10-701: Introduction to

Machine Learning
Lecture 5 - MLE & MAP




* Announcements:

* HW1 released 1/24, due 2/2 (Friday) at 11:59 PM

Front Matter

- Recommended Readings:

* Mitchell, Estimating Probabilities

Henry Chai- 1/31/24


http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf

Recipe

for
Linear
Regression

Henry Chai- 1/31/24

1. Define a model and model parameters
1. Assumey =wlx

2. Parameters: w = [wy, Wy, ..., wp]

2. Write down an objective function
1. Minimize the mean squared error

N
1 2
tp(w) =+ z (WTx® — y™)
n=1

3. Optimize the objective w.r.t. the model parameters

1. Solve in closed form: take partial derivatives,
set to 0 and solve
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Lp(w) = NZ(W xM — y(")) = N

1[M]=
~ N
%
2
ﬂ
S
|
\<f'\
s
N———"
(\)
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1 D
= S IXw = y|I3 where lzll, = | ) 23 =+/2"z
1 d=1
Minimizing the =~ @w = y)T(Xw —y)

Squared Error

1
= WIXTXw —2wTXTy + yTy)

A\ 1 A\
V(W) = ~ XTxw—-2XTy) =0
- X"Xw=X"y

-w=X"X)"X"y

Henry Chai- 1/31/24



Closed Form

Solution

Henry Chai- 1/31/24

w=X"X)"1xTy

Is XTX invertible?

« When N >» D + 1, XTX is (almost always) full rank and
therefore, invertible

* If XTX is not invertible (occurs when one of the
features is a linear combination of the others) then
there are infinitely many solutions.

If so, how computationally expensive is inverting XT X?

« XTX € RPH1XP+1 o5 inverting XT X takes O(D3) time...

« Computing XT X takes O(ND?) time
* What alternative optimization method can we use to

minimize the mean squared error?



* An iterative method for minimizing functions

* Requires the gradient to exist everywhere

Gradient

Descent:
Intuition
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- Suppose the current weight vector is w®

- Move some distance, 1, in the “most downhill” direction, v:
Gradient wttD) = (® 4 np

Descent

Henry Chai- 1/31/24



Gradient

Descent:
Step Direction

Henry Chai- 1/31/24

* Move some distance, n, in the “most downhil

- Suppose the current weight vector is w®

|”

wttD) = W) 4 9%

* The gradient points in the direction of steepest increase ...

* ... S0 ¥ should point in the opposite direction:

. Vw'gy_) (W(t))
IV tp (w®)

AN

50 —

direction, V:
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Gradient

Descent:
Step Size

Small7n Large 7
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Gradient

Descent:
Step Size

Henry Chai- 1/31/24

* Use a variable n(t) instead of a fixed n!

- Setn® = nO||v, 25 (WD)

[Vt (w®)|| decreases as £, approaches its minimum

- n(t) (hopefully) decreases over time
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Gradient

Descent

Henry Chai- 1/31/24

- ) —

L VW'BD (W(t))
[Vwtp (w®)]

7 ® = O, £5 (WD)

WD = O 4 pOF®

VW’BD (W(t))

=w® + 1OV > W) (-

= w® — pOy, 2 (W®)

[Vwtp (w®))]

)
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Gradient

Descent

Henry Chai- 1/31/24

*Input: D = {(x(i),y(i))}livzl,n
1. Initialize w© to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:
waz) (W(t))

b. Update w: wlt+D) « w®) — v ¢, (W)

c. Incrementt:t<t+1

- Qutput; w®
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Gradient

Descent

Henry Chai- 1/31/24

* Input: D = {(x(i),y(i))}livzl,n, €
1. Initialize w® to all zeros and sett = 0

2. While ||V, £p (W®)|| > €
a. Compute the gradient:
wap (W(t))

b. Update w: wlt+D) « w®) — v ¢, (W)

c. Incrementt:t<t+1

- Qutput: w®)
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Gradient

Descent

Henry Chai- 1/31/24

* Input: D = {(x(i),y(i))}livzl,n,T
1. Initialize w© to all zeros and sett = 0

2. Whilet<T

a. Compute the gradient:
waz) (W(t))

b. Update w: wlt+D) « w®) — v ¢, (W)

c. Incrementt:t<t+1

- Qutput; w®
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Why
Gradient

Descent for
linear
regression’?
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* Input: D = {(x(i),y(i))}livzl,n,T
1. Initialize w© to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:
waz) (W(t))
b. Update w: wlt+D) « w®) — v ¢, (W)

c. Incrementt:t<t+1

- Qutput; w®
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Convexity

Henry Chai- 1/31/24

* A function f:RP - Riis convex if
Ve eRP,x® eRPand0<c<1
flex® + (1 -c)x@) < cf (W) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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* A function f:RP - Riis convex if
Ve eRP,x® eRPand0<c<1
flex® + (1 -c)x@) < cf (W) + (1 = ) f(x?P)

