
10-701: Introduction to 
Machine Learning
Lecture 5 – MLE & MAP

Henry Chai

1/31/24



Front Matter

� Announcements:

� HW1 released 1/24, due 2/2 (Friday) at 11:59 PM

� Recommended Readings:

� Mitchell, Estimating Probabilities
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http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf


1. Define a model and model parameters
1. Assume 𝑦 = 𝒘!𝒙
2. Parameters: 𝒘 = 𝑤", 𝑤#, … , 𝑤$

2. Write down an objective function
1. Minimize the mean squared error

3. Optimize the objective w.r.t. the model parameters
1. Solve in closed form: take partial derivatives,           

set to 0 and solve

Recipe 
for 
Linear
Regression
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ℓ𝒟 𝒘 =
1
𝑁
+
&'#

(

𝒘!𝒙 & − 𝑦 & )



Minimizing the 
Squared Error

4

=
1
𝑁

𝑋𝒘− 𝒚 )
) where 𝒛 ) = +

*'#

$

𝑧*) = 𝒛!𝒛

=
1
𝑁

𝑋𝒘 − 𝒚 ! 𝑋𝒘 − 𝒚
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=
1
𝑁

𝒘!𝑋!𝑋𝒘 − 2𝒘!𝑋!𝒚 + 𝒚!𝒚

→ 𝑋!𝑋8𝒘 = 𝑋!𝒚

→ 8𝒘 = 𝑋!𝑋 +#𝑋!𝒚

∇𝒘ℓ𝒟 8𝒘 =
1
𝑁

2𝑋!𝑋8𝒘 − 2𝑋!𝒚 = 0

ℓ𝒟 𝒘 =
1
𝑁
+
&'#

(

𝒘!𝒙 & − 𝑦 & )
=
1
𝑁
+
&'#

(

𝒙 & !
𝒘− 𝑦 &

)



Closed Form 
Solution
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1. Is 𝑋!𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋!𝑋	is (almost always) full rank and 

therefore, invertible
• If 𝑋!𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋!𝑋?
• 𝑋!𝑋 ∈ ℝ$-#×$-# so inverting 𝑋!𝑋	takes 𝑂 𝐷/  time…

• Computing 𝑋!𝑋 takes 𝑂 𝑁𝐷)  time
• What alternative optimization method can we use to 

minimize the mean squared error?

8𝒘 = 𝑋!𝑋 +#𝑋!𝒚



Gradient 
Descent:
Intuition

� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere
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� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere



Gradient 
Descent

� Suppose the current weight vector is 𝒘 0

� Move some distance, 𝜂, in the “most downhill” direction, 8𝒗:
𝒘 0-# = 𝒘 0 + 𝜂8𝒗

� The gradient points in the direction of steepest increase …

� … so 8𝒗 is a unit vector pointing in the opposite direction:

8𝒗 0 = − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #
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Gradient 
Descent:
Step Direction

� Suppose the current weight vector is 𝒘 0

� Move some distance, 𝜂, in the “most downhill” direction, 8𝒗:
𝒘 0-# = 𝒘 0 + 𝜂8𝒗

� The gradient points in the direction of steepest increase …

� … so 8𝒗 should point in the opposite direction:

8𝒗 0 = − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #
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Gradient 
Descent: 
Step Size

11

Small 𝜂 Large 𝜂
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Gradient 
Descent: 
Step Size

Small 𝜂 Large 𝜂



� Use a variable 𝜂 0 instead of a fixed 𝜂!

� Set 𝜂 0 = 𝜂 " ∇𝒘ℓ𝒟 𝒘 0

� ∇𝒘ℓ𝒟 𝒘 0 decreases as ℓ𝒟 approaches its minimum 
→ 𝜂 0 (hopefully) decreases over time
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Gradient 
Descent: 
Step Size



� 8𝒗 0 = − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #

� 𝜂 0 = 𝜂 " ∇𝒘ℓ𝒟 𝒘 0

� 𝒘 0-# = 𝒘 0 + 𝜂 0 8𝒗 0

� 𝒘 0-# = 𝒘 0 + 𝜂 " ∇𝒘ℓ𝒟 𝒘 0 − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #

� 𝒘 0-# = 𝒘 0 − 𝜂 " ∇𝒘ℓ𝒟 𝒘 0

15

Gradient 
Descent
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Gradient 
Descent

� Input: 𝒟 = 𝒙 3 , 𝑦 3
3'#
(
, 𝜂

1. Initialize 𝒘 " to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 0 = 2𝑋!𝑋𝒘 − 2𝑋!𝒚

b. Update 𝒘: 𝒘 0-# ← 𝒘 0 − 𝜂∇𝒘ℓ𝒟 𝒘 0

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 0
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Gradient 
Descent

� Input: 𝒟 = 𝒙 3 , 𝑦 3
3'#
(
, 𝜂, 𝜖

1. Initialize 𝒘 " to all zeros and set 𝑡 = 0

2. While ∇𝒘ℓ𝒟 𝒘 0 > 𝜖

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 0 = 2𝑋!𝑋𝒘 − 2𝑋!𝒚

b. Update 𝒘: 𝒘 0-# ← 𝒘 0 − 𝜂∇𝒘ℓ𝒟 𝒘 0

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 0

17Henry Chai - 1/31/24



Gradient 
Descent

� Input: 𝒟 = 𝒙 3 , 𝑦 3
3'#
(
, 𝜂, 𝑇

1. Initialize 𝒘 " to all zeros and set 𝑡 = 0

2. While 𝑡 < 𝑇

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 0 = 2𝑋!𝑋𝒘 − 2𝑋!𝒚

b. Update 𝒘: 𝒘 0-# ← 𝒘 0 − 𝜂∇𝒘ℓ𝒟 𝒘 0

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 0
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Why
Gradient 
Descent for
linear 
regression?

� Input: 𝒟 = 𝒙 3 , 𝑦 3
3'#
(
, 𝜂, 𝑇

1. Initialize 𝒘 " to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 0 = 2𝑋!𝑋𝒘 − 2𝑋!𝒚

b. Update 𝒘: 𝒘 0-# ← 𝒘 0 − 𝜂∇𝒘ℓ𝒟 𝒘 0

c. Increment 𝑡: 𝑡 ← 𝑡 + 1

� Output: 𝒘 0
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� A function 𝑓:ℝ$ → ℝ is strictly convex if 
∀ 𝒙 # ∈ ℝ$, 𝒙 ) ∈ ℝ$ and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 # + 1 − 𝑐 𝒙 ) ≤ 𝑐𝑓 𝒙 # + 1 − 𝑐 𝑓 𝒙 )

𝑓 𝑐𝑥 ! + 1 − 𝑐 𝑥 "

Convexity
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𝑓

𝑥 ! 𝑥 "𝑐𝑥 ! + 1 − 𝑐 𝑥 "

𝑐𝑓 𝑥 ! + 1 − 𝑐 𝑓 𝑥 "



� A function 𝑓:ℝ$ → ℝ is strictly convex if 
∀ 𝒙 # ∈ ℝ$, 𝒙 ) ∈ ℝ$ and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 # + 1 − 𝑐 𝒙 ) ≤ 𝑐𝑓 𝒙 # + 1 − 𝑐 𝑓 𝒙 )

𝑓 𝑐𝑥 ! + 1 − 𝑐 𝑥 "

Convexity
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𝑓

𝑥 ! 𝑥 "𝑐𝑥 ! + 1 − 𝑐 𝑥 "
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� A function 𝑓:ℝ$ → ℝ is strictly convex if 
∀ 𝒙 # ∈ ℝ$, 𝒙 ) ∈ ℝ$ and 0 < 𝑐 < 1
𝑓 𝑐𝒙 # + 1 − 𝑐 𝒙 ) < 𝑐𝑓 𝒙 # + 1 − 𝑐 𝑓 𝒙 )

𝑓 𝑐𝑥 ! + 1 − 𝑐 𝑥 "

Convexity
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𝑓

𝑥 ! 𝑥 "𝑐𝑥 ! + 1 − 𝑐 𝑥 "

𝑐𝑓 𝑥 ! + 1 − 𝑐 𝑓 𝑥 "



Convexity
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Convex functions

Non-convex functions



Convexity
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Given a function 𝑓:ℝ$ → ℝ 

• 𝒙∗ is a global minimum iff 
𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀	𝒙 ∈ ℝ$

• 𝒙∗ is a local minimum iff 
∃	𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀
𝒙 s.t. 𝒙 − 𝒙∗ ) < 𝜖



Convexity
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Convex functions:

Each local minimum is a 
global minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Convexity
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Strictly convex functions:

There exists a unique global 
minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…



� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
Gradient 
Descent & 
Convexity
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Gradient 
Descent & 
Convexity
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
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The squared 
error for linear 
regression is 
convex (but 
not strictly 
convex)!

