
10-701: Introduction to
Machine Learning
Lecture 4 – Linear
Regression
Henry Chai

1/29/24

Front Matter

� Announcements:

� HW1 released 1/24, due 2/2 at 11:59 PM

� Recommended Readings:

� Murphy, Sections 7.1-7.3

Henry Chai - 1/29/24 2

https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=248

Recall:
𝑘-Nearest
Neighbors
(𝑘NN)

� Classify a point as the most common label among the

labels of the 𝑘 nearest training points

� Tie-breaking (in case of even 𝑘 and/or more than 2 classes)

� Weight votes by distance

� Remove furthest neighbor

� Add next closest neighbor

� Use a different distance metric

Henry Chai - 1/29/24 3

𝑘NN on
Fisher Iris
Data

4Figure courtesy of Matt GormleyHenry Chai - 1/29/24

5Figure courtesy of Matt GormleyHenry Chai - 1/29/24

𝑘NN on
Fisher Iris
Data

6Figure courtesy of Matt GormleyHenry Chai - 1/29/24

𝑘NN on
Fisher Iris
Data

Setting 𝑘

� When 𝑘 = 1:

� many, complicated decision boundaries

� may overfit

� When 𝑘 = 𝑁:

� no decision boundaries; always predicts the most
common label in the training data

� may underfit

� 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘
affects how well the learned hypothesis will generalize

Henry Chai - 1/29/24 7

Setting 𝑘

� Theorem:

� If 𝑘 is some function of 𝑁 s.t. 𝑘 𝑁 → ∞ and ! "
" → 0

as 𝑁 → ∞ …

� … then (under certain assumptions) the true error of a
𝑘NN model → the Bayes error rate

� Heuristics:

� 𝑘 = 𝑁

� 𝑘 = 3

� This is fundamentally a question of model selection: each

value of 𝑘 corresponds to a different “model”
Henry Chai - 1/29/24 8

Model
Selection

� A model is a (typically
infinite) set of classifiers
that a learning algorithm
searches through to find
the best one (the
”hypothesis space”)

� Model parameters are
the numeric values or
structure that are
selected by the learning
algorithm

� Hyperparameters are
the tunable aspects of
the model that are not
selected by the learning
algorithm

Example: Decision Trees
� Model = set of all

possible trees,
potentially narrowed
down according to the
hyperparameters (see
below)

� Model parameters =
structure of a specific
tree e.g., splits, split
order, predictions at leaf
nodes,

� Hyperparameters =
splitting criterion, max-
depth, tie-breaking
procedures, etc…

Henry Chai - 1/29/24 9

Model
Selection

� A model is a (typically
infinite) set of classifiers
that a learning algorithm
searches through to find
the best one (the
”hypothesis space”)

� Model parameters are
the numeric values or
structure that are
selected by the learning
algorithm

� Hyperparameters are
the tunable aspects of
the model that are not
selected by the learning
algorithm

Example: 𝒌NN

� Model = set of all
possible nearest
neighbors classifiers

� Model parameters =
none! 𝑘NN is a “non-
parametric model”

� Hyperparameters = 𝑘

Henry Chai - 1/29/24 10

Model
Selection
with
Test Sets

11

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟#()#, suppose we have multiple

candidate models:
ℋ*,ℋ+, … ,ℋ,

� Learn a classifier from each model using only 𝒟#$%&':

ℎ* ∈ ℋ*, ℎ+ ∈ ℋ+, … , ℎ, ∈ ℋ,

� Evaluate each one using 𝒟#()# and choose the one with

lowest test error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟#()#

Henry Chai - 1/29/24

Model
Selection
with
Test Sets?

12

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟#()#, suppose we have multiple

candidate models:
ℋ*,ℋ+, … ,ℋ,

� Learn a classifier from each model using only 𝒟#$%&':

ℎ* ∈ ℋ*, ℎ+ ∈ ℋ+, … , ℎ, ∈ ℋ,

� Evaluate each one using 𝒟#()# and choose the one with

lowest test error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟#()#

� Is 𝑒𝑟𝑟 ℎ 3-, 𝒟#()# a good estimate of 𝑒𝑟𝑟 ℎ 3- ?