! f

cf(x®)+ (1 =) f(x@) - | }

Flex® 4 (1= @) |- i L

( 1

X(l) Cx(l) + (1 . c)x(z) x(z)
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Convexity
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» A function f: RP — Ris strictly convex if
Vil e R x®D eRPand0<c< 1
flex® + (1 - )x@) < cf (x®) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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¥  Convex functions

Non-convex functions
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Convexity
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r'
-
-

/-7 Given a function f: R” > R

* x* is a global minimum iff
fx)<f(x)vxeR?

* x* is a local minimum iff

Jest. f(x") < f(x)V

xst||lx—x"||, <€
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Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Convexity
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Strictly convex functions:

There exists a unique global

minimum/!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\

Gradient
Descent & 4

Convexity

Henry Chai- 1/31/24 27
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

Henry Chai- 1/31/24
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

Henry Chai- 1/31/24
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

Henry Chai- 1/31/24
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

Henry Chai- 1/31/24
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The squared
error for linear
regression is

convex (but
not strictly
convex)!

Henry Chai- 1/31/24

- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

H,tp(w) = %XTX which is positive semi-definite

>
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\CAELCEENR
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* Closed form solution for linear regression

* Setting the gradient equal to 0 and solving for critical

points

* Potential issues: invertibility and computational costs

* Gradient descent

* Effect of step size

* Termination criteria

* Convexity vs. non-convexity

- Strong vs. weak convexity

* Implications for local, global and unique optima

36



Probabilistic

Learning

Henry Chai- 1/31/24

* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y

* Goal: find a classifier, h, that best approximates c*

* Now:

* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*

37



Likelihood

Henry Chai- 1/31/24

* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the likelihood of D is

N
1@ = | [p(x™16)
n=1

* If X is continuous with probability density function (pdf)
f(X|6), then the likelihood of D is

N
Lo = | [rxmie)
n=1

38



Log-Likelihood

Henry Chai- 1/31/24

* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the log-likelihood of D is

N N
£(0) = logl_[p(x(”)|9) = Z logp(x(”)w)
n=1 n=1

* If X is continuous with probability density function (pdf)
f(X|8), then the log-likelihood of D is

N N
£©) =log| [f(x™16) = ) logf(x™]6)
n=1 n=1
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Maximum
Likelihood

Estimation
(MLE)

Henry Chai- 1/31/24

* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | —_ =05 ]
- Example: the 125 ) — =1 |
A=1.5
exponential 100
S
= 0.75
. . . DN
distribution
0.50 \
0.25
0.00 . . . .
0 1 2 3 4 5
T
Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg 40



https://en.wikipedia.org/wiki/Exponential_distribution

* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

Maximum
Likelihood * Intuition: assign as much of the (finite) probability mass
I e I O,O to the observed data at the expense of unobserved data
Estimation e e P
(MLE) ° Example:the 1.25F —-A=1
A=1.5
exponential 1.00 :
B 075t 1) _
distribution =" {x( ) =05,
0.50 x(z) — 1}
0.25 F
0.00 | :
4 )

Henry Chai- 1/31/24 Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg 41



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)

Henry Chai- 1/31/24

* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | =05 ]
- Example: the 125} — =1 |
A=1.5
exponential 100 '
L. ) ot 1 (1) _

distribution ~ {x 2,

0.50 .
\ x(Z) — 3}

0.25 F .

0.00 f , ,
0 1 2 3 4 5

x

Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg
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Exponential

Distribution
MLE

Henry Chai- 1/31/24

* The pdf of the exponential distribution is

f(x|A) = 2e™H

* Given N iid (independent and identically distributed)

samples {x(l), ,x(N)}, the likelihood is

N N
L) = Hf(x(n)l/l) — 1_[/16—][95(71)
n=1 n=1
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Exponential