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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𝐻𝒘ℓ𝒟 𝒘 = )
(
𝑋!𝑋 which is positive semi-definite



Key Takeaways

� Closed form solution for linear regression

� Setting the gradient equal to 0 and solving for critical 
points

� Potential issues: invertibility and computational costs

� Gradient descent

� Effect of step size

� Termination criteria

� Convexity vs. non-convexity 

� Strong vs. weak convexity 

� Implications for local, global and unique optima
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Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 # , … , 𝑥 ( of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =\
&'#

(

𝑝 𝑥 & |𝜃

� If 𝑋 is continuous with probability density function (pdf) 

𝑓 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =\
&'#

(

𝑓 𝑥 & |𝜃
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Log-Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 # , … , 𝑥 ( of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log\
&'#

(

𝑝 𝑥 & |𝜃 = +
&'#

(

log 𝑝 𝑥 & |𝜃

� If 𝑋 is continuous with probability density function (pdf) 

𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟 is 

ℓ 𝜃 = log\
&'#

(

𝑓 𝑥 & |𝜃 = +
&'#

(

log 𝑓 𝑥 & |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg Henry Chai - 1/31/24 40

https://en.wikipedia.org/wiki/Exponential_distribution


Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution `

a
𝑥 # = 0.5,
𝑥 ) = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg Henry Chai - 1/31/24 41
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution `

a
𝑥 # = 2,
𝑥 ) = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg Henry Chai - 1/31/24 42
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒+56

� Given 𝑁 iid (independent and identically distributed) 
samples 𝑥 # , … , 𝑥 ( , the likelihood is

𝐿 𝜆 =\
&'#

(

𝑓 𝑥 & |𝜆 =\
&'#

(

𝜆𝑒+56 $

ℓ 𝜆 = +
&'#

(

log 𝜆 + log 𝑒+56 $ = 𝑁 log 𝜆 − 𝜆+
&'#

(

𝑥 &

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆 =

𝑁
𝜆 −+

&'#

(

𝑥 &

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒+56

� Given 𝑁 iid (independent and identically distributed) 
samples 𝑥 # , … , 𝑥 ( , the log-likelihood is

ℓ 𝜆 = +
&'#

(

log 𝑓 𝑥 & |𝜆 = +
&'#

(

log 𝜆𝑒+56 $

ℓ 𝜆 = +
&'#

(

log 𝜆 + log 𝑒+56 $ = 𝑁 log 𝜆 − 𝜆+
&'#

(

𝑥 &

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆 =

𝑁
𝜆 −+

&'#

(

𝑥 &

Exponential 
Distribution
MLE
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� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒+56

� Given 𝑁 iid (independent and identically distributed) 
samples 𝑥 # , … , 𝑥 ( , the log-likelihood is

ℓ 𝜆 = +
&'#

(

log 𝑓 𝑥 & |𝜆 = +
&'#

(

log 𝜆𝑒+56 $

ℓ 𝜆 = +
&'#

(

log 𝜆 + log 𝑒+56 $ = 𝑁 log 𝜆 − 𝜆+
&'#

(

𝑥 &

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆 =

𝑁
h𝜆
−+
&'#

(

𝑥 & = 0 →
𝑁
h𝜆
= +

&'#

(

𝑥 & → h𝜆 =
𝑁

∑&'#( 𝑥 &

Exponential 
Distribution
MLE
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎!𝒙 + 𝜖 where 𝜖 ~ 𝑁 0, 𝜎) → 𝑦 ∼ 𝑁 𝝎!𝒙, 𝜎) …

then given 𝛸 =

1 𝒙 # !

1 𝒙 ) !

