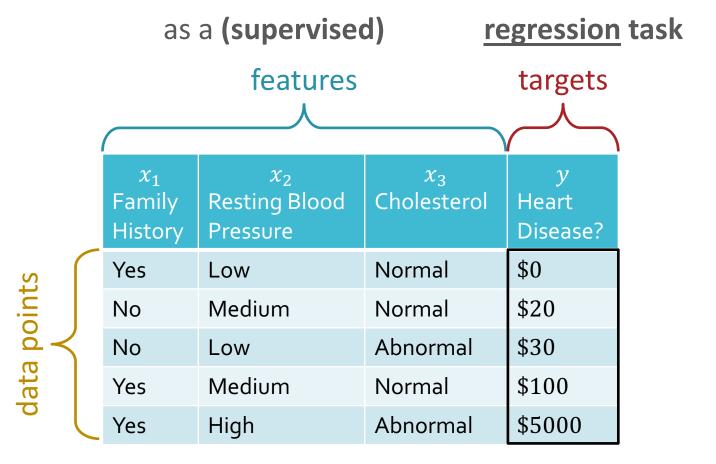
	Input	Output
Training	training datasethyperparameters	 best model parameters
Hyperparameter Optimization	training datasetvalidation dataset	best hyperparameters
Cross-Validation	training datasetvalidation dataset	 cross-validation error
Testing	test datasetclassifier	• test error

Key Takeaways

- Real-valued features and decision boundaries
- Nearest neighbor model and generalization guarantees
- kNN "training" and prediction
- Effect of k on model complexity
- kNN inductive bias
- Differences between training, validation and test datasets in the model selection process
- Cross-validation for model selection
- Relationship between training, hyperparameter optimization and model selection

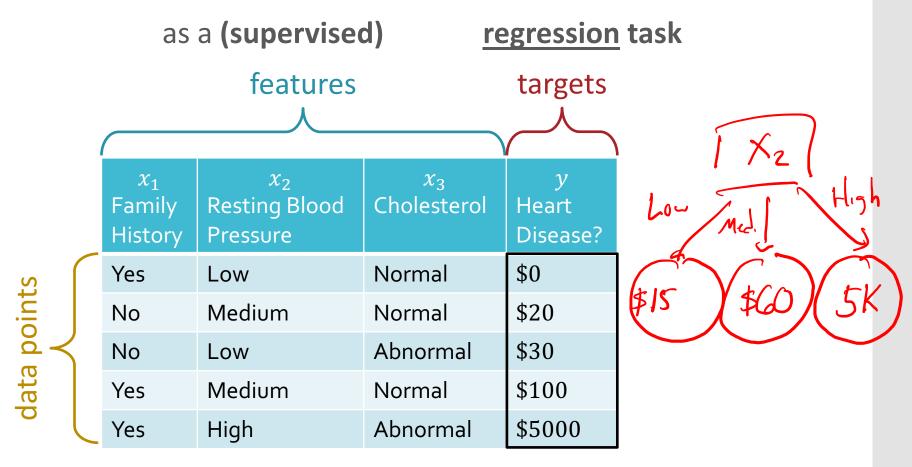
Recall: Regression

Learning to diagnose heart disease



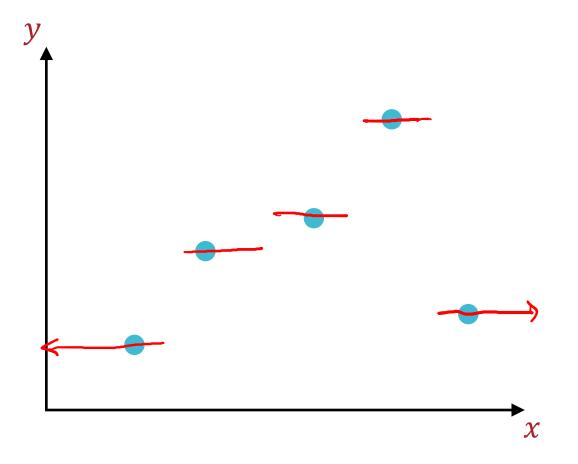
Decision Tree Regression

Learning to diagnose heart disease



1-NN Regression

• Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$



Linear Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\mathbf{x} = [x_1, ..., x_D]^T \in \mathbb{R}^D$
- Assume

$$y = \mathbf{w}^T \mathbf{x} + w_0$$

Linear Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\mathbf{x} = [1, x_1, ..., x_D]^T \in \mathbb{R}^{D+1}$
- Assume $y = \mathbf{w}^T \mathbf{x}$
- Notation: given training data $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$

is the *design matrix*

•
$$\mathbf{y} = \begin{bmatrix} y^{(1)}, \dots, y^{(N)} \end{bmatrix}^T \in \mathbb{R}^N$$
 is the target vector

General Recipe for Machine Learning

1. Define a model and model parameters

2. Write down an objective function

3. Optimize the objective w.r.t. the model parameters

Recipe for Linear Regression

- 1. Define a model and model parameters
 - Assum linear dependence - Parameter: W = [Wo, W, ..., WD]
- 2. Write down an objective function

minimize the mean squared error
$$l_{D}(u) = \frac{1}{N} \sum_{n=1}^{N} (w^{T}x^{(n)} - y^{(n)})^{2}$$

3. Optimize the objective w.r.t. the model parameters

$$X = \begin{bmatrix} 1 & \times & (1)^{T} \\ 1 & \times & (2)^{T} \\ \vdots & \vdots & \vdots \end{bmatrix}$$