Distribution
MLE

Henry Chai- 1/31/24

* The pdf of the exponential distribution is

f(x|A) = 2e™H

* Given N iid (independent and identically distributed)

samples {x(l), ,x(N)}, the log-likelihood is

N N
) = Z log f (x™14) = Z log Ae =A™
n=1 n=1

N N
= Z logA +loge Ax™) = N log A —Az x ™)
n=1 n=1

* Taking the partial derivative and setting it equal to O gives

0f N
Sy

— x (M

n=1
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Exponential

Distribution
MLE

Henry Chai- 1/31/24

* The pdf of the exponential distribution is

f(x|A) = 2e™H

* Given N iid (independent and identically distributed)

samples {x(l), ,x(N)}, the log-likelihood is

N N
) = Z log f (x™14) = Z log Ae =A™
n=1 n=1

N N
= Z logA +loge Ax™) = N log A —Az x ™)
n=1 n=1

* Taking the partial derivative and setting it equal to O gives

N N

N N N
- — (")=O—>7=Zx(")—>i=
A Zx yl >N_ x™

n=1 n=1

45



M(C)LE for

Linear
Regression

Henry Chai- 1/31/24

* If we assume a linear model with additive Gaussian noise

y = w'x + e wheree ~N(0,0%) >y ~ N(w'x,05?) ...

_y(l) -
y(2)

, the MLE of w is

_1 x(l)T_
T

then given X = |1 x?) andy =
1 T

® = argmax log P(y|X, w)
w

= X" Xy

Ly (N)_

46



Bernoulli

Distribution
MLE

Henry Chai- 1/31/24

* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — )™

47



Coin

Flipping
MLE

Henry Chai- 1/31/24

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = dp*(1— )™

* Given N iid samples {x(l) x(N)} the log-likelihood is

f(qb)—zlogp(x(”)lqb) Zlogc])x(")(l )1

N

= leogqb + (1 —x)log(1 - ¢)

n=1

= N;log¢p + Nylog(1 — ¢)

- where N; is the number of 1’s in {x(l), ...,x(N)} and N is

the number of 0’s

48



* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|g) = p*(1 — p)'™*

* The partial derivative of the log-likelihood is

Coin 0¢ N; N

Flipping g ¢ 1—¢
MLE

- where N; is the number of 1’s in {x(l), ...,x(N)} and Ny is
the number of 0’s

Henry Chai- 1/31/24
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Coin

Flipping
MLE

Henry Chai- 1/31/24

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = dp*(1— )™

* Given N iid samples {x(l) x(N)} the log-likelihood is

f(qb)—zlogp(x(”)lqb) Zlogc])x(")(l )1

N

= leogqb + (1 —x)log(1 - ¢)

n=1

= N;log¢p + Nylog(1 — ¢)

- where N; is the number of 1’s in {x(l), ...,x(N)} and N is

the number of 0’s
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Coin

Flipping
MLE

Henry Chai- 1/31/24

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — )™

* The partial derivative of the log-likelihood is

Ny N N, N

b 1-¢ 6 1-6¢

- N1(1 - 43) = No$ = Ny = ¢(Ny + Ny)

Ny
No + N,

5=

- where N; is the number of 1’s in {x(l), ...,x(N)} and Ny is

the number of 0’s
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* Insight: sometimes we have prior information we want
to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior
distribution over the parameters

Maximum a - MLE finds § = argmax p(D|6)
0

Posteriori - MAP finds @ = argmax p(6|D)
6

= argmax p(D|6)p(6)/p(D)
= argmax p(D|60)p(6)
6

PN

likelihood prior

(MAP)
Estimation

= argmax logp(D|6) + logp(O)
6 — _/
~—

Henry Chai - 1/31/24 log-posterior
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* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

Goin p(x|p) = ¢*(1 — ¢)*™*
F|ipping - Assume a Beta prior over the parameter ¢, which has pdf
MAP a-1 p-1
(1 - ¢)
f(qbla,ﬁ) _ B(C(,ﬁ)

where B(a, B) = fol d*1(1 — ¢p)B~1d¢ is a normalizing

constant to ensure the distribution integrates to 1

Henry Chai- 1/31/24
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Beta

Distribution

Henry Chai- 1/31/24

figla, B)