Henry Chai - 1/29/24

Model
Selection
with
Validation Sets

13

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟4%5 ∪ 𝒟#()#, suppose we have

multiple candidate models:
ℋ*,ℋ+, … ,ℋ,

� Learn a classifier from each model using only 𝒟#$%&':

ℎ* ∈ ℋ*, ℎ+ ∈ ℋ+, … , ℎ, ∈ ℋ,

� Evaluate each one using 𝒟4%5 and choose the one with

lowest validation error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟4%5

� Now 𝑒𝑟𝑟 ℎ 3-, 𝒟#()# is a good estimate of 𝑒𝑟𝑟 ℎ 3- !

Henry Chai - 1/29/24

Hyperparameter
Optimization
with
Validation Sets

14

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟4%5 ∪ 𝒟#()#, suppose we have

multiple candidate hyperparameter settings:
𝜃*, 𝜃+, … , 𝜃,

� Learn a classifier for each setting using only 𝒟#$%&':

ℎ*, ℎ+, … , ℎ,

� Evaluate each one using 𝒟4%5 and choose the one with

lowest validation error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟4%5

� Now 𝑒𝑟𝑟 ℎ 3-, 𝒟#()# is a good estimate of 𝑒𝑟𝑟 ℎ 3- !

Henry Chai - 1/29/24

Pro tip: train
your final model
using both
training and
validation
datasets

15Henry Chai - 1/29/24

� Given 𝒟 = 𝒟#$%&' ∪ 𝒟4%5 ∪ 𝒟#()#, suppose we have

multiple candidate hyperparameter settings:
𝜃*, 𝜃+, … , 𝜃,

� Learn a classifier for each setting using only 𝒟#$%&':
ℎ*, ℎ+, … , ℎ,

� Evaluate each one using 𝒟4%5 and choose the one with

lowest validation error:

2𝑚 = argmin
-∈{*,…,,}

𝑒𝑟𝑟 ℎ-, 𝒟4%5

� Train a new model on 𝒟#$%&' ∪ 𝒟4%5 using 𝜃 3-, ℎ 3-
6

� 𝑒𝑟𝑟 ℎ 3-
6 , 𝒟#()# 	is still a good estimate of 𝑒𝑟𝑟 ℎ 3-

6 !

Setting 𝑘
for 𝑘NN
with
Validation Sets

16Henry Chai - 1/29/24 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data

17Henry Chai - 1/29/24 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data

How should
we partition
our dataset?

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&)
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&

18Henry Chai - 1/29/24

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&)
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&

19Henry Chai - 1/29/24

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

𝒟*

𝒟8*

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&)
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&

20Henry Chai - 1/29/24

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4
𝒟8+

𝒟+

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&)
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&

21Henry Chai - 1/29/24

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

𝒟;

𝒟8;

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using
𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&)
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾@
&:*

7

𝑒&

22Henry Chai - 1/29/24

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4𝒟<

𝒟8<

� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds:

𝒟*, 𝒟+, … , 𝒟7

� Use each one as a validation set once:

� Let ℎ8& be the classifier learned using

𝒟8& = 𝒟\𝒟& (all folds other than 𝒟&)
and let 𝑒& = 𝑒𝑟𝑟 ℎ8&, 𝒟&

� The 𝐾-fold cross validation error is

𝑒𝑟𝑟94!=
1
𝐾
@
&:*

7

𝑒&

� Special case when 𝐾 = 𝑁: Leave-one-out cross-validation

� Choosing between 𝑚 candidates requires training 𝑚𝐾 times
23Henry Chai - 1/29/24

𝐾-fold
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4

Summary

Input Output

Training • training dataset
• hyperparameters

• best model
parameters

Hyperparameter
Optimization

• training dataset
• validation dataset

• best
hyperparameters

Cross-Validation • training dataset
• validation dataset

• cross-validation
error

Testing • test dataset
• classifier • test error

Henry Chai - 1/29/24 24

Key Takeaways

� Real-valued features and decision boundaries

� Nearest neighbor model and generalization guarantees

� 𝑘NN “training” and prediction

� Effect of 𝑘 on model complexity

� 𝑘NN inductive bias

� Differences between training, validation and test
datasets in the model selection process

� Cross-validation for model selection

� Relationship between training, hyperparameter
optimization and model selection

Henry Chai - 1/29/24 25

� Learning to diagnose heart disease
as a (supervised) binary regression task

Recall:
Regression

Henry Chai - 1/29/24 26

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal $0
No Medium Normal $20
No Low Abnormal $30
Yes Medium Normal $100
Yes High Abnormal $5000

features targets

da
ta

 p
oi

nt
s

� Learning to diagnose heart disease
as a (supervised) binary regression task

Decision Tree
Regression

Henry Chai - 1/29/24 27

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal $0
No Medium Normal $20
No Low Abnormal $30
Yes Medium Normal $100
Yes High Abnormal $5000

features targets

da
ta

 p
oi

nt
s

1-NN
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ and
one-dimensional inputs 𝑥 ∈ ℝ

� Assume
𝑦 = 𝒘E𝒙 + 𝑤F

� Notation: given training data 𝒟 = 𝒙 & , 𝑦 &
&:*
"

� 𝑋 =

1 𝒙 * E

1 𝒙 + E

⋮ ⋮
1 𝒙 " E

=

1 𝑥*
* ⋯ 𝑥G

*

1 𝑥*
+ ⋯ 𝑥G

+

⋮ ⋮ ⋱ ⋮
1 𝑥*

" ⋯ 𝑥G
"

∈ ℝ"×G6*

is the design matrix

� 𝒚 = 𝑦 * , … , 𝑦 " E
∈ ℝ" is the target vector

Henry Chai - 1/29/24 28

𝑥

𝑦

Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ and
𝐷-dimensional inputs 𝒙 = 1, 𝑥*, … , 𝑥G E ∈ ℝG

� Assume
𝑦 = 𝒘E𝒙 + 𝑤F

� Notation: given training data 𝒟 = 𝒙 & , 𝑦 &
&:*
"

� 𝑋 =

1 𝒙 * E

1 𝒙 + E

⋮ ⋮
1 𝒙 " E

=

1 𝑥*
* ⋯ 𝑥G

*

1 𝑥*
+ ⋯ 𝑥G

+

⋮ ⋮ ⋱ ⋮
1 𝑥*

" ⋯ 𝑥G
"

∈ ℝ"×G6*

is the design matrix

� 𝒚 = 𝑦 * , … , 𝑦 " E
∈ ℝ" is the target vector

Henry Chai - 1/29/24 29

Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ and
𝐷-dimensional inputs 𝒙 = 1, 𝑥*, … , 𝑥G E ∈ ℝG6*

� Assume
𝑦 = 𝒘E𝒙 + 𝑤F

� Notation: given training data 𝒟 = 𝒙 ' , 𝑦 '
':*
"

� 𝑋 =

1 𝒙 * E

1 𝒙 + E

⋮ ⋮
1 𝒙 " E

=

1 𝑥*
* ⋯ 𝑥G

*

1 𝑥*
+ ⋯ 𝑥G

+

⋮ ⋮ ⋱ ⋮
1 𝑥*

" ⋯ 𝑥G
"

∈ ℝ"×G6*

is the design matrix

� 𝒚 = 𝑦 * , … , 𝑦 " E
∈ ℝ" is the target vector

Henry Chai - 1/29/24 30

1. Define a model and model parameters
1. Assume 𝑦 = 𝒘E𝒙
2. Parameters: 𝒘 = 𝑤F, 𝑤*, … , 𝑤G

2. Write down an objective function
1. Minimize the squared error

3. Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives,

set to 0 and solve

General
Recipe
for
Machine
Learning

Henry Chai - 1/29/24 31

1. Define a model and model parameters
1. Assume 𝑦 = 𝒘E𝒙
2. Parameters: 𝒘 = 𝑤F, 𝑤*, … , 𝑤G

2. Write down an objective function
1. Minimize the squared error

3. Optimize the objective w.r.t. the model parameters
1. Solve in closed form: take partial derivatives,

set to 0 and solve

Recipe
for
Linear
Regression

Henry Chai - 1/29/24 32

ℓ𝒟 𝒘 = @
':*

"

𝒘E𝒙 ' − 𝑦 ' +

ℓ𝒟 𝒘 = @
':*

"

𝒘E𝒙 ' − 𝑦 ' +
= @

':*

"

𝒙 ' E
𝒘− 𝑦 '

+

Minimizing the
Squared Error

33

= 𝑋𝒘− 𝒚 +
+ where 𝒛 + = @

J:*

G

𝑧J+ = 𝒛E𝒛

= 𝑋𝒘 − 𝒚 E 𝑋𝒘 − 𝒚

Henry Chai - 1/29/24

∇𝒘ℓ𝒟 𝒘 = 2𝑋E𝑋𝒘 − 2𝑋E𝒚

= 𝒘E𝑋E𝑋𝒘 − 2𝒘E𝑋E𝒚 + 𝒚E𝒚

Closed Form
Solution

36Henry Chai - 1/29/24

1. Is 𝑋E𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋E𝑋	is (almost always) full rank and

therefore, invertible!
• If 𝑋E𝑋	is not invertible (occurs when one of the

features is a linear combination of the others) then
there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋E𝑋?
• 𝑋E𝑋 ∈ ℝG6*×G6* so inverting 𝑋E𝑋	takes 𝑂 𝐷; time…

• Computing 𝑋E𝑋 takes 𝑂 𝑁𝐷+ time
• Can use gradient descent to (potentially) speed things

up when 𝑁 and 𝐷 are large!

2𝒘 = 𝑋E𝑋 8*𝑋E𝒚

Linear
Regression:
Uniqueness

37

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of weights 𝒘) are
there for the given
dataset?

Henry Chai - 1/29/24

Linear
Regression:
Uniqueness

38

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of weights 𝒘) are
there for the given
dataset?

Henry Chai - 1/29/24

Linear
Regression:
Uniqueness

39

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of weights 𝒘) are
there for the given
dataset?

Henry Chai - 1/29/24

Linear
Regression:
Uniqueness

40

� Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

𝑦

𝑥1

𝑥2

Henry Chai - 1/29/24

Linear
Regression:
Uniqueness

41

� Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of weights 𝒘) are
there for the given
dataset?

𝑦

𝑥1

𝑥2

Henry Chai - 1/29/24

Linear
Regression:
Uniqueness

42

� Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of weights 𝒘) are
there for the given
dataset?

𝑦

𝑥1

𝑥2

Henry Chai - 1/29/24

Closed Form
Solution

44Henry Chai - 1/29/24

1. Is 𝑋E𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋E𝑋	is (almost always) full rank and

therefore, invertible
• If 𝑋E𝑋	is not invertible (occurs when one of the

features is a linear combination of the others) then
there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋E𝑋?
• 𝑋E𝑋 ∈ ℝG6*×G6* so inverting 𝑋E𝑋	takes 𝑂 𝐷; time…

• Computing 𝑋E𝑋 takes 𝑂 𝑁𝐷+ time
• What alternative optimization method can we use to

minimize the mean squared error?

2𝒘 = 𝑋E𝑋 8*𝑋E𝒚

Gradient
Descent:
Intuition

� An iterative method for minimizing functions

� Requires the gradient to exist everywhere

45Henry Chai - 1/29/24

Gradient
Descent:
Intuition

46Henry Chai - 1/29/24

� An iterative method for minimizing functions

� Requires the gradient to exist everywhere

Gradient
Descent:
Intuition

47Henry Chai - 1/29/24

� An iterative method for minimizing functions

� Requires the gradient to exist everywhere

