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Front Matter

� Announcements: 

� HW1 released 1/24, due 2/2 at 11:59 PM 

� Recommended Readings:

� Murphy, Sections 7.1-7.3
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Recall:
𝑘-Nearest 
Neighbors 
(𝑘NN)

� Classify a point as the most common label among the 

labels of the 𝑘 nearest training points

� Tie-breaking (in case of even 𝑘 and/or more than 2 classes) 

� Weight votes by distance

� Remove furthest neighbor

� Add next closest neighbor

� Use a different distance metric
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data



Setting 𝑘

� When 𝑘 = 1:

� many, complicated decision boundaries 

� may overfit

� When 𝑘 = 𝑁:

� no decision boundaries; always predicts the most 
common label in the training data 

� may underfit

� 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘
affects how well the learned hypothesis will generalize
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Setting 𝑘

� Theorem: 

� If 𝑘 is some function of 𝑁 s.t. 𝑘 𝑁 → ∞ and ! "
" → 0

as 𝑁 → ∞ … 

� … then (under certain assumptions) the true error of a 
𝑘NN model → the Bayes error rate 

� Heuristics:

� 𝑘 = 𝑁

� 𝑘 = 3

� This is fundamentally a question of model selection: each 

value of 𝑘 corresponds to a different “model”
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Model 
Selection

� A model is a (typically 
infinite) set of classifiers 
that a learning algorithm 
searches through to find 
the best one (the 
”hypothesis space”)

� Model parameters are 
the numeric values or 
structure that are 
selected by the learning 
algorithm

� Hyperparameters are 
the tunable aspects of 
the model that are not 
selected by the learning 
algorithm

Example: Decision Trees
� Model = set of all 

possible trees, 
potentially narrowed 
down according to the 
hyperparameters (see 
below)

� Model parameters = 
structure of a specific 
tree e.g., splits, split 
order, predictions at leaf 
nodes, 

� Hyperparameters = 
splitting criterion, max-
depth, tie-breaking 
procedures, etc…
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Model 
Selection

� A model is a (typically 
infinite) set of classifiers 
that a learning algorithm 
searches through to find 
the best one (the 
”hypothesis space”)

� Model parameters are 
the numeric values or 
structure that are 
selected by the learning 
algorithm

� Hyperparameters are 
the tunable aspects of 
the model that are not 
selected by the learning 
algorithm

Example: 𝒌NN

� Model = set of all 
possible nearest 
neighbors classifiers

� Model parameters = 
none! 𝑘NN is a “non-
parametric model”

� Hyperparameters = 𝑘
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Model 
Selection 
with 
Test Sets

11

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟#()#, suppose we have multiple 

candidate models: 
ℋ*,ℋ+, … ,ℋ,

� Learn a classifier from each model using only 𝒟#$%&': 

ℎ* ∈ ℋ*, ℎ+ ∈ ℋ+, … , ℎ, ∈ ℋ,

� Evaluate each one using 𝒟#()# and choose the one with 

lowest test error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟#()#
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Model 
Selection 
with 
Test Sets?

12

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟#()#, suppose we have multiple 

candidate models: 
ℋ*,ℋ+, … ,ℋ,

� Learn a classifier from each model using only 𝒟#$%&': 

ℎ* ∈ ℋ*, ℎ+ ∈ ℋ+, … , ℎ, ∈ ℋ,

� Evaluate each one using 𝒟#()# and choose the one with 

lowest test error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟#()#

� Is 𝑒𝑟𝑟 ℎ 3-, 𝒟#()# a good estimate of 𝑒𝑟𝑟 ℎ 3- ?
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Model 
Selection 
with 
Validation Sets
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� Given 𝒟 = 𝒟#$%&' ∪ 𝒟4%5 ∪ 𝒟#()#, suppose we have 

multiple candidate models: 
ℋ*,ℋ+, … ,ℋ,

� Learn a classifier from each model using only 𝒟#$%&': 

ℎ* ∈ ℋ*, ℎ+ ∈ ℋ+, … , ℎ, ∈ ℋ,

� Evaluate each one using 𝒟4%5 and choose the one with 

lowest validation error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟4%5

� Now 𝑒𝑟𝑟 ℎ 3-, 𝒟#()# is a good estimate of 𝑒𝑟𝑟 ℎ 3- !
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Hyperparameter 
Optimization
with 
Validation Sets
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� Given 𝒟 = 𝒟#$%&' ∪ 𝒟4%5 ∪ 𝒟#()#, suppose we have 

multiple candidate hyperparameter settings: 
𝜃*, 𝜃+, … , 𝜃,

� Learn a classifier for each setting using only 𝒟#$%&': 