12

10

0.8 1

0.4 1

0.2 1

0.0

Beta Distribution w/ a=1 and =1

0.0

02 0.4 06 08

10
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Beta

Distribution
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14 -

12 4

0.4 1

0.2 1

0.0 -

Beta Distribution w/ a=2 and =2

0.0

02 0.4 06 08

10
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Beta

Distribution

Henry Chai- 1/31/24

35 -

3.0 -

0.5 A

0.0 -

Beta Distribution w/ a=10 and =10

0.0

02 0.4 06 08

10
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Beta

Distribution

Henry Chai- 1/31/24

25 -

2.0 -

0.5 A

0.0 -

Beta Distribution w/ a=2 and =5

0.0

02 0.4 06 08

10
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Beta

Distribution

Henry Chai- 1/31/24

4.0

35 -

3.0 -

10 A

0.5 A

0.0

Beta Distribution w/ a=4 and =1

0.0

02 0.4 06 08

10
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Okay, but why
should we use

this strange
distribution as
a prior?

Henry Chai- 1/31/24

Beta Distribution w/ a=4 and =1

0.2

04

0.6

08

10
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Conjugate
Priors

Henry Chai- 1/31/24

* For a given likelihood function p(D|0), a prior p(0) is

called a conjugate prior if the resulting posterior
distribution p(6|D) is in the same family as p(0) i.e.,
p(@|D) and p(0) are the same type of random variable
just with different parameters

- We like conjugate priors because they are

mathematically convenient

* However, we do not have to use a conjugate prior if

it doesn’t align with our actual prior belief.
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Example:
Beta-Binomial

Conjugacy

Henry Chai- 1/31/24

p(x|d)f (¢la,p)
p(x|a, B)

f(@lx,a,B) =

p(xla, B) = j p(x|d)f (Bla, B)deb

S Dl
B(a,B)

=[x -4 dep

Bla+x,—x+1)

a+x—1 p—x —
— s | # - 9

B(a, B)
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Example:
Beta-Binomial

Conjugacy

Henry Chai- 1/31/24

f(@lx,a,B)

_pix[p)f(@la,p) _ p&x|@)f(la, B)
p(x|a, B) Ipx|9)f (Pla, p)d

p(xlp)f(¢la, B)

f(lx,aB) = (B(a T f—x+ 1))

B(a, B)
b _ —X ¢a—1(1 _ ¢)'B_1

(B(a +]§c€c,[i 'E)x + 1))

B ¢a+x—1(1 _ ¢)ﬁ—x
" Bla+x,B—x+1)

= f(pla+x,8—x+1)

=f(qb|a:+x,,8+(1—x))
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Beta-Binomial
MAP

Henry Chai- 1/31/24

* Given N iid samples {x(l), e x(N)}, the log-posterior is

2(¢p) =log f(pla +xW +x@ 4 ...xN))

(ﬁ +(1-xW)+(1-x@)+ -+ (1- x(N)))

= log f(¢la + Ny, B + No)

where Nj is the number of i’s observed in the samples

¢a+N1—1(1 . ¢),B+NO—1

B(a, B)
=(a+N;—1logdp+ (L+Ny—1)logl — ¢ —logB(a, )

= log
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Beta-Binomial
MAP

Henry Chai- 1/31/24

* Given N iid samples {x(l), e x(N)}, the partial derivative of the log-

posterior is

9 _(@+M-1) (B+No—1
0~ ¢ 1-¢

. B (N +a—1)
_)¢MAP_(NO+ﬁ—1)+(N1+a—1)

a — 1is a “pseudocount” of the number of 1’s you’ve “observed”

*f — 1is a “pseudocount” of the number of 0’s you’ve “observed”

64



Coin

Flipping
MAP:

Example

Henry Chai- 1/31/24

* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 2 and § = 5, then

- (2 -1+ 10) _11_10
¢MAP_(2—1+10)+(5—1+2)_17 12
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Coin

Flipping
MAP:

Example

Henry Chai- 1/31/24

* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 101 and f = 101, then

(101 —1+4+10) 110 1
dmap = — 51575
(101 —1+4+10)+ (101 —-1+4+2) 212 2
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Coin

Flipping
MAP:

Example

Henry Chai- 1/31/24

* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior witha = 1 and f = 1, then

- (1-1+10) 10
¢MAP_(1—1+10)+(1—1+2)_12_¢MLE
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- Two ways of estimating the parameters of a probability
distribution given samples of a random variable:

* Maximum likelihood estimation — maximize the

(log-)likelihood of the observations

Key Takeaways * Maximum a posteriori estimation — maximize the

(log-)posterior of the parameters conditioned on the

observations

* Requires a prior distribution, drawn from

background knowledge or domain expertise

Henry Chai- 1/31/24 68