Minimizing the Squared Error

$$H_{w}l_{D}(w)$$

= $\frac{1}{N}(2X^{T}X)$
which is positive
Semi-definite

$$l_{D}(\omega) = \frac{1}{N} \sum_{n=1}^{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \right)^{2}$$

$$= \frac{1}{N} \left(\underbrace{x^{(n)}}_{\omega} - y^{(n)} \right)^{2} \left($$

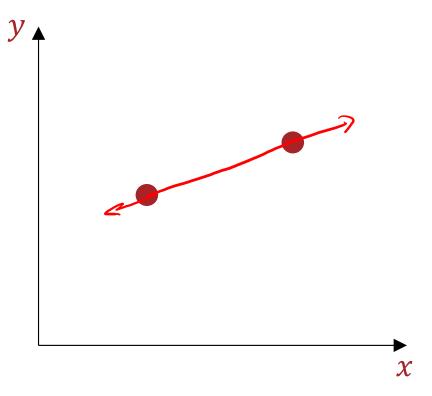
$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

1. Is X^TX invertible?

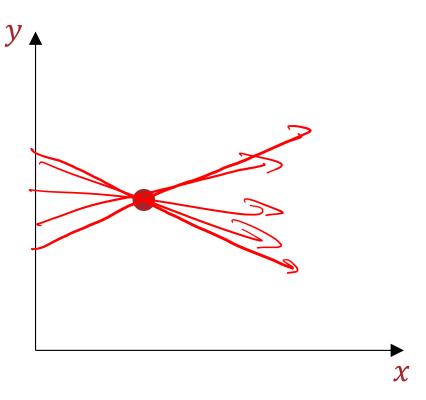
Closed Form Solution

2. If so, how computationally expensive is inverting X^TX ?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

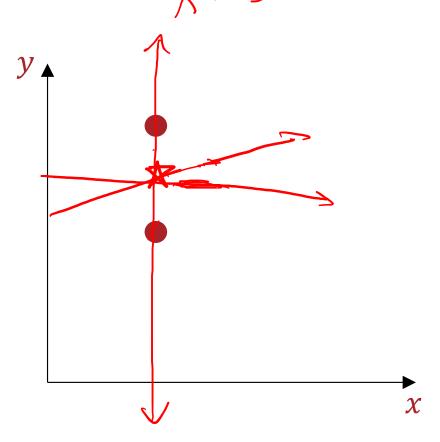


 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

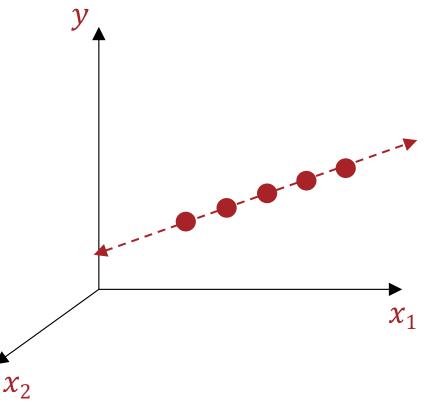


 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?

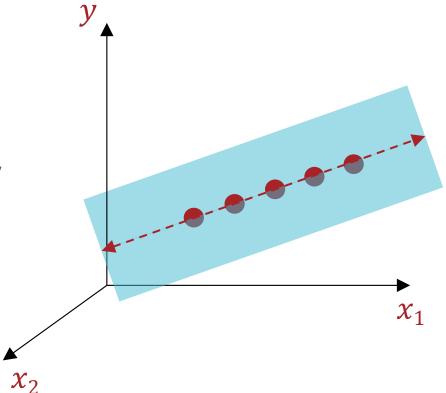
 $l_{D}(v) = \frac{1}{N} \sum_{n=1}^{N} |w^{r} x^{(n)} - y^{(n)}|$



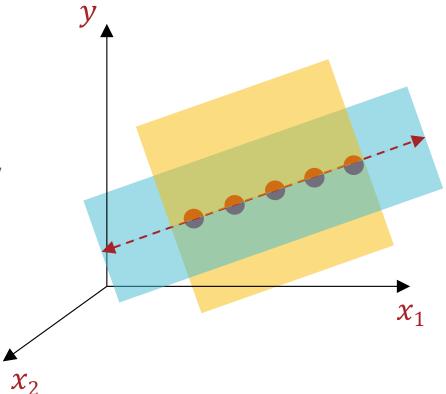
 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w are there for the given dataset?



 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w are there for the given dataset?



Closed Form Solution

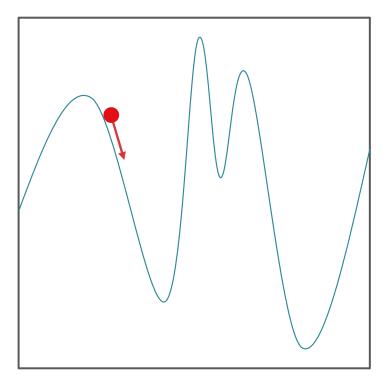
$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- 1. Is X^TX invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible
 - If X^TX is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.
- 2. If so, how computationally expensive is inverting X^TX ? $O(D^3) \qquad \text{because} \qquad X^TX \in \mathbb{R}^{(D+1)} \times (D+1)$

$$(\exists O(D^{2.4...}))$$

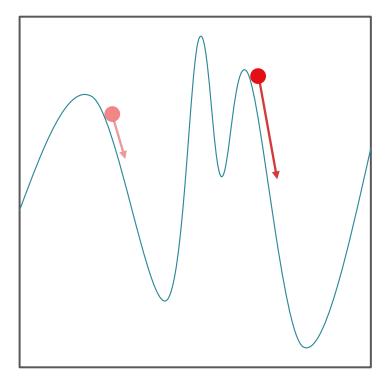
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