ℎ*, ℎ+, … , ℎ,

� Evaluate each one using 𝒟4%5 and choose the one with 

lowest validation error: 

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟4%5

� Now 𝑒𝑟𝑟 ℎ 3-, 𝒟#()# is a good estimate of 𝑒𝑟𝑟 ℎ 3- !
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Pro tip: train 
your final model 
using both
training and 
validation 
datasets

15Henry Chai - 1/29/24

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟4%5 ∪ 𝒟#()#, suppose we have 

multiple candidate hyperparameter settings: 
𝜃*, 𝜃+, … , 𝜃,

� Learn a classifier for each setting using only 𝒟#$%&': 
ℎ*, ℎ+, … , ℎ,

� Evaluate each one using 𝒟4%5 and choose the one with 

lowest validation error: 

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟4%5

� Train a new model on 𝒟#$%&' ∪ 𝒟4%5 using 𝜃 3-, ℎ 3-
6

� 𝑒𝑟𝑟 ℎ 3-
6 , 𝒟#()# 	is still a good estimate of 𝑒𝑟𝑟 ℎ 3-

6 !



Setting 𝑘
for 𝑘NN
with 
Validation Sets

16Henry Chai - 1/29/24 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data
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𝑘NN train and validation errors on Fisher Iris data

How should 
we partition 
our dataset?



� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using 
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&) 
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&
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𝐾-fold 
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using 
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&) 
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using 
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&) 
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using 
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&) 
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using 

𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&) 
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾
@
&:*

7

𝑒&

� Special case when 𝐾 = 𝑁: Leave-one-out cross-validation

� Choosing between 𝑚 candidates requires training 𝑚𝐾 times
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𝐾-fold 
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Summary

Input Output

Training • training dataset 
• hyperparameters

• best model 
parameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best 
hyperparameters 

Cross-Validation • training dataset
• validation dataset

• cross-validation 
error

Testing • test dataset
• classifier • test error
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Key Takeaways

� Real-valued features and decision boundaries

� Nearest neighbor model and generalization guarantees

� 𝑘NN “training” and prediction

� Effect of 𝑘 on model complexity

� 𝑘NN inductive bias

� Differences between training, validation and test 
datasets in the model selection process

� Cross-validation for model selection

� Relationship between training, hyperparameter 
optimization and model selection
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� Learning to diagnose heart disease  
as a (supervised) binary regression task

Recall: 
Regression
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𝑥!
Family
History

𝑥"
Resting Blood 
Pressure

𝑥#
Cholesterol 

𝑦
Heart 
Disease?

Yes Low Normal $0
No Medium Normal $20
No Low Abnormal $30
Yes Medium Normal $100
Yes High Abnormal $5000

features targets

da
ta

 p
oi

nt
s



� Learning to diagnose heart disease  
as a (supervised) binary regression task

Decision Tree
Regression
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𝑥!
Family
History

𝑥"
Resting Blood 
Pressure

𝑥#
Cholesterol 

𝑦
Heart 
Disease?

Yes Low Normal $0
No Medium Normal $20
No Low Abnormal $30
Yes Medium Normal $100
Yes High Abnormal $5000

features targets

da
ta

 p
oi

nt
s



1-NN
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ and               
one-dimensional inputs 𝑥 ∈ ℝ

� Assume
𝑦 = 𝒘E𝒙 + 𝑤F

� Notation: given training data 𝒟 = 𝒙 & , 𝑦 &
&:*
"

� 𝑋 =

1 𝒙 * E

1 𝒙 + E

⋮ ⋮
1 𝒙 " E

=

1 𝑥*
* ⋯ 𝑥G

*

1 𝑥*
+ ⋯ 𝑥G

+

⋮ ⋮ ⋱ ⋮
1 𝑥*

" ⋯ 𝑥G
"

∈ ℝ"×G6*

is the design matrix

� 𝒚 = 𝑦 * , … , 𝑦 " E
∈ ℝ" is the target vector
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Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ and               
𝐷-dimensional inputs 𝒙 = 1, 𝑥*, … , 𝑥G E ∈ ℝG

� Assume
𝑦 = 𝒘E𝒙 + 𝑤F

� Notation: given training data 𝒟 = 𝒙 & , 𝑦 &
&:*
"