⋮ ⋮
1 𝒙 ( !

and 𝒚 =

𝑦 #

𝑦 )

⋮
𝑦 (

, the MLE of 𝝎 is
M(C)LE for 
Linear 
Regression 8𝝎 = argmax

𝝎
	 log 𝑃 𝒚 𝑋,𝝎

= 𝑋!𝑋 +#𝑋!𝒚

⋮
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Bernoulli 
Distribution
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙6 1 − 𝜙 #+6

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 ( , the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁#
t𝜙
−

𝑁"
1 − t𝜙

= 0 →
𝑁#
t𝜙
=

𝑁"
1 − t𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁# 1 − t𝜙 = 𝑁" t𝜙 → 𝑁# = t𝜙 𝑁" +𝑁#

𝜕ℓ
𝜕𝜙

→ t𝜙 =
𝑁#

𝑁" +𝑁#
� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 (  and 𝑁" is 

the number of 0’s
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Coin 
Flipping
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙6 1 − 𝜙 #+6

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 ( , the log-likelihood is

ℓ 𝜙 = +
&'#

(

log 𝑝 𝑥 & |𝜙 = +
&'#

(

log𝜙6 $ 1 − 𝜙 #+6 $

ℓ 𝜙 = +
&'#

(

𝑥 log𝜙 + 1 − 𝑥 log 1 − 𝜙

ℓ 𝜙 = 𝑁# log𝜙 + 𝑁" log 1 − 𝜙

� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 ( and 𝑁" is 
the number of 0’s
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Coin 
Flipping
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙6 1 − 𝜙 #+6

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁#
𝜙
−

𝑁"
1 − 𝜙

= 0 →
𝑁#
t𝜙
=

𝑁"
1 − t𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁# 1 − t𝜙 = 𝑁" t𝜙 → 𝑁# = t𝜙 𝑁" +𝑁#

𝜕ℓ
𝜕𝜙

→ t𝜙 =
𝑁#

𝑁" +𝑁#
� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 (  and 𝑁" is 

the number of 0’s
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Coin 
Flipping
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙6 1 − 𝜙 #+6

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 ( , the log-likelihood is

ℓ 𝜙 = +
&'#

(

log 𝑝 𝑥 & |𝜙 = +
&'#

(

log𝜙6 $ 1 − 𝜙 #+6 $

ℓ 𝜙 = +
&'#

(

𝑥 log𝜙 + 1 − 𝑥 log 1 − 𝜙

ℓ 𝜙 = 𝑁# log𝜙 + 𝑁" log 1 − 𝜙

� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 ( and 𝑁" is 
the number of 0’s

Henry Chai - 1/31/24 50



Coin 
Flipping
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙6 1 − 𝜙 #+6

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁#
t𝜙
−

𝑁"
1 − t𝜙

= 0 →
𝑁#
t𝜙
=

𝑁"
1 − t𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁# 1 − t𝜙 = 𝑁" t𝜙 → 𝑁# = t𝜙 𝑁" +𝑁#

𝜕ℓ
𝜕𝜙

→ t𝜙 =
𝑁#

𝑁" +𝑁#
� where 𝑁# is the number of 1’s in 𝑥 # , … , 𝑥 (  and 𝑁" is 

the number of 0’s
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� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior
distribution over the parameters

� MLE finds t𝜃 = argmax
8

𝑝 𝒟 𝜃

� MAP finds t𝜃 = argmax
8

𝑝 𝜃 𝒟

MAP finds t𝜃 = argmax
8

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds t𝜃 = argmax
8

𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds t𝜃. = argmax
8

log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation

likelihood prior

log-posteriorHenry Chai - 1/31/24 52



Coin 
Flipping
MAP

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙6 1 − 𝜙 #+6

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙9+# 1 − 𝜙 :+#

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ∫"
#𝜙9+# 1 − 𝜙 :+#𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1
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Beta 
Distribution
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Beta 
Distribution
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Okay, but why 
should we use 
this strange 
distribution as 
a prior?
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Conjugate 
Priors

� For a given likelihood function 𝑝 𝒟 𝜃 , a prior 𝑝 𝜃 is 

called a conjugate prior if the resulting posterior 
distribution 𝑝 𝜃 𝒟 is in the same family as 𝑝 𝜃 i.e., 
𝑝 𝜃 𝒟 and 𝑝 𝜃 are the same type of random variable 

just with different parameters

� We like conjugate priors because they are 

mathematically convenient

� However, we do not have to use a conjugate prior if 
it doesn’t align with our actual prior belief.
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Example:
Beta-Binomial 
Conjugacy