� 𝑋 =

1 𝒙 * E

1 𝒙 + E

⋮ ⋮
1 𝒙 " E

=

1 𝑥*
* ⋯ 𝑥G

*

1 𝑥*
+ ⋯ 𝑥G

+

⋮ ⋮ ⋱ ⋮
1 𝑥*

" ⋯ 𝑥G
"

∈ ℝ"×G6*

is the design matrix

� 𝒚 = 𝑦 * , … , 𝑦 " E
∈ ℝ" is the target vector
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Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ and               
𝐷-dimensional inputs 𝒙 = 1, 𝑥*, … , 𝑥G E ∈ ℝG6*

� Assume
𝑦 = 𝒘E𝒙 + 𝑤F

� Notation: given training data 𝒟 = 𝒙 ' , 𝑦 '
':*
"

� 𝑋 =

1 𝒙 * E

1 𝒙 + E

⋮ ⋮
1 𝒙 " E

=

1 𝑥*
* ⋯ 𝑥G

*

1 𝑥*
+ ⋯ 𝑥G

+

⋮ ⋮ ⋱ ⋮
1 𝑥*

" ⋯ 𝑥G
"

∈ ℝ"×G6*

is the design matrix

� 𝒚 = 𝑦 * , … , 𝑦 " E
∈ ℝ" is the target vector
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1. Define a model and model parameters
1. Assume 𝑦 = 𝒘E𝒙
2. Parameters: 𝒘 = 𝑤F, 𝑤*, … , 𝑤G

2. Write down an objective function
1. Minimize the squared error

3. Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives,           

set to 0 and solve

General 
Recipe 
for 
Machine 
Learning
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1. Define a model and model parameters
1. Assume 𝑦 = 𝒘E𝒙
2. Parameters: 𝒘 = 𝑤F, 𝑤*, … , 𝑤G

2. Write down an objective function
1. Minimize the squared error

3. Optimize the objective w.r.t. the model parameters
1. Solve in closed form: take partial derivatives,           

set to 0 and solve

Recipe 
for 
Linear
Regression
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"

𝒘E𝒙 ' − 𝑦 ' +



ℓ𝒟 𝒘 = @
':*

"

𝒘E𝒙 ' − 𝑦 ' +
= @

':*

"

𝒙 ' E
𝒘− 𝑦 '

+

Minimizing the 
Squared Error

33

= 𝑋𝒘− 𝒚 +
+ where 𝒛 + = @

J:*

G

𝑧J+ = 𝒛E𝒛

= 𝑋𝒘 − 𝒚 E 𝑋𝒘 − 𝒚
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∇𝒘ℓ𝒟 𝒘 = 2𝑋E𝑋𝒘 − 2𝑋E𝒚

= 𝒘E𝑋E𝑋𝒘 − 2𝒘E𝑋E𝒚 + 𝒚E𝒚



Closed Form 
Solution

36Henry Chai - 1/29/24

1. Is 𝑋E𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋E𝑋	is (almost always) full rank and 

therefore, invertible!
• If 𝑋E𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋E𝑋?
• 𝑋E𝑋 ∈ ℝG6*×G6* so inverting 𝑋E𝑋	takes 𝑂 𝐷;  time…

• Computing 𝑋E𝑋 takes 𝑂 𝑁𝐷+  time
• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!

2𝒘 = 𝑋E𝑋 8*𝑋E𝒚



Linear 
Regression: 
Uniqueness

37

𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of weights 𝒘) are 
there for the given 
dataset?
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𝑥

� Consider a 1D linear 
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optimal solutions (i.e., 
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Linear 
Regression: 
Uniqueness
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𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of weights 𝒘) are 
there for the given 
dataset?
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Linear 
Regression: 
Uniqueness

40

� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness
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� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of weights 𝒘) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness
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� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of weights 𝒘) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Closed Form 
Solution
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1. Is 𝑋E𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋E𝑋	is (almost always) full rank and 

therefore, invertible
• If 𝑋E𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋E𝑋?
• 𝑋E𝑋 ∈ ℝG6*×G6* so inverting 𝑋E𝑋	takes 𝑂 𝐷;  time…

• Computing 𝑋E𝑋 takes 𝑂 𝑁𝐷+  time
• What alternative optimization method can we use to 

minimize the mean squared error?

2𝒘 = 𝑋E𝑋 8*𝑋E𝒚



Gradient 
Descent:
Intuition

� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere

45Henry Chai - 1/29/24



Gradient 
Descent:
Intuition

46Henry Chai - 1/29/24

� An iterative method for minimizing functions 
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Gradient 
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� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere