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽

𝑝 𝑥|𝛼, 𝛽
=

𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽
∫ 𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽 𝑑𝜙

𝑝 𝑥|𝛼, 𝛽 = {𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽 𝑑𝜙

𝑝 𝑥|𝛼, 𝛽 = {𝜙6 1 − 𝜙 #+6 𝜙
9+# 1 − 𝜙 :+#

Β 𝛼, 𝛽
𝑑𝜙

𝑝 𝑥|𝛼, 𝛽 =
1

Β 𝛼, 𝛽
{𝜙9-6+# 1 − 𝜙 :+6𝑑𝜙 =

B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
Β 𝛼, 𝛽
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Example:
Beta-Binomial 
Conjugacy

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽

𝑝 𝑥|𝛼, 𝛽
=

𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽
∫ 𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽 𝑑𝜙

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽
B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

Β 𝛼, 𝛽

𝑓 𝜙 𝑥, 𝛼, 𝛽 	=
𝜙6 1 − 𝜙 #+6 𝜙9+# 1 − 𝜙 :+#

Β 𝛼, 𝛽
B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

Β 𝛼, 𝛽

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝜙9-6+# 1 − 𝜙 :+6

B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
= 𝑓 𝜙 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝜙9-6+# 1 − 𝜙 :+6

B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
= 𝑓 𝜙 𝛼 + 𝑥, 𝛽 + 1 − 𝑥
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Beta-Binomial 
MAP

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 ( , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼 + 𝑥 # + 𝑥 ) +⋯𝑥 ( ,

	 −	 𝑓 𝛽 + 1 − 𝑥 # + 1 − 𝑥 ) +⋯+ 1 − 𝑥 (

ℓ 𝜙 = log 𝑓 𝜙 𝛼 + 𝑁#, 𝛽 + 𝑁" 	

where 𝑁3 is the number of 𝑖’s observed in the samples

ℓ 𝜙 = log
𝜙9-(%+# 1 − 𝜙 :-(&+#

Β 𝛼, 𝛽
ℓ 𝜙 = 𝛼 + 𝑁# − 1 log𝜙 + 𝛽 + 𝑁" − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽
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Beta-Binomial 
MAP

� Given 𝑁 iid samples 𝑥 # , … , 𝑥 ( , the partial derivative of the log-

posterior is 

𝜕ℓ
𝜕𝜙

=
𝛼 + 𝑁# − 1

𝜙
−

𝛽 + 𝑁" − 1
1 − 𝜙

	 	 ⋮

→ t𝜙;<= =
𝑁# + 𝛼 − 1

𝑁" + 𝛽 − 1 + 𝑁# + 𝛼 − 1

�𝛼 − 1	is a “pseudocount” of the number of 1’s you’ve “observed” 

�𝛽 − 1	is a “pseudocount” of the number of 0’s you’ve “observed”
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Coin 
Flipping
MAP:
Example

� Suppose 𝒟	consists of ten 1’s or heads (𝑁# = 10) and     

two 0’s or tails (𝑁" = 2):

𝜙;>? =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 2 and 𝛽 = 5, then

𝜙;<= =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2)
=
11
17

<
10
12
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Coin 
Flipping
MAP:
Example

� Suppose 𝒟	consists of ten 1’s or heads (𝑁# = 10) and     

two 0’s or tails (𝑁" = 2):

𝜙;>? =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙;<= =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=
110
212

≈
1
2
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Coin 
Flipping
MAP:
Example

� Suppose 𝒟	consists of ten 1’s or heads (𝑁# = 10) and     

two 0’s or tails (𝑁" = 2):

𝜙;>? =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙;<= =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=
10
12

= 𝜙;>?
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Key Takeaways

� Two ways of estimating the parameters of a probability 

distribution given samples of a random variable:

� Maximum likelihood estimation – maximize the 
(log-)likelihood of the observations

� Maximum a posteriori estimation – maximize the 
(log-)posterior of the parameters conditioned on the 
observations

� Requires a prior distribution, drawn from 

background knowledge or domain expertise
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